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Topological effects on transition temperatures and response functions in three-dimensional
Fermi superfluids
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We investigate the effects of topological order on the transition temperature, Tc, and response functions in
spin-orbit-coupled fermionic superfluids with a transverse Zeeman field in three dimensions. Our calculations
include fluctuation effects beyond mean-field theory and are compatible with f -sum rules. In the topological
phase we find that Tc can be as large as 10% of the Fermi temperature, which should be experimentally accessible
in cold-gas experiments. At higher temperatures, above Tc, the spin and density response functions provide
signatures of topological phases via the recombination or amplification of frequency-dependent peaks.
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The excitement surrounding topological superfluids [1–4]
derives from both their scientific as well as technological
potential. Inspired by the canonical topological superfluid,
a spinless px + ipy superfluid [1], it has been argued [5–7]
that some combination of spin-orbit coupling (SOC), Zeeman
field, as well as superfluid pairing can artificially produce such
a state. This was explored via the proximity effect [5] in solid
state systems and using intrinsic pairing in ultracold-atomic
Fermi gases [6,8–11].

In the present paper we address this second case of
intrinsic pairing. A central goal is to determine how a
transition from a trivial to a topological phase is reflected
in the superfluid transition temperature Tc. This is particularly
important since cold-gas experiments have now implemented
spin-orbit coupling [12–14] and, if Tc is sufficiently large,
will be able to address topological phases. Calculations of
Tc in a topological phase, which necessarily go beyond
previous [15–22] mean-field approaches, are not available.
Indeed, topological order at the transition is only a meaningful
concept if Tc, itself, is computed in the presence of a pairing
gap. Thus, here we emphasize the importance of fluctuations.
In a topological phase we find that Tc can be as large as 10% of
the Fermi temperature (TF ) which should be quite accessible
experimentally. However, we find that these superfluids self-
consistently adjust to stabilize topological phases in the lower
Tc, BCS regime.

In addition to Tc, it is important to establish signatures of
topological order as reflected in the band structure. While there
have been a number of proposals in the literature [16,17,23–25]
we approach this challenge via studies of the finite-temperature
density-density and spin-spin correlation functions, which
should be accessible [26] in future experiments. We find that
the position or threshold of peaks in these responses reflects
the topological nature of the band structure. Importantly, these
response functions are tightly constrained by sum rules. Our
theoretical framework satisfies all sum rules, which serves
as a check on our calculations and implies these signatures
of topological order in response functions are unambiguous.
In the topological phase we find that a peak in the density
response is significantly amplified due to a saddle-point Van
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Hove singularity, often seen in correlated superfluids [27,28].
In the trivial phase the spin response exhibits two distinct
peaks, which merge into a single peak in the topological phase.

I. TOPOLOGICAL SUPERFLUIDS

The concept of topological order is based on the Bogoli-
ubov or fermionic quasiparticle dispersion associated with
a mean-field approximation. We therefore begin with the
Bogoliubov–de Gennes (BdG) Hamiltonian for a spin-orbit-
coupled superfluid:

HBdG =
(

H0(k) �

�∗ −H̃0(k)

)
, (1)

where � is a pairing gap and H̃0(k) = σy[H ∗
0 (−k)]σy is

the time-reversed single-particle (hole) Hamiltonian. Here
the single-particle Hamiltonian H0(k) = ξk + h(k) · σ , where
ξk = k2/2m − μ describes a free particle of momentum k =
(kx,ky,kz), mass m, and chemical potential μ; throughout
we set � = kB = 1. The spin-orbit coupling enters through
the vector h(k) = h⊥(k) + h‖(k) that couples the spin-1/2
operator σ = (σx,σy,σz) to a Zeeman field h‖(k) = bzẑ and
an in-plane SOC field h⊥(k) = λk⊥/m, with SOC strength λ.

