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Anisotropic spin relaxation in n-GaAs from strong inhomogeneous hyperfine fields produced
by the dynamical polarization of nuclei
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1Department of Physics and Astronomy and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, USA
2School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA

3Department of Materials, University of California, Santa Barbara, California 93106, USA
4Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA

(Received 5 May 2015; revised manuscript received 12 August 2015; published 7 October 2015)

The hyperfine field from dynamically polarized nuclei in n-GaAs is very spatially inhomogeneous, as the
nuclear polarization process is most efficient near the randomly distributed donors. Electrons with polarized
spins traversing the bulk semiconductor will experience this inhomogeneous hyperfine field as an effective
fluctuating spin precession rate, and thus the spin polarization of an electron ensemble normal to the fluctuating
hyperfine fields will relax. A theory of spin relaxation based on the theory of random walks is applied to such
an ensemble precessing in an oblique magnetic field, and the precise form of the (unequal) longitudinal and
transverse spin relaxation is analytically derived. To investigate this mechanism, electrical three-terminal Hanle
measurements were performed on epitaxially grown Co2MnSi/n-GaAs heterostructures fabricated into electrical
spin injection devices. The proposed anisotropic spin relaxation mechanism is required to satisfactorily describe
the Hanle line shapes when the applied field is oriented at large oblique angles.
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Introduction. The understanding of electrical injection and
detection of spin in ferromagnetic/semiconductor devices has
progressed significantly over the past decade [1,2]. A key
obstacle for interpreting spin transport experiments near the
metal-insulator transition has been the complicating presence
of dynamically polarized nuclear spins [3–5]. In the process of
dynamic nuclear polarization (DNP), the electron spin polar-
ization, maintained out of equilibrium optically or electrically,
is transferred to the nuclear system over long time scales via
the hyperfine interaction [6–10]. The process can produce 99%
polarized nuclei at room temperature in SiC and induce nuclear
fields up to 5.3 T in GaAs. The nature and distribution of
the electronic states control the properties of the resulting
effective hyperfine fields from DNP; for instance, electron
spins in itinerant states interact rapidly with a multitude of
nuclei, which dilutes the effect and leads to inefficient nuclear
polarization. Spins situated at impurity sites, however, interact
with many fewer nuclei, which promotes a more efficient [6]
DNP. At the doping levels examined here, the different donor
wave functions overlap often but do not completely fill the bulk
crystal, which consequently results in a high degree of nuclear
field inhomogeneity (see Fig. 1) [11,12]. Previous descriptions
of the spin transport dynamics in n-doped semiconductors with
spin drift-diffusion equations [5,13–17] have neglected this
essential inhomogeneity of the nuclear field.

In the past, it has been sufficient to treat the nuclear
polarization as a mean field and to assume only a single
spin lifetime. This has been adequate to account for the
magnitudes of the hyperfine fields, although there have always
been discrepancies when quantitatively modeling Hanle effect
experiments. It has been impossible to model line shapes
for different degrees of noncollinearity with a single spin
lifetime [5]. Here, we predict a spin relaxation mechanism
in semiconductors that occurs when inhomogeneous effective
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magnetic fields are present, such as arise from polarized nuclei.
The mechanism is anisotropic since only those components of
the electron spin which are normal to the effective magnetic
fields relax. The requirement of the electron spin and effective
magnetic field being noncollinear is met in nearly all DNP
experiments since otherwise detecting the hyperfine field
is difficult [8,18]. Intermediately n-doped GaAs, under the
conditions of DNP, offers a test bed for our theory where the
inhomogeneity manifests itself as a bipartite field with values
B0 or B0 + BN , with B0 being an applied magnetic field
and BN the nuclear field induced by DNP near a donor. The
anisotropy of the spin relaxation can be probed by varying the
angle of applied field with respect to the direction of injected
spin since the nuclear field orientation is largely determined
by the applied field. We demonstrate such a system experi-
mentally and show that measurements of the steady-state spin
polarization are consistent with the devised inhomogeneity-
induced anisotropic spin relaxation mechanism. The theory
described in this Rapid Communication is broadly applicable
to a variety of situations where the injected electron spin is
noncollinear to the nuclear fields [19–22], including both via
optical and electrical spin injection, and potentially even up
to room temperature in semiconductors, such as SiC, where
room-temperature DNP has been demonstrated [10].

