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Anomalous Hall effect driven by dipolar spin waves in uniform ferromagnets
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An anomalous Hall effect is shown to arise from the exchange interaction of conduction electrons with dipolar
spin waves in ferromagnets. This effect exists even in homogeneous ferromagnets without relativistic spin-orbit
coupling. The leading contribution to the Hall conductivity is proportional to the chiral spin correlation of
dynamical spin textures and is physically understood in terms of the skew scattering by dipolar magnons.
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The anomalous Hall effect (AHE) has been known for more
than a century and provided various intriguing areas of research
both theoretically and experimentally [1]. The AHE is due to
both the presence of the spontaneous magnetization and spin-
orbit interaction, and thus no external magnetic field is needed
as opposed to the ordinary Hall effect. The contributions to
the AHE are conventionally understood by the intrinsic and
extrinsic mechanisms; the former is associated with the anoma-
lous velocity deriving from nontrivial band curvature (Berry
curvature), and the latter comes from spin-orbit scattering from
impurities [2]. Distinctly from these mechanisms, another
type of contribution to the AHE, known as the topological
Hall effect (THE), was later proposed [3,4]. The THE arises
from chiral magnetic textures such as Skyrmion configuration,
which generate a Berry phase for conduction electrons leading
to Hall effect [5]. This Berry phase interpretation is appropriate
in the regime of strong coupling between conduction electrons
and magnetic textures. On the other hand, the Hall conductivity
in the weak coupling regime was shown to be proportional
to the scalar spin chirality, given by Sr1 · (Sr2 × Sr3 ), which
measures the correlation between the spin orientations and
real-space positions [6]. The leading order contribution reads

σxy ∝
∑

r1,r2,r3

Sr1 · (Sr2 × Sr3 )(a × b)zF(a,b,c), (1)

where a = r1 − r2, b = r2 − r3, c = r3 − r1, F(a,b,c) is a
symmetric function of a = |a|, b = |b|, and c = |c| related to
electrons, and the summation is taken over all locations r i of
localized magnetic moments Sr i

. We note that the origin of the
cross product (a × b)z = (b × c)z = (c × a)z in Eq. (1) can be
traced back to the antisymmetrized electron velocity operators
v̂x v̂y , while the symmetry of function F embodies the
essentially scalar nature of the electron propagation. In order
to have a nonvanishing contribution in this setting, therefore,
the scalar spin chirality must include a component that is odd
under parity [i.e., r i ≡ (xi,yi,zi) → (±xi, ∓ yi,zi)], which, in
translationally and rotationally symmetric systems, requires
Sr1 · (Sr2 × Sr3 )|odd ∝ (a × b)z.
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Recently, Hall effects not only of electrons but also of
various bosonic excitations, involving photons, magnons, and
phonons, have been studied [7]. Amongst them is the Hall
effect of magnetostatic forward volume waves, or dipolar
magnons, which have Berry curvature originating from the
magnetic dipole-dipole interaction [8]. Since conduction elec-
trons interact with magnons via the exchange interaction, it
seems natural to expect that the electrons may also acquire
some chirality in their orbital motion and exhibit a Hall effect.

In this Rapid Communication, we approach this problem
by a perturbative expansion in the exchange coupling between
the dynamical magnetization and conduction electrons. We
derive a spin-chirality formula for the Hall conductivity, which
can be regarded as a generalization of Eq. (1) to spin texture
fluctuations. It is found that the dipole-dipole interaction
induces a parity-odd component of chiral spin correlation,

〈Sr1 · (Sr2 × Sr3 )〉|odd = (a × b)z(a · b)t F̃ (a)F̃ (b)

+ cyclic perms in (a,b,c), (2)

where 〈· · · 〉 denotes quantum/thermal averaging, the subscript
t indicates projection onto x-y plane (a · b)t = axbx + ayby ,
and F̃ (a) is a function related to magnons. Because of the factor
(a · b)t in Eq. (2), there is no net spin chirality in the sense
that the spatial average of 〈Sr1 · (Sr2 × Sr3 )〉(a × b)z is zero.
Nevertheless, the electron contribution, which corresponds to
(a × b)zF in Eq. (1), provides factors of (a · b)t in such a way
to render the Hall conductivity finite, as we shall demonstrate
below.