Of significant theoretical interest has been isotropic
(Rashba) SOC, described by k⊥ = (kx,ky,0) with an out-of-
plane momentum k‖ = k − k⊥ = (0,0,kz). While we consider
the Rashba case in this paper, we note that most experimental
success [12,13] has related to the crossed-Raman config-
uration [29,30] where k⊥ = (kx,0,0) and k‖ = (0,ky,kz).
Elsewhere [31] we have addressed the crossed-Raman case
and find that the results are rather similar.

There are four branches in the BdG eigenvalue spectrum,
ηEαk for α,η = ±1 with the positive energy dispersion

Eαk =
√

ξ 2
k + |h|2 + �2 + 2α

√
ξ 2

k |h|2 + �2b2
z . (2)

For the three-dimensional case, this leads to three distinct
topological phases. The topological phase diagram is specified
by inequalities derived from solving E−(k‖,k⊥ = 0) = 0. No
nodes appear when bz < �, corresponding to a nontopological
or “trivial” superfluid. If μ > 0 and (μ2 + �2) > b2

z > �2, the
topological superfluid has four nodes (4 Weyl points) which
emerge at k2

‖/2m = μ ± √
b2

z − �2. Finally, for arbitrary μ,
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the system is a topological superfluid with two nodes (2 Weyl
points) when b2

z > (μ2 + �2) [15,16,24]. For Rashba SOC,
the dispersion around the nodes is linear in momentum, and is
described by a Weyl Hamiltonian with topologically protected
nodes.

Along with the usual number equation determining μ,
central to a mean-field theory is the self-consistent condition
or gap equation [15,16,24], which determines �. We rewrite
this suggestively as

�−1(0,T ) = 1

2

∑
k

∑
ηαα′

δη,+1 − [ηf (Eαk) + f (ξα′k)]

ηEαk + ξα′k

× vηαα′ (k,k) + g−1 = 0, (3)

where f (x) is a Fermi distribution and g < 0 is an at-
tractive interaction. Where relevant, we regularize integrals
by introducing a scattering length defined through g−1 =
m/4πa − ∑

k m/k2 [32]. The coherence factor vηαα′ (k,k)
[and its generalization, vηαα′ (k,k − q)] is presented in the
Appendix. Their specific form is irrelevant for the present
discussion.

II. FLUCTUATION FORMALISM

The transition temperature, Tc, necessarily contains fluc-
tuation effects [33,34] which serve to distinguish it from
the lowest temperature, denoted T ∗, at which the mean-
field gap equation satisfies �(T ∗) = 0. The fluctuations in
question are noncondensed pairs [33,35]. We choose these
pairs in a specific manner [33] to satisfy the Hugenholtz-Pines
constraint, making use of Eq. (3). Requiring that these pair
excitations are gapless in the ordered phase, we extend Eq. (3)
to finite Q ≡ (iω,q) (where iω is a bosonic Matsubara
frequency) which leads to

�−1(Q,T ) = 1

2

∑
k

∑
ηαα′

δη,+1 − [ηf (Eαk) + f (ξα′k−q)]

(ηEαk + ξα′k−q) − iω

× vηαα′ (k,k − q) + g−1. (4)

From the structure of Eq. (3) it is apparent that �(0,T )
depends on both the full energy spectrum Eαk as well as the
bare energy ξαk. Thus, one might expect [as implemented in
Eq. (4)] that the fluctuation propagator �(Q,T ) should depend
on an asymmetric combination of bare and dressed Green’s
functions [36].

We next consider the propagator in Eq. (4) expanded at
small momenta, where [using Eq. (3)] �(Q,T ) ≈ a−1

0 (iω −
ωq)−1. Here both a0 = (∂iω�−1(Q,T )|Q=0 and the pair
dispersion ωq = a−1

0 (�−1(q,T ) − �−1(0,T )) ≈ q2
⊥/2M⊥ +

q2
‖/2M‖ depend implicitly on T . We identify M⊥ (M‖) as the

effective pair mass for the component of momentum parallel
(perpendicular) to the SOC vector. While it is sometimes
possible to calculate the effective pair masses M⊥, M‖
analytically, in general this is not necessary. Rather, it suffices
to calculate numerically the second-order derivative at small
q [37].