Theory. The theoretical description presented herein can
be understood qualitatively by examining Fig. 1, wherein
the inhomogeneity of the magnetic field is represented by
random placement of distortions (in red) signifying both the
presence of a donor atom and a DNP-induced nuclear field.
Electron spins cross between these donor regions and regions
in between donors, which lack the DNP-induced nuclear
field. This transit acts on the spin similarly to an effective
fluctuating Zeeman field. The lower part of Fig. 1 shows how
the inhomogeneity relaxes the spin; in general, the nuclear field
is noncollinear with the applied field and electron spin, which
causes the precession axis to stochastically modulate when
the spin changes field regions. When the transit time between
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FIG. 1. (Color online) (a) Electron spins (spheres with spin vec-
tors) in n-doped GaAs. Bumpy (red) regions depict the presence of
donors and nuclear fields generated by dynamic nuclear polarization.
(b) The spin rotation caused by one electron spin entering and
departing a DNP region. (c) Experimental geometry, with θ being
the angle between the applied field and sample normal.

these regions is much faster than the change in precession
rate experienced by the spin upon transit, then the regime of
spin relaxation corresponds to the motional narrowing regime.
We present a general form of the theory of spin relaxation
in the inhomogeneous nuclear field produced by DNP, and
specifically within the motional narrowing regime we obtain
compact analytic results that can be readily incorporated into
spin drift-diffusion theories.

We now present a calculation of the spin relaxation of a
spin ensemble, S, ensuing from the aforementioned theory
and assumptions. In other words, we would like to solve for
the spin relaxation due to the following precession,

dS(t)

dt
= γ [B0 + Bn(t)] × S(t), (1)

where the spatial inhomogeneity of the nuclear field is written
as a time-dependent nuclear field that takes on only two
possible values of either bn or 0. Since Bn(t) changes rapidly,
the first approximation is to replace it with its average value,
〈Bn(t)〉 = bn/2, with

bn = bnuc〈I〉 = bnuc S · (B0 + be S)

|B0 + be S|2 + ξB2
�

(B0 + be S), (2)

where I is the nuclear spin, bnuc is the Overhauser coefficient,
be is the Knight coefficient, and

√
ξB� denotes the strength

of the random local field. The Knight field allows the nuclear
field to be noncollinear to the applied field.

Since the average nuclear field is static, that alone will not
relax the spin; temporal fluctuations around the average are
required,

dS(t)

dt
= γ

[
B0 + 1

2
bn + 1

2
bnf (t)

]
× S(t), (3)

where f (t) is a stochastic function. f (t) is equal to −1 (+1)
for an average time interval 1/k0 (1/kn), where 1/k0 (1/kn) is

the average time the spin experiences the field B0 (B0 + Bn)
before that field changes. We would like to find the dissipative
effects from the time-dependent field so we will ignore the
static applied field and average nuclear field,

dS(t)

dt
= γ

2
f (t)bn × S(t) = f (t)� · S(t), (4)

where �(t) is the skew-symmetric matrix

� = γ

2
bn�̂ = γ

2
bn

⎛
⎝ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞
⎠

≡ γ

2
bn

⎛
⎝ 0 − cos α sin α sin β

cos α 0 − sin α cos β

− sin α sin β sin α cos β 0

⎞
⎠, (5)

where α and β are the spherical coordinates of the nuclear field.
Depending on the value of f (t), the solution to the precession
equation in between field switchings is

S(t) = e�t · S0, S(t) = e−�t · S0, (6)

where S0 is the initial spin vector.
The time evolution of the spin ensemble can be computed

by the theory of continuous-time random walks [23–30]. The
difficulty of the theory is reduced since the field modulates
between only two values [31,32]. The polarization function is
a result of random walks between the two spin environments,

P(t) = 1

2

[
e�t	n(t) +

∫ t

0
	0(t − t ′)e−�(t−t ′)
n0(t ′)e�t ′dt ′

+
∫ t

0

∫ t ′

0
	n(t − t ′)e�(t−t ′)
0n(t ′ − t ′′)

× e−�(t ′−t ′′)
n0(t ′′)e�t ′′dt ′′dt ′

+ · · · + signs of � switched and n ↔ 0

]
· S0,

where 
ij are wait-time distributions to transition between
state i to state j , and 	i are the survival probabilities in state
i. Using exponential wait-time distributions leads to