Let us first reformulate the theory of dipolar magnons in
a form suitable for studying their interaction with electrons.
We consider a normally magnetized film of homogeneous
ferromagnet. The magnetization m̂(r) satisfies 〈m̂(r)〉0 =
(0,0,Ms) in the ground state, where Ms is the saturation
magnetization. Let us introduce the Holstein-Primakoff field
aq by

m̂+(r) =
√

−2�γMs

V

∑
q

aqe
iq·r , (3)
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where m̂± = m̂x ± im̂y , γ < 0 is the effective gyromagnetic
ratio of electron, and V is the volume of the sample. In the
presence of both exchange and dipole-dipole interactions, the
magnon Hamiltonian can be written as [9]

Hd =
∑

q

�ωqb
†
qbq, (4)

in terms of the diagonalizing operator, bq = A+
q e−iφq aq +

A−
q eiφq a

†
−q , and the eigenfrequency

ωq =
√

(ω0 + ωMλq2)(ω0 + ωMλq2 + ωM sin2 θq), (5)

where q = q(sin θq cos φq, sin θq sin φq, cos θq). The Bogoli-
ubov coefficients are given by

A±
q = ωq ± (ω0 + ωMλq2)

2
√

ωq(ω0 + ωMλq2)
. (6)

If we neglect magnetocrystalline anisotropy, ω0 = −γHex

and ωM = −γMs , where Hex is an external magnetic field,
and λ is the square of the exchange length, whose typical
value is ∼10−16 [m2]. Note that aq is not an eigenoperator
unless the dipole-dipole interaction is absent, A−

q = 0. To treat
interactions between magnons and electrons, we shall apply
quantum field theory techniques [10,11] and define thermal
Green’s functions

DAB(1,2) = 1

2�γMs

〈Tτ [m̂A(τ1,r1)m̂B(τ2,r2)]〉, (7)

where Tτ indicates imaginary-time ordering, A,B = ±, and
m̂A(τ ) = eHτ m̂Ae−Hτ . A consequence of the dipole-dipole
interaction is the spin-flip propagator

D±± = −kBT

V

∑
	,q

e±2iφq A+
q A−

q Dq(iν	)ei(q·r−ν	τ ), (8)

where ν	 is the Matsubara frequency and Dq(iν	) =
−2�ωq/(ν2

	 + �
2ω2

q). We neglect the self-energy for simplic-
ity. The phase factor e±2iφq in Eq. (8) is a manifestation of
the coupling between the spin and orbital motion of magnons.
In particular, the spin-flip propagator (8) contains a parity-odd
element, which will ultimately lead to electron Hall effect. The
spin-preserving part D±∓ also receives a contribution from the
dipole-dipole interaction, but it is parity even and does not
essentially affect AHE.

For the electron part of the Hamiltonian, we consider a free
electron gas with the s-d exchange coupling to m̂:

Hs =
∑

k

ξkc
†
kck, ξk = �

2k2

2m
− μ, (9)

Hsd = − J

N

∑
k,q

∫
d r

m̂(r)

�γ
· (c†kσck+q)eiq·r . (10)

Here, c
†
k = (c†k↑,c

†
k↓) is the electron creation operator, μ is the

chemical potential, J the s-d exchange energy, N the total
number of localized magnetic moments in the sample, and σ

the triplet of the Pauli matrices. Our goal is to compute the
Hall conductivity σxy based on the Hamiltonian H = Hs +

Hd + Hsd and the Kubo formula

σxy(ω) = V

iω

∫
dτ 〈Tτ [jx(τ )jy]〉eiωλτ , (11)

where j = �e
mV

∑
k kc

†
kck is the charge-current density op-

erator, and the analytic continuation iωλ → ω + i0 is un-
derstood. The electron propagator is given by Gkσ (iεn) =
{iεn − ξkσ − kσ (iεn)}−1 with ξkσ = ξk + JSσ , where S =
−MsV/�γN is the magnitude of localized spins, σ = ±1
the spin projection, and  is the self-energy. We take
kσ (ε + i0) = −i�kσ (ε), where � is the damping parameter,
neglecting its real part.

We assume J is small and calculate σxy perturbatively with
respect to J . As in Ref. [6], a nontrivial contribution shows up
at the third order. The spin dependence of Gkσ turned out to
be unimportant (not essential to AHE, just giving higher-order
corrections), which will thus be neglected in the following:
Gkσ = Gk. Using the identity tr (σiσjσk) = 2iεijk , we obtain

〈Tτ [jx(τ )jy]〉 = 2i

(
J

�γN

)3 ∫
d1

∫
d2

∫
d3

×〈Tτ [m̂(1) · {m̂(2) × m̂(3)}]〉Exy(1,2,3),

(12)

where Exy(1,2,3) is the electron part consisting of G’s, and
1 ≡ (r1,τ1),

∫
d1 ≡ ∫

dτ1
∫

d r1, etc. This expression can be
regarded as a generalization of the spin-chirality formula of
Hall conductivity obtained in Ref. [6] to the situations where
the spin texture is allowed to fluctuate.