Notice that the small-Q form of �(Q,T ) reflects, up to
a constant, the noninteracting Green’s function of a thermal
Bose gas with pair dispersion ωq, at or below the conden-
sation temperature [�−1(0,T � Tc) = 0]. This implies nB ≡

−a0
∑

Q �(Q,T ) can be interpreted as a Bose occupation
number. At T = Tc, the form of the fermionic self-energy
forces

−
∑
Q

�(Q,Tc) = �2. (5)

This equation constrains �(Q,Tc), and characterizes the
excitation gap in the limit in which all pairs are noncondensed.
The condition for Tc is then simply obtained [33–35] by
equating the constraint on �(Tc) via Eq. (5) with that obtained
from the mean-field gap equation in Eq. (3).

Importantly, this approach, which can be generalized to any
BCS-BEC mean-field theory, explicitly avoids the nonphysical
first-order transition found in all other BCS-BEC theories [38].
Interpreting Eqs. (3) and (5), we see that Eq. (3) is equivalent
to setting the bosonic chemical potential to zero below Tc

and Eq. (5) guarantees that the number of noncondensed
bosons reaches a maximum at Tc (which is determined by
the fermionic pairing gap). We will assume throughout that,
above Tc, the mean-field gap represents a reasonable (but not
essential) approximation [39] for the normal state �.

III. PHASE DIAGRAM

To understand the effects of SOC and the Zeeman field on
condensation and pairing, we numerically compute T ∗ and
Tc, varying 1/kF a, bz, and λ. Where relevant, we measure
quantities in terms of the Fermi momentum (kF ), energy (EF ),
or temperature (TF ) as defined with respect to the λ = bz = 0
limit. It is convenient to define a shifted chemical potential,
δμ = μ − μ0, where μ0 = −Eso(1 + b2

z/E
2
so)/2 if Eso � bz

and μ0 = −bz if Eso < bz; here the SOC energy is Eso =
λ2/m. In this way, a necessary (but not sufficient) condition
for a topological phase is that δμ > 0.

Figure 1 plots Tc and (in some cases) the pairing onset
temperature T ∗ as a function of either λ, bz, or 1/kF a. Dotted
lines indicate where δμ = 0. Where relevant, these plots are
consistent with earlier work [23]. A close analogy between
varying λ and varying 1/kF a is seen in Figs. 1(a) and 1(b). We
define “weak” or “enhanced” pairing relative to bz = 0. The
former is associated with small λ or negative 1/kF a while the
latter corresponds to either large λ or large positive 1/kF a.
Thus, Fig. 1(c) is characteristic of the generic weak-pairing
regime while Fig. 1(d) is characteristic of the strong-pairing
case produced by either large 1/kF a or large λ.

We analyze the top two figures by focusing on a decreasing
abscissa which effects a transition from a trivial to topological
phase (shown as shaded). In Fig. 1(a), corresponding to
1/kF a = 0 and bz = 2.5EF , this transition is driven by
varying the SOC strength λ. In Fig. 1(b) it is driven directly
by varying the scattering length 1/kF a; somewhat after the
point δμ > 0 is crossed, a further decrease in 1/kF a (towards
the BCS limit) allows the system to reach a topological phase.
Here we see a series of two transitions from topologically
trivial to 4-Weyl and then to 2-Weyl superfluids. While there
is some initial decline in Tc with diminishing 1/kF a, the most
significant decrease in Tc occurs in the 2-Weyl case.

The next two panels contrast the regime of weak pairing
[Fig. 1(c)] with that of enhanced pairing [Fig. 1(d)]. In the
first case, the system is BCS-like everywhere. Increasing bz
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FIG. 1. (Color online) Phase diagrams for the superfluid temper-
ature Tc and (where shown) the mean-field transition temperature T ∗.
The T = 0 topological phases are indicated by shaded regions in light
(dark) blue color with 2 (4) Weyl points. The top two panels show
the dependence on either SOC strength λ (left) or scattering length
1/kF a (right), with other parameters fixed. The lower panels show
Tc versus bz with λ/kF = 1 for both panels, 1/kF a = −1 on the left
and 1/kF a = 2 on the right. Dotted lines indicate δμ = 0. Once a
topological phase is entered the system becomes more BCS-like.

gradually suppresses Tc and there is no clear signature in Tc

of the change from a trivial to a topological phase (shown as
shaded in the figure). As shown in Fig. 1(d), when the pairing is
enhanced, Tc becomes insensitive to variations in the Zeeman
field until δμ = 0. Shortly thereafter, the topological phase
transition is crossed and Tc rapidly declines.