P(t) = 1

2

[
e(�−kn)t +

∫ t

0
e(−�−k0)(t−t ′)kne

(�−kn)t ′dt ′

+
∫ t

0

∫ t ′

0
e(�−kn)(t−t ′)k0e

(−�−k0)(t ′−t ′′)kne
(�−kn)t ′′dt ′′dt ′

+ · · · + signs of � switched and n ↔ 0

]
· S0. (7)

Utilizing the Laplace transform and its convolution properties,
the polarization function in the Laplace domain simplifies to

P̃(s) = 1

2
[(R̃0 + R̃n + (k0 + kn)R̃0R̃n)]

∞∑
j=0

(k0knR̃0R̃n)j · S0,

(8)

with

R̃0(n) = 1

s + k0(n) ± �
, (9)

140201-2



RAPID COMMUNICATIONS

ANISOTROPIC SPIN RELAXATION IN n-GaAs FROM . . . PHYSICAL REVIEW B 92, 140201(R) (2015)

which has a Laplace transform equal to

P̃(s) = s + k0 + kn

s(s + k0 + kn) − A
· S0 = M̃(s) · S0, (10)

where

A = −(kn − k0)� + ��. (11)

This general expression can be analytically transformed to the
time domain [33].

We now apply the approximation of fast transitions, k0,n 	
γBn. To leading order in s, M̃(s) = [s1 − A/(k0 + kn)]−1,
which is inverted to be M(t) = eAt/(k0+kn) and then Ṗ(t) =

A
k0+kn

P(t). The next order correction yields [33]

Ṗ(t) =
(

A
k0 + kn

− AA
(k0 + kn)3

)
P(t), (12)

which when written out to second order in � becomes

d P(t)

dt
= −1

4

γ 2

k0 + kn

[
1 −

(
kn − k0

k0 + kn

)2
]

bn × [P(t) × bn]

− γ

2

kn − k0

k0 + kn

bn × P(t). (13)

Only the first term has the capability to relax the spin ensemble.
The second term is a correction to the Larmor precession.

By combining spin effects such as spin injection, other spin
relaxation sources, and adding back in the applied and average
nuclear field in Eq. (3), we can write the following equation to
encompass the (nondiffusive) spin evolution,

d P(t)

dt
= γ

[
B0 + k0

k0 + kn

bn

]
× P(t)

− 1

τs

P(t) − γ 2τ bn × [P(t) × bn] + G, (14)

where

τ = 1

4

1

k0 + kn

[
1 −

(
kn − k0

k0 + kn

)2
]
. (15)

G||x̂ is the spin generation vector, and τs is due to other spin
relaxation mechanisms, which we assume to be isotropic. We
have simulated the spin evolution with a Monte Carlo ap-
proach and found agreement with solutions to the differential
equation (14) [33].

Experiment. To test the theory, we probed the spin polar-
ization P in n-GaAs using electrical Hanle measurements in a
standard three-terminal (3T) configuration. The sample used
was an epitaxially grown Co2MnSi/n-GaAs (100) heterostruc-
ture. A 2.5 μm thick Si-doped n = 4 × 1016 cm−3 n-GaAs
channel was grown on a semi-insulating GaAs (100) substrate.
To thin the naturally occurring Schottky barrier and create a
tunnel barrier for efficient spin injection [34], a 15 nm n → n+
transition layer (n = 5 × 1018 cm−3) was grown, followed by
a 18 nm n+ layer. Then, 5 nm of ferromagnetic (FM) Heusler
alloy Co2MnSi was grown, followed by Al and Au capping
layers.

The structures were patterned into lateral spin injection
devices [35] using standard photolithographic techniques. The
injection contact was 5 μm × 50 μm. Spin was electrically
injected into the n-GaAs channel by imposing a dc current bias

(800 A/cm2 at 0.51 V) across the FM/n-GaAs interface. For
the measurements discussed here, the interface was forward
biased, so that electrons flowed from the semiconductor
into the ferromagnet. In a 3T measurement the FM/n-GaAs
interface voltage is measured by measuring the voltage with
respect to a remote contact outside of the charge current
path. The spin polarization in the channel directly below the
injection contact was probed by measuring the change in the
3T voltage �V3T upon application of an external out-of-plane
magnetic field B. This transverse magnetic field serves to
precess the spins and destroy the spin polarization in the
channel via the Hanle effect [1].

