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Giant electron-phonon interactions in molecular crystals and the importance
of nonquadratic coupling
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We investigate electron-phonon coupling in the molecular crystals CH4, NH3, H2O, and HF, using first-
principles quantum mechanical calculations. We find vibrational corrections to the electronic band gaps at zero
temperature of −1.97 eV, −1.01 eV, −1.52 eV, and −1.62 eV, respectively, which are comparable in magnitude
to those from electron-electron correlation effects. Microscopically, the strong electron-phonon coupling arises
in roughly equal measure from the almost dispersionless high-frequency molecular modes and from the lower-
frequency lattice modes. We also highlight the limitations of the widely used Allen-Heine-Cardona theory, which
gives significant discrepancies compared to our more accurate treatment.
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Electronic band gaps are crucial for studying the optical
and electrical properties of semiconductors and are therefore
central to modern technologies such as photovoltaics and
thermoelectrics. Density functional theory (DFT) [1–3] using
local and semilocal density functionals [4–6] notoriously
suffers from the band gap problem caused by the inability of
standard local and semilocal exchange-correlation functionals
to reproduce the derivative discontinuity with respect to
particle number exhibited by the exact functional [7,8]. This
typically leads to underestimation of band gaps. Computa-
tionally intensive techniques such as diffusion Monte Carlo
(DMC) [9–11], GW many-body perturbation theory [12,13],
and hybrid exchange-correlation functionals [14–18] have
been shown to greatly improve upon the accuracy of DFT
band gaps, with corrections of several eV in some materials.
However, even these more accurate methods assume a static
lattice and neglect the effects of atomic vibrations.

One of the most striking consequence of electron-phonon
coupling in semiconductors is the temperature dependence of
electronic band gaps [19]. Early experimental [20–23] and
theoretical [24–26] efforts developed an understanding of the
temperature dependence of band gaps in standard semiconduc-
tors such as diamond, silicon, and germanium. Recent interest
has focused on first-principles calculations [27–37], which
have mainly been used to study tetrahedral semiconductors,
and particularly diamond due to the large electron-phonon
coupling strength it exhibits. There is also great interest in
electron-phonon coupling in nanocrystals [28,33,34], topolo-
gical insulators [38,39], polymers [40], and other materials.

Systematic studies of electron-phonon coupling over a wide
range of classes of materials are currently lacking. Such
studies could elucidate the interplay between the various
microscopic properties that play central roles in electron-
phonon coupling in semiconductors and ultimately allow us
to build an understanding that could be used to design new
materials with tailored electronic and optical properties.

We gauge the strength of electron-phonon coupling by
calculating the zero-point (ZP) vibrational correction to the
electronic band gap. As far as we are aware, this is the first
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report of ZP corrections to the band gaps of the molecular
crystals studied here. We find that the commonly used Allen-
Heine-Cardona (AHC) theory is insufficient for studying
electron-phonon coupling in the molecular crystals considered,
and therefore we include terms beyond the AHC theory
using a Monte Carlo sampling approach [33,41]. We find
ZP corrections ranging from −1.0 eV in NH3 to −2.0 eV
in CH4. These corrections are the largest observed to date,
apart from those in hydrogen and helium at extreme pressures
[41,42]. The large ZP corrections arising from electron-phonon
coupling demonstrate that studies of the electronic structure of
semiconductors should include the effects of atomic vibrations
even at zero temperature.

The ZP corrected band gap Eg may be written as the
expectation value

Eg =〈�(q)|Eg(q)|�(q)〉, (1)

where Eg(q) is the value of the gap with atomic positions q (a
3N -dimensional vector in the vibrational phase space, which
we describe in a basis of harmonic normal mode coordinates),
and |�〉 is the Gaussian vibrational ground state wave function.
Equation (1) is based on adiabatic decoupling of the electronic
and nuclear degrees of freedom, which has recently been
explored by Patrick and Giustino [43], and shown to provide
a semiclassical approximation to the ZP correction of band
gaps.