We can see from the last figure, in particular, that the
satisfaction of the topological inequality and the δμ = 0
condition importantly define a transition [often quite sharp,
as in Fig. 1(d)] between a superfluid, characterized by a larger
gap, and larger pair mass, M⊥ ∼ 2m (i.e., more “BEC-like”),
and a superfluid with a small gap, �/EF 	 1, and a small pair
mass M⊥ 	 m which is “BCS-like.” The resulting behavior of
Tc arises in the topological phase because there is a competition
between the effects of a decreasing pair mass and a decreasing
mean-field pairing gap as bz increases. The net effect is a
lowering of Tc in the topological phase. This can, in turn, be
viewed as a form of BEC-BCS transition.

One can inquire as to why the topological transition be-
comes more apparent (as reflected in Tc) on the strong-pairing
side [Fig. 1(d)], whereas it is less evident (from the perspective
of Tc) when in the weak-pairing limit [Fig. 1(c)]. These
differences are reflected in the evolution of the band structure
via a Van Hove singularity as the topological transition is
crossed. To address this, Fig. 2 presents a constant-energy
contour plot for the band +E−1,k. The two axes correspond
to the in-plane (k⊥) and out-of-plane (k‖) momenta. For
definiteness, we have chosen 1/kF a = 0 and μ(T ), �(T ) are
determined for a temperature just above Tc. Local extrema
in this figure reflect Van Hove singularities, either at isolated
points or extended in a ringlike structure. Each of the three
panels in a given row corresponds to increasing values of bz

with only the leftmost figures in the trivial phase. The top three

FIG. 2. (Color online) Evolution of the dispersion as the topolog-
ical transition is crossed by tuning bz. In the weak-pairing limit (top
panel), the system smoothly evolves across the transition, whereas
for enhanced pairing (bottom panel) there is a more abrupt change
in band structure. In all plots we show constant-energy contours
+E−1,k/EF at unitarity, with k⊥ and k‖ in units of kF . For panels
(a)–(c) we set λ/kF = 0.5 and the Zeeman field bz/EF = 0.4,0.6,0.8,
whereas for panels (d)–(f) we set λ/kF = 1 and bz/EF = 1.2,1.7,1.8,
respectively. Only the leftmost figures are in a trivial phase.

figures are in the weak-pairing regime whereas the bottom
three figures are in the regime of enhanced pairing.

A key observation from these figures is that in the weak-
pairing limit there is a smooth evolution from a trivial to
topological phase, whereas for enhanced pairing the band
structure evolves rather dramatically from a trivial and BEC-
like phase to a topological and BCS-like phase. Indeed, the
topological transition in the lower panel is roughly correlated
with the appearance of additional Van Hove singularities (as
indicated). This is in contrast to the upper panel where Van
Hove singularities of the trivial and topological phases are
relatively unchanged. These figures help interpret the behavior
observed in Figs. 1(c) and 1(d).

IV. FREQUENCY-DEPENDENT SPIN AND DENSITY
RESPONSE FUNCTIONS

It is important to establish tightly constrained experimental
signatures of topological order. There are proposals in the
literature which suggest that the topological phase might be
observed in atomic Fermi gases through the compressibility
κ [16,23] or via radio frequency (RF) based probes [17].
However, changes in κ appear to reflect topology only in
the limit of small SOC [16,23]. RF experiments in principle
measure the electronic dispersion, but resolution and finite
temperature broadening effects are not yet [40] well controlled.
Our approach is to study density and spin responses, and their
associated sum rules.