The influence of DNP on the spin polarization in our
samples is most clearly seen by measuring the 3T Hanle effect
when the applied field is tilted at small oblique angles θ away
from the vertical direction and toward the easy axis of the
ferromagnetic contact, as shown in Fig. 1(c). The oblique
geometry allows for a significant hyperpolarization of the
nuclei (Overhauser effect). Satellite peaks are then observed
that correspond to fields at which the applied dephasing trans-
verse field is partially canceled by the Overhauser field [5]. (A
less prominent satellite peak at very low fields is due to the
Knight field of the polarized electrons.) The effectiveness in
reproducing the oblique 3T Hanle line shapes therefore serves
as a test of the validity of the model used to account for the
effects of DNP.

Discussion. Thus far we have only examined the nondif-
fusive dynamics. However, the importance of spin diffusion
on Hanle curves has been well documented [35]. In light
of the theory hitherto presented, we write the following spin
drift-diffusion equation,

d P(t)

dt
= γ

[
B0 + k0

k0 + kn

bn

]
× P(t) − 1

τs

P(t) − γ 2τ bn

× [P(t) × bn] + G + DS∇2 P(t) + J
ne

· ∇ P(t),

(16)

which is identical to Eq. (14), except for the addition of the
last two terms which describe spin diffusion and spin drift.

The physical device geometry was cast into a one-
dimensional (1D) finite-element model, where spin may drift
and diffuse laterally in the sample plane. The simplification to
1D is appropriate at cryogenic temperatures given the device
aspect ratio, where the spin diffusion length in GaAs is larger
than the channel thickness. Equation (16) is iterated forward
until steady state ( d P

dt
= 0) is reached. The standard form

for the Overhauser field [5] is used to calculate bn at each
spatial coordinate. Upon solving for the steady-state spatially
dependent spin polarization in the channel at each applied field,
the 3T Hanle signal �V3T is extracted by projecting the spin
polarization at the injector contact P inj onto the magnetization
of the injector ferromagnet M [1], i.e., �V3T ∝ Pinj · M. A
single overall scaling factor is applied to compare the model
to the data.

In Fig. 2, the results of measuring the oblique angle depen-
dence of the 3T Hanle signal at 60 K are shown, along with the
corresponding fits to the model described above. For compar-
ison, the effects of adding the anisotropic hyperfine relaxation
terms discussed previously are shown side by side with the
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FIG. 2. Shown is the oblique-angle 3T Hanle signal measured
at 60 K. The black lines are the experimental data, with a second
order (magnetoresistance) background removed and the different
angles artificially offset. Shown in gray is the numerical solution
to Eq. (16) for the device geometry (a) without the anisotropic
hyperfine relaxation terms and (b) with the anisotropic hyperfine
relaxation terms included. One set of fitting parameters was used to
simultaneously fit all the angles. These fitting parameters for both
situations are shown in Table I. The anisotropic hyperfine terms
improved the fit the most for larger oblique angles.

fits without the anisotropic hyperfine relaxation terms. In both
cases, a single set of parameters is used to fit the data at all
angles. The results show that adding the anisotropic hyperfine
terms noticeably improve the fitting of the Overhauser peak at
large oblique angles, for which diffusion alone systematically
overestimates the magnitude and underestimates the width of
the satellite peak. Without anisotropic relaxation, the height
and width of the satellite are determined only by the spatial
variation of the Overhauser field on the scale of the electron
spin diffusion length. This mechanism alone, however, is not
sufficient to explain the broadening and suppression at larger
oblique angles. Inclusion of the additional smaller length-scale
nuclear field inhomogeneity, via the anisotropic term, further
reduces and broadens the Overhauser peaks. Table I contains
the parameters used to fit the 3T signal both without and
with the anisotropic hyperfine terms. Note that the addition
of the anisotropic mechanism does not change the other
fitting parameters significantly, and the isotropic lifetime is
essentially unchanged. Measurements were also taken as a
function of injection bias current at fixed angle. The fits to
the model in this case are comparable to those for the angle

TABLE I. Fitting parameters for curves in Fig. 2.