In this work we evaluate the band gap correction of
Eq. (1) using two different methods: the quadratic approxi-
mation and Monte Carlo sampling. In the quadratic approxi-
mation, the electronic band gap energy Eg is expanded about
the equilibrium position in terms of harmonic vibrational mode
amplitudes qnk, where k is the vibrational Brillouin zone wave
vector and n is the branch index. We work exclusively within
the harmonic vibrational approximation, so that the wave
function is symmetric and odd terms vanish in the expectation
value:

Eg =Eg(0) +
∑

n,k

a
(2)
nk 〈�nk|q2

nk|�nk〉 + O(q4), (2)

where a
(2)
nk are the diagonal quadratic expansion coefficients.

Equation (2) is equivalent to the AHC theory, including off-
diagonal Debye-Waller terms [44].
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FIG. 1. (Color online) ZP correction to the electronic band gaps
for the molecular crystals CH4, NH3, H2O, and HF. The solid
horizontal lines correspond to accurate Monte Carlo sampling, and
the light bands represent their statistical uncertainty. The symbols
correspond to results within the quadratic approximation, and the
“Mode amplitude” refers to the amplitude at which the frozen phonon
calculations have been performed. The mode amplitudes have units
of

√〈q2〉 = 1/
√

2ω.

We gauge the strength of the electron-phonon coupling
by calculating the ZP correction to the band gap. We
calculate the couplings a

(2)
nk using a frozen phonon method,

displacing the atoms by �qnk along harmonic vibrational
modes in the positive and negative directions, and setting
a

(2)
nk = [Eg(�qnk) + Eg(−�qnk)]/2�q2

nk. We have found that
a

(2)
nk is sensitive to the vibrational amplitude used (�qnk), as

shown in Fig. 1 and discussed below. This sensitivity is a
signature of a strongly nonquadratic dependence of Eg on the
normal mode amplitude qnk.

We also evaluate Eq. (1) using Monte Carlo sampling, with
atomic configurations randomly drawn from the vibrational
density. A Monte Carlo approach has an associated statistical
uncertainty that can be reduced by using a large number of
sampling points. The Monte Carlo approach allows us to
include all higher-order terms neglected in Eq. (2). Here we
use both approaches, and assess the validity of the quadratic
approximation by comparing the results of the two methods.
This comparison highlights the importance of higher-order
terms and the inadequacy of the quadratic expansion for the
molecular crystals considered. The only other known example
of the failure of AHC theory has arisen in helium at terapascal
pressures [41], and our work emphasizes that AHC theory
can also be inadequate at ambient pressure. It is still valuable
to use both approaches, as the quadratic expansion provides
direct access to the microscopic physics and therefore allows
us to build a physical understanding of the origin of the strong
electron-phonon coupling in these materials. Finally, we note
that Brooks’ theorem [45] breaks down if nonquadratic terms
are important.

All our calculations have been performed using DFT and
the pseudopotential plane-wave method as implemented in
the CASTEP package [46]. We have used ultrasoft “on the

fly” pseudopotentials to describe the electron-ion interaction
[47]. We use an energy cutoff of 800 eV and a Monkhorst-

Pack [48] Brillouin zone sampling of spacing 2π × 0.03 Å
−1

,
which together lead to convergence of the difference between
frozen-phonon structures to better than 10−4 eV for the total
energy per atom, 10−3 eV/Å for the forces on each atom,
10−2 GPa for the components of the stress tensor, and 10−4 eV
for the band gap. Unless otherwise stated, we report results
using the PBE functional corrected with the TS scheme,
which describes dispersion interactions [49], as equilibrium
volumes using this functional agree best with experimental
volumes. Results obtained with the PBE [6] functional and
the G06 [50] dispersion corrected functional are detailed in
the Supplemental Material [51]. The ZP correction arising
from electron-phonon coupling has some dependence on the
functional and geometry used, but the central idea presented in
this paper—the large strength of electron-phonon coupling—is
independent of the choice of functional.

Recent GW calculations have shown that electron-electron
correlation plays an important role in the effects of electron-
phonon coupling on the band gap of diamond and GaAs
[36], increasing the ZP correction obtained using semilocal
DFT by about 40%. We have estimated the importance of
electron-electron correlation by performing calculations with
the HSE06 functional [17,18], which has been shown to
provide improved static lattice band gaps within DFT. We find
somewhat smaller corrections than those reported for diamond
and GaAs using GW but, as in Ref. [36], these corrections
increase the ZP renormalisation (details are provided in the
Supplemental Material [51]).