Here, as in previous work [34], we consider the correlation
functions (above Tc) given by

χSiSj
(iω,q) =

∑
k

∑
αα′,ηη′

(
f (ηEαk) − f (η′Eα′k+q)

ηEαk − η′Eα′k+q + iω

)
× wαα′,ηη′ (k,k + q). (6)
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FIG. 3. (Color online) Contrast between topological (solid, red)
and trivial (dashed, black) phases of the frequency-dependent spin-
spin [panel (a)] and density-density [panel (b)] correlation functions.
Both response functions are calculated at 1/kF a = 0 and λ/kF =1,
with respective wave vectors of q = 0 and q = 0.5kF ẑ for the spin and
charge responses. The inset in panel (b) shows the energy contours
of E(2,+)(k,q)/EF in the topological phase, with k⊥ and k‖ in units of
kF . The dashed lines highlight the saddle-point Van Hove singularity
whose magnitude determines the frequency location of the peak
response in panel (b).

The density-density correlation function χρρ(iω,q) corre-
sponds to i = j = 0, with σ0 = 12, whereas i,j ∈ {x,y,z}
gives the corresponding spin-spin correlation function. The
differences between the density or spin responses are the coher-
ence factors wαα′,ηη′ (k,k + q), which are rather complicated
and are presented in the Appendix. As a numerical check on
these calculations, the f -sum rule for the density response and
related sum rules [34] for the spin response hold for all q.

Quite generally, the correlation functions for a paired
normal state can be decomposed into two parts, one involving
the difference, E(2,−)(k,q) = |E−1,k − E±1,k+q| which enters
as a thermal contribution (at T �= 0), and the other involving
the sum, E(2,+)(k,q) = |E−1,k + E±1,k+q|, which we call
the multiparticle contribution. We address the q = 0 spin
response, χSiSj

(ω,0) (where i,j are x or y, and we henceforth
analytically continue iω → ω + i0+) so that interband terms
dominate. Thus, for the ±1 subscript in the density response,
the −1 band label yields the main contribution, whereas in the
spin response the +1 band label is most important.

Figure 3(a) shows χSxSy
(ω,0) for both the trivial and

topological phases. In the trivial phase there are two clearly
resolvable peaks; the first peak is associated with the thermal
contribution and the second with the multiparticle contribution.
By contrast, there is only one peak in the topological phase. A
related signature for the Hall conductivity (in 2D) at T = 0,
rather than, as here, above Tc, was suggested earlier [25].

Importantly, this provides a means of distinguishing be-
tween the trivial and topological phases. We can analytically
identify the position of the maximum in the first (thermal)
peak, which is due to a flat band in E(2,−)(k,0), and appears
at precisely 2bz. The threshold for the second peak is ω1 ≡
minkE

(2,+)(k,0). In the trivial phase we find that, if μ > 0,
ω1 = 2�, whereas if μ < 0, ω1 = 2(�2 + μ2)1/2. Hence ω1

is strictly greater than the frequency of the first peak (2bz),
thus yielding two distinct peaks in the response function. In
the topological phase, ω1 = 2bz so that the two peaks merge.

We now focus on the density-density correlation function
χρρ(ω,q), which is only nonzero when q �= 0. This is shown
in Fig. 3(b) for the case of unitarity, 1/kF a = 0, and we can
again compare the trivial and topological phases. Here λ/kF =

1 and we plot the imaginary part of the response function,
χρρ(ω,q) [34], deep in the topological phase (bz/EF = 2) and
in the trivial phase (bz/EF = 1.2) at q = 0.5kF ẑ and T =
0.21TF (just above Tc).

In the trivial phase there are two peaks, one associated with
thermal contributions involving E(2,−)(k,q) and the second
with the multiparticle component involving E(2,+)(k,q). In the
topological phase, there is a large peak at ω/EF = 0.6, which
arises from a (2D) saddle-point Van Hove singularity contribu-
tion in E(2,+)(k,q). This is associated with ∇kE

(2,+)(k,q) = 0,
which (via the density of states) enters as a denominator
in the the response functions. These saddle-point Van Hove
singularity effects are well known [27,28] and are illustrated
in the inset on the right. Importantly, here we observe that
as the system enters the topological phase they amplify the
peaks in the density-density correlation function, thus helping
to distinguish between the trivial and topological phases.