Parameter W/o aniso. term W/ aniso. term

τs 3.3 ns 3.4 ns
bnuc −1.50 × 104 Oe −1.67 × 104 Oe
be −82 Oe −73 Oe√

ξBL 104 Oe 95 Oe
k0 2.1 ns−1

kn 0.45 ns−1

dependence at fixed bias. The discrepancy between model and
experiment is attributed to a ±1◦ uncertainty in the angle of
field with respect to the sample. Additionally, the obtained
small values for kn and k0 are only on the edge of the strong
motional narrowing approximation.

Oblique angles larger than ±20◦ were experimentally
inaccessible due to the switching of the ferromagnetic contact
when the in-plane component of the field reached the coercive
field. Figure 3 shows the solutions of Eq. (16) for two larger
angles, 30◦ and 45◦. The trend followed at these higher angles
is similar to what is viewed at the lower ones—the anisotropic
terms tend to decrease the magnitude of the Overhauser
peak (black) when compared to their exclusion (red). If
ferromagnetic contacts with larger coercivity are available,
a more rigorous test of the predictions of this theory will be
possible.

Now, we consider how the anisotropic mechanism may
also be evident in optical spin injection experiments [7,8,19].
In these experiments, the nuclear field is extracted by taking
the difference of the total precession frequency and the
precession frequency due solely to the applied field [22]. As
we have discussed here, due to the inherent inhomogeneity
of the nuclear field, the inferred nuclear field is actually
an average nuclear field in the probed macroscopic optical
spot size. From Eq. (14), the inferred nuclear field is then
Bn = k0bn/(k0 + kn), which leads to the anisotropic term

FIG. 3. Large angle solutions to the spin diffusion model,
Eq. (16), with and without the anisotropic spin relaxation terms.
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being

−γ 2 (k0 + kn)2

k2
0

τ Bn × [P(t) × Bn]. (17)

We predict this term to be observable in time-resolved Faraday
or Kerr rotation experiments.

Conclusions. The influence of DNP on spin evolution in
semiconductors has been observed for many years. However,

the inherent inhomogeneity of the large nuclear fields has
been neglected as a spin relaxation process. We have shown
that the nuclear field inhomogeneity leads to an anisotropic
spin relaxation mechanism and we have demonstrated that this
mechanism can account for the oblique Hanle measurements
of electrical spin injection into n-GaAs.

Acknowledgments. This work was supported in part by
C-SPIN, one of six centers of STARnet, a Semiconductor
Research Corporation program, sponsored by MARCO and
DARPA, and by NSF under DMR-1104951.

[1] X. Lou, C. Adelmann, M. Furis, S. A. Crooker, C. J. Palmstrøm,
and P. A. Crowell, Phys. Rev. Lett. 96, 176603 (2006).

[2] P. A. Crowell and S. A. Crooker, in Handbook of Spin Transport
and Magnetism, edited by E. Y. Tysmbal and I. Zutic (CRC
Press, Boca Raton, FL, 2012), Chap. 23, p. 463.

[3] C. Awo-Affouda, O. M. J. van ’t Erve, G. Kioseoglou, A. T.
Hanbicki, M. Holub, C. H. Li, and B. T. Jonker, Appl. Phys.
Lett. 94, 102511 (2009).

[4] G. Salis, A. Fuhrer, and S. F. Alvarado, Phys. Rev. B 80, 115332
(2009).

[5] M. K. Chan, Q. O. Hu, J. Zhang, T. Kondo, C. J. Palmstrøm,
and P. A. Crowell, Phys. Rev. B 80, 161206(R) (2009).

[6] D. Paget, G. Lampel, B. Sapoval, and V. I. Safarov, Phys. Rev.
B 15, 5780 (1977).

[7] F. Meier and B. P. Zachachrenya, Optical Orientation: Modern
Problems in Condensed Matter Science (North-Holland, Ams-
terdam, 1984), Vol. 8.

[8] J. M. Kikkawa and D. D. Awschalom, Science 287, 473 (2000).
[9] G. Salis, Y. Kato, K. Ensslin, D. C. Driscoll, A. C. Gossard, and

D. D. Awschalom, Nature (London) 414, 619 (2001).
[10] A. L. Falk, P. V. Klimov, V. Ivády, K. Szász, D. J. Christle,
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Halperin, arXiv:1508.00164.
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