The quadratic approximation of Eq. (2) is a computationally
efficient approach for evaluating the ZP correction to the
band gap. Furthermore, it provides access to the microscopic
origins of the electron-phonon coupling strength, as each
vibrational normal mode is treated separately. The impor-
tance of higher-order terms in the expansion of Eq. (2) is
less well-understood. These terms have been found to be
crucial for the electron-phonon coupling strength in helium
under terapascal conditions [41], but to be unimportant for
silicon at ambient pressure [43]. The question arises of how
important they may be for the molecular crystals of interest
here.

In Fig. 1 we compare the ZP correction to the band gaps
of CH4, NH3, H2O, and HF, evaluated using the quadratic
expansion and Monte Carlo sampling. The horizontal axes
show the vibrational mode amplitude at which the band
gap is calculated in order to evaluate the couplings a

(2)
nk .

The results reported in Fig. 1 correspond to primitive cells
(�-point sampling of the vibrational Brillouin zone), which
are sufficient to illustrate the discrepancies between the two
methods. Note that all other results in the paper are reported for
larger simulation cells. We observe a strong dependence on the
normal mode amplitude of the ZP correction evaluated within
the quadratic approximation. It is clear that higher-order terms
in Eq. (2) are large and should be included to obtain accurate
results. We show an example of nonquadratic dependence
in Fig. 2, corresponding to a normal mode describing a
high-energy molecular vibration in HF. The dependence of Eg

on mode amplitude has a near-linear behavior at normal mode
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FIG. 2. (Color online) (a) Wave function and (b) band gap Eg

as a function of normal mode amplitude (in units of 1/
√

2ω) for a
high-energy vibrational molecular mode of the HF crystal.

amplitudes larger than about 1/
√

2ω, and this nonquadratic
region is clearly important given the width of the vibrational
wave function shown.

Higher-order terms in Eq. (2) have largely been neglected
in the literature, and the results presented here and in Ref. [41]
suggest that future studies should carefully assess their impor-
tance. Here we report accurate numerical results from Monte
Carlo evaluations and results from the quadratic expansion
to investigate the microscopic origins of the electron-phonon
coupling. Further comparisons of the quadratic and Monte
Carlo approaches are given in the Supplemental Material [51].

In Fig. 3 we show schematic diagrams of the band gaps of
the molecular crystals CH4, NH3, H2O, and HF. The dashed
baseline corresponds to the static lattice band gap evaluated
using the PBE-TS functional. The corrections arising from

the screened-exchange HSE06 functional are indicated by
the arrows labeled �EHSE

g , and the corrections induced by
electron-phonon coupling at zero temperature are indicated
by the colored arrows labeled by �E

elph
g . In each case the

ZP correction to the band gap has been calculated with a
large supercell using the PBE or PBE-TS functional. The
Monte Carlo sampling approach has been used, achieving a
statistical uncertainty smaller than 0.02 eV in all cases. The ZP
corrections obtained using the HSE06 functional are similar to
those obtained with PBE-TS (see discussion in Supplemental
Material [51]). It is worth mentioning that the static HSE06 gap
for ice is significantly smaller than many-body perturbation
theory estimates, which are in the range 9.2–10.1 eV [52,53].

We observe very large vibrational ZP corrections to the
band gaps across the four systems studied of above 1 eV. The
corrections are comparable to those arising from the use of
the HSE06 screened exchange functional when compared with
the semilocal functionals. These giant ZP corrections are the
largest found to date in any system at ambient conditions and
are about twice the ZP correction in diamond. We note that
hydrogen and helium solids under extreme pressures have been
reported to exhibit even larger ZP corrections [41,42]. First-
principles molecular dynamics calculations have also shown
a large influence of thermal motion on the band gap of liquid
water [54], of a size comparable to the electron-phonon effects
reported in this work.

To investigate the microscopic origins of the strong
electron-phonon coupling, we evaluate the contribution from
individual normal vibration modes to the ZP correction using
the quadratic method.