In order to have nonvanishing σxy , it is necessary that the
time-ordered chiral spin correlation

χ = 〈Tτ [m̂(1) · {m̂(2) × m̂(3)}]〉 (13)

has parity-odd components since Exy(1,2,3) is parity odd. As
anticipated, the spin-flip magnon propagators of Eq. (8) serve
this purpose. In fact, one can derive from Wick’s theorem the
parity-odd part of χ as

χ |odd = i�2γ 2Ms[D−−(1,2)D++(1,3)

−D++(1,2)D−−(1,3) + (cyclic perms)]. (14)

Here we expanded m̂z to the lowest order in the magnetization
fluctuation as m̂z = Ms − m̂−m̂+/(2Ms). More explicitly, this
takes the form

χ |odd

(2γ �)2Ms

= (a × b)z[(a · b)tFaFb + (b · c)tFbFc

+ (c · a)tFcFa], (15)

where Fa ≡ (ax ± iay)−2D±±(a; τa) depends only on at =√
a2

x + a2
y, az and τa = τ1 − τ2 (i.e., Fa is a scalar with

respect to rotation around the z axis). Equation (15) is
an elaboration of Eq. (2). Spatial variation of χ |odd is
visualized in Fig. 1. We used λ = 0.4 × 10−16 [m2], �ω0 =
�ωM = 10−4 [eV], kBT = 10−2 [eV] as a representative set
of parameters. The q integral in Eq. (8) was evaluated by

introducing a cutoff qm = 1 [Å
−1

]. Remarkably, there is a
definite chiral spin correlation with odd parity once the relative
locations (a and b) are fixed. If averaged over the locations,
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(a) (b)

FIG. 1. (Color online) Chiral spin correlation χ |odd. (a) As a
function of r3 = (x,y,0) for r1 = (0,200,0), r2 = (0,−200,0), and
τ1 = τ2 = τ3. The unit of length is Å. (b) As a function of a =
|r1 − r2| at (x,y) = (100,0), (100,400), and (400,400) plotted by
red, blue, and green lines, respectively. As seen, χ |odd is odd in x

while oscillating in x, y, and a, consistent with the vanishing spatial
average of (a × b)zχ .

however, it vanishes because of the factor (a · b)t , as mentioned
in the Introduction.

The Hall conductivity σxy is obtained by combining the
magnon part χ with the electron part Exy(1,2,3). The resulting
diagrams are shown in Fig. 2, where the solid and wavy lines
represent G and D, respectively. Every term of Exy is a product
of a factor (a × b)z (or its equivalent) and functions of a, b, and
c. Since c = |a + b| contains a factor (a · b)t , the sign change
due to (a · b)t in Eq. (15) upon integration is compensated,
resulting in a nonvanishing σxy . This is to be compared with the
case of Ref. [6], in which the electron part that is independent
of (a · b)t contributed to σxy .

To evaluate σxy explicitly, it is convenient to work with the
Fourier (wave-vector and Matsubara frequency) space. After
performing analytic continuation iωλ → �ω + i0 and taking
the limit ω → 0, one finds a number of terms containing
different combinations of retarded and advanced Green’s
functions. As we are computing a transport quantity, these
terms are naturally classified according to the powers of the
electron lifetime, or decay rate �k(ε). In the clean limit,
the dominant term is that of the lowest power in � [1],
originating from the two pairs of retarded and advanced
electron propagators at both ends of the diagrams with identical
momentum arguments. This is similar to the so-called extrinsic

FIG. 2. The diagrams contributing to σxy at J 3. In terms of
Exy(1,2,3), there are only two configurations; those in the top row
and those in the bottom. The three variations within each row occur
due to the cyclic permutation of magnon arguments in Eq. (14).
Electron-magnon vertices with one (two) wavy line(s) represent x,y

components (z component) in Hsd .

contribution and reads

σxy = −2�
3e2J 3SV 2

π3m2N2

∫
dε

∫
dε1

∫
dε2

×
∑

k,q,q ′
A+

q A−
q A+

q ′A
−
q ′ sin[2(φq − φq ′)]

× f ′(ε){n(ε1 − ε) + f (ε1)}{n(ε2 − ε) + f (ε2)}
× ∣∣GR

k+q ′(ε)
∣∣2

Im DR
q (ε1 − ε) Im DR

q ′(ε2 − ε)

×[{(k + q) × (k + q ′)}z Im GR
k (ε)

∣∣GR
k+q(ε1)

∣∣2

− 2(k × q ′)z
∣∣GR

k (ε)
∣∣2

Im GR
k+q(ε1)