V. CONCLUSIONS

This paper addresses how an intrinsically produced con-
densation temperature varies across a topological transition,
induced by varying SOC, Zeeman coupling, or the scattering
length. Importantly, the inclusion of fluctuations necessarily
introduces a feedback of the topological band structure into
Tc. The passage from the trivial to the topological phase is
accompanied by a transition in which the system is driven
towards a low-Tc, more BCS-like phase with smaller pair mass
and smaller gap. Nevertheless, there is a range of bz in the
topological phase where Tc ∼ 0.1TF , which is experimentally
accessible [32].

Because of difficulties in cooling in current experiments,
we also present methods of detecting the topological band
structure above Tc, exploiting frequency-dependent peaks in
the density and spin responses. The topological transition
appears in the spin response as a recombination of two peaks,
which are separate in the trivial phase. In the topological
superfluid, the dynamical density response exhibits a greatly
amplified peak associated with a (2D) saddle-point Van Hove
singularity.

Note added. Recently, we became aware of a comple-
mentary paper that considers fluctuation effects in spin-orbit-
coupled superfluids with fixed relative population density
using a closely related formalism [41].
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APPENDIX: DERIVATION OF THE VERTEX FUNCTION
�( Q,T ) AND COHERENCE FACTORS

Here we present derivations of the vertex function
�(Q,T ), where Q ≡ (iω,q), along with the coherence factors
vηαα′ (k,k − q) and wαα′,ηη′ (k,k + q), which appear in Eqs. (4)
and (6) of the main text. We begin by writing the non-
interacting Green’s function in terms of projectors as follows:

G0(K) =
∑

α

P 0
α (k)

iν − ξαk
, (A1)
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where K ≡ (iν,k) and P 0
α (k) = 1

2Uk(1 + ασz)U
†
k is a projec-

tor into the band α = ±1. The unitary matrix Uk is the unitary
operator that diagonalizes H0(k) to produce the single-particle
dispersion ξαk = ξk + α|h|.

Similarly, the Nambu Green’s function G(K) for a super-
fluid can be written in terms of projectors as

G(K) = [iν − HBdG(k)]−1,

=
(

G(K) F (K)

F̃ (K) G̃(K)

)
,

=
∑
αη

Pηα

iν − ηEαk
, (A2)

where we have used the inverse of the BdG Hamiltonian,
HBdG, to define the normal and anomalous Green’s functions
G(K) and F (K), along with their time-reversed counterparts
G̃(K) = iσy[G(−K)]T iσy and F̃ (K) = iσy[F (−K)]T iσy .
The projectors Pηα = ψηαψ†

ηα are constructed from the BdG

eigenvectors

ψηα = Uk

⎛⎜⎜⎜⎜⎜⎜⎝
α

√
1
2

(
1 + α

ξk
E0k

)√
1
2

(
1 + αη

ζαk
Eαk

)
η

√
1
2

(
1 − α

ξk
E0k

)√
1
2

(
1 − αη

ζαk
Eαk

)
αη

√
1
2

(
1 + α

ξk
E0k

)√
1
2

(
1 − αη

ζαk
Eαk

)√
1
2

(
1 − α

ξk
E0k

)√
1
2

(
1 + αη

ζαk
Eαk

)

⎞⎟⎟⎟⎟⎟⎟⎠, (A3)

where Uk = diag{Uk,Vk} rotates the particle (hole) sector to
the spin-orbit basis with a unitary matrix Uk (Vk), and we
have defined θ = cos−1(bz/|h|), E0k =

√
ξ 2

k + �2 cos2 θ , and
ζαk = E0k + α|h|. Note that ζαk limits to ξαk as � → 0 or
bz → 0, and to

√
ξ 2

k + �2 + αbz as λ → 0.
For convenience, the 4 × 4 projector matrices can be

expressed as four 2 × 2 sub-matrices as

Pηα(k) ≡
(

Pηα(k) Qηα(k)