In CH4, the high frequency and virtually dispersionless
molecular modes contribute about 69% of the overall ZP
correction to the band gaps, and of these, the low energy
twisting modes dominate, contributing as much as the com-
bination of the higher-energy stretching and wagging modes.
The crystal modes contribute the remaining 31% to the overall
ZP correction. In NH3, the molecular modes contribute about
55% of the overall ZP correction, with the low-energy wagging
modes dominating, followed by the high-energy stretching
modes, and finally the intermediate-energy scissoring modes.

7.82 eV

9.33 eV

Δ
E

H
S
E

g

7.63 eV

Δ
E

e
lp

h
g

CH4

4.48 eV

6.03 eV

Δ
E

H
S
E

g

5.02 eV

Δ
E

e
lp

h
g

NH3

5.59 eV

7.42 eV

Δ
E

H
S
E

g

5.90 eV

Δ
E

e
lp

h
g

H2O

7.87 eV

10.41 eV

Δ
E

H
S
E

g

8.79 eV

Δ
E

e
lp

h
g

HF

FIG. 3. (Color online) Band gap energies at the static lattice level with semilocal functionals (dashed baselines), the HSE06 correction
�EHSE

g , and the ZP electron-phonon coupling correction �E
elph
g .
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FIG. 4. (Color online) Electronic charge density in crystalline
NH3 corresponding to (a) the VBM and (b) the CBM. (c) Phonon
dispersion (left) and DOS (right) of NH3, where the low-energy lattice
modes are shown in red, and the high-energy molecular modes are
shown in blue.

The crystal modes contribute 45% to the overall ZP correction,
and the dominant modes involve vibrations of hydrogen
atoms, which contribute 37% of the overall ZP correction.
For H2O, the contributions from molecular and crystal modes
are 46% and 54%, respectively, and for HF they are 51%
and 49%.

The microscopic origin of the strength of electron-phonon
coupling can be understood by relating atomic distortions to
changes in the charge density associated with the valence band
maximum (VBM) and the conduction band minimum (CBM).
As an example, we consider the NH3 molecular crystal. In
Fig. 4 we show the charge density of the VBM and CBM for the
NH3 molecular crystal. Both electronic states couple strongly
to atomic vibrations. The phonon dispersion and density of
states (DOS) of NH3 are also shown in Fig. 4, where the
low-energy lattice modes are shown in red, and the molecular
quasidispersionless high-energy modes are shown in blue. The
VBM charge density distorts significantly under molecular
vibrations, in particular the wagging modes in which the H
atoms move in the direction of the charge density of the VBM

(indicated as arrows in Fig. 4), explaining the strong coupling
to it. These wagging modes exhibit some of the strongest
electron-phonon coupling in NH3. The charge density of the
CBM is mostly affected by the low-energy lattice vibrational
modes that involve collective H motion.

For comparison, we have also calculated the ZP contribu-
tion to the band gaps of the isolated molecules. As observed
for their crystalline counterparts, the molecular calculations
also exhibit a strong nonquadratic behavior, and we calculate
Monte Carlo ZP corrections of −0.39 eV for CH4, −1.32 eV
for NH3, −0.48 eV for H2O, and −0.04 eV for HF. Apart from
NH3, the vibrational correction is significantly smaller in the
molecules than in the crystals.

In conclusion, recent efforts to understand the effects of
electron-phonon coupling in semiconductors have highlighted
their importance for calculating accurate band structures using
first-principles methods. We have reported the largest ZP
corrections to band gaps found to date in solids under standard
conditions of pressure, and we hope to motivate further studies
of a wider range of systems. We have shown that the commonly
used quadratic approximation fails for the description of the
ZP correction to the band gap of hydrogen-rich molecular
crystals. It would be interesting to assess the importance of
dynamical effects on the calculated ZP corrections, but this is
beyond the scope of the present work.

GW calculations are often used to correct band gaps
obtained with semilocal density functionals. GW results are
typically benchmarked against experimental data, but our
results indicate that such comparisons could incur errors as
large as 1 eV, and therefore care should be taken when
assessing the accuracy of such calculations. The large ZP
corrections found in molecular crystals could also be present
in pharmaceutical drugs, polymers, or biological molecules.

Finally, we have highlighted the limits of the quadratic
or AHC approximation for calculating band gap corrections
arising from electron-phonon coupling. Most studies of these
effects are based on the quadratic approximation, and our
results call for a careful assessment of its validity over a wide
range of materials.
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