]
, (16)

where n(x) and f (x) are Bose and Fermi distribution functions,
and GR and DR are the retarded counterparts of G and D,
respectively. In the square brackets in the final two lines of
Eq. (16), the first term comes from the diagrams in the first
column of Fig. 2, while the second term comes from the sum of
the rest. To the lowest order in �, one can replace |GR

k (ε)|2 by
πδ(ε − ξk)/�k(ε) and other propagators by their unperturbed
form. The products of the distribution functions effectively
restrict the energy variables ε, ε1, and ε2 to [−kBT ,kBT ],
much smaller than μ, and the delta functions force k, k + q,
and k + q ′ to be near the Fermi surface and �’s can be regarded
as a constant �F ≡ �kF

(εF ). Integrating over energies and φk,
we arrive at

σxy = σ0
εF

kF

∫ ∞

−∞
dkz

∫ ∞

0
dktf

′(ξk)kt

×{I1(k) − I3(k)}{I1(k) − 2I3(k)}, (17)

where σ0 ≡ J 3Se2kF /(2π�εF �2
F ), k now denotes doublet

(kt ,kz), kt =
√

k2
x + k2

y , and the functions In(k) are given by

In =
∑
α=±1

�
2

2m

V

N

∫
d3q

(2π )3

ωM

ωq

[
(k · q)t
qt kt

]n

qt

×{n(�ωq) + f (αξk + �ωq)}δ(ξk+q − ξk − α�ωq). (18)

We note σxy is negative for JS > 0. This is seen by approxi-
mating −f ′ by delta function; then the integral is essentially
the area under the curve in Fig. 3(a). Temperature dependence

(a) (b)

FIG. 3. (Color online) (a) (I1 − I3)(I1 − 2I3) in Eq. (17) for
(kt ,kz) = kF (sin θ, cos θ ) as a function of cos θ . Note that ktdθ =
−kF d(cos θ ). (b) Hall conductivity evaluated by Monte Carlo inte-
gration (red dots) with a fit |σxy |/σ0 = 6.83 × 10−8 × T 2.29e−0.001/T

(blue line). Plain power-law fitting gives ∼T 2.48. The same parameter
set as in Fig. 1 has been used along with μ = 0.6 [eV].
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has been studied numerically, yielding a roughly power-law
dependence σxy ∝ T p with a small, but appreciable, deviation
[Fig. 3(b)]. The estimated value of p falls in the range
2.2 � p � 2.5 depending on the choice of fitting function.

The mechanism of the present AHE can be identified as
the skew scattering by the chiral spin correlations of dipolar
magnons. In fact, by relabeling the wave vectors in Fig. 2, the
on-shell scattering amplitude of two electrons with momenta
p, p′ at the ends of the diagrams going through χ |odd (with
an intermediate electron line) can be written as proportional
to ( p × p′)z.

To conclude, we have shown that there is a nonzero
contribution to the AHE originating from the interaction
with the dipolar magnons in homogeneous ferromagnets.
The leading order term occurs at the third order in the s-d
exchange interaction and involves a factor of the chiral spin
correlation felt by traversing electrons. The result serves as a
generalization of the Hall effect from static spin chirality as
well as giving a concrete example in which anomalous Hall
current requires neither relativistic spin-orbit interaction nor
fixed magnetic texture. In a broader sense, the dipole-dipole
interaction acts as a kind of spin-orbit interaction in that it
couples the spin and orbital motion of magnons. Electrons
then inherit the chiral orbital motion through skew scatterings
by the quantum/thermal dipolar magnons.

Unfortunately the predicted Hall conductivity is small
because of the dominance of exchange energy over the
dipole-dipole term, i.e., λq2  1 for typical q, which is√

kBT /(�ωMλ). To identify the proposed AHE experimentally,
therefore, material should be chosen carefully. First of all,
conventional AHE due to spin-orbit interaction must be

suppressed in conductors; for example, in some ferromag-
netic metals, anomalous Hall coefficients are known to be
compensated by blending elements with opposite signs of
AHE. Since further numerical studies (not shown) indicate
that |σxy | decreases with εF as long as εF  kBT , materials
with small Fermi energy will be favorable, such as a semicon-
ductor magnet or a hybrid film comprising a ferromagnetic
insulator layer and a low-carrier conductor layer. While the
present article focused on the equilibrium spin waves, the
skew scattering by dipolar magnons should persist when
the magnons are driven out of equilibrium by external spin
pumping. A nonequilibrium excess in the number of magnons
in the dipolar regime (i.e., λq2 � 1) is expected to result in a
larger AHE. A detailed investigation of this effect will be an
interesting direction for further research. In many materials,
AHE accompanies spin Hall effect which is often used in
spintronics, and the present mechanism may open the door to
spintronics free from spin-orbit interaction.
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