Rηα(k) Sηα(k)

)
. (A4)

The Green’s function G(K) is found from the appropriate
2 × 2 submatrix with the corresponding projector

Pηα(k) = 1

4E0kEαk
Uk

(
(E0k + αξk)(Eαk + αηζαk) α�2 sin θ cos θ

α�2 sin θ cos θ (E0k − αξk)(Eαk − αηζαk)

)
U

†
k. (A5)

We can now define a quantity χ (Q), known as the pair susceptibility, which has been introduced in previous papers; it appears
in �(Q,T ) and is a natural extension of χ (0) which appears in �(Q,T ):

χ (Q) ≡ −1

2
Tr

[∑
K

G(K)G̃0(K − Q)

]
, (A6)

where G̃0(K) = iσy[G0(−K)]T iσy is the time-reversed, or hole, Green’s function. Notice there is T dependence in χ (Q) that
we do not list explicitly, however, this enters in the vertex function �(Q,T ).

Substituting the above definitions then gives

χ (Q) = −1

2
Tr

[∑
K

∑
ηα

Pηα(k)

iν − ηEαk

∑
α′

P 0
α′ (k − q)

iν − iω + ξα′k−q

]
,

= −1

2

∑
k

∑
ηαα′

(∑
iν

1

iν − ηEαk

1

iν − (iω − ξα′k−q)

)
Tr

[
Pηα(k)P 0

α′(k − q)
]
. (A7)

Performing the summation over Matsubara frequencies reduces this expression to

χ (Q) = 1

2

∑
k

∑
ηαα′

(
f (ηEαk) − f (−ξα′k−q)

iω − (ηEαk + ξα′k−q)

)
vηαα′ (k,k − q). (A8)

Here the coherence factor discussed in Eqs. (3) and (4) of the
main text is

vηαα′ (k,k − q) = Tr
[
Pηα(k)P 0

α′ (k − q)
]
. (A9)

The vertex function can now be defined by �(Q,T ) ≡
[χ (Q) + g−1]

−1
. Using the expression for the susceptibility

in Eq. (A8), we obtain the vertex function �(Q,T ) as given in
Eq. (4) of the main text. The familiar gap equation can then
also be obtained from the Thouless criteria: χ (0) + g−1 = 0.

We now derive the density-density and spin-spin correlation
functions for the normal phase (T > Tc) in the presence of
SOC and a Zeeman field. In the normal phase there are no
collective-mode contributions. The density-density or spin-
spin correlation functions, as in the main text, can be written as

χSiSj
(iω,q) ≡ ∫

dτ eiωτ 〈TτSqi(τ )S−qj (0)〉, for a many-body

density or spin operator Sqi = ∑
ss ′k c

†
ks(σi)ss ′ck+qs ′ . Here

i = j = 0, with σ0 = 12, corresponds to the density-density
correlation function χSiSj

(iω,q), and i,j ∈ {x,y,z} gives the
corresponding spin-spin correlation function.

We emphasize that in the normal state there is no anomalous
Green’s function component, but the existence of normal state
pairs allows one to write the correlation functions as the sum
of two terms

χSiSj
(iω,q)

=
∑
K

Tr[σiG(K)σjG(K + Q) + σiF (K)σj F̃ (K + Q)].

(A10)
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Here we associate F (K) = (�/�∗)F̃ (K) with a pseudogap
vertex contribution, which leads to

χSiSj
(iω,q) =

∑
K

∑
αα′,ηη′

1

iν − ηEαk

1

iν + iω − η′Eα′k+q

×wαα′,ηη′ (k,k + q), (A11)

where we have introduced the coherence factor

wαα′,ηη′ (k,k + q) = Tr[σiPηα(k)σjPη′α′(k + q)]

+ Tr[σiQηα(k)σjRη′α′ (k + q)].

(A12)

Upon performing the summation over Matsubara frequencies,
we obtain the expression for the density-density or spin-spin
correlation function given in Eq. (6) of the main text.
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