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Proximity-induced triplet superconductivity in Rashba materials
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We study a proximity junction between a conventional s-wave superconductor and a conductor with Rashba
spin-orbit coupling, with a specific focus on the spin structure of the induced pairing amplitude. We find that
spin-triplet pairing correlations are induced by spin-orbit coupling in both one- and two-dimensional systems due
to the lifted spin degeneracy. Additionally, this induced triplet pairing has a component with an odd frequency
dependence that is robust to disorder. Our predictions are based on the solutions of the exact Gor’kov equations
and are beyond the quasiclassical approximation.
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I. INTRODUCTION

The generation of triplet superconducting correlations via
proximity to a conventional superconductor (S) is a topic
that has attracted a lot of attention recently in the context
of superconducting spintronics [1–6], whereby triplet Cooper
pairs with spin projection ±1 play the same role as electron
spins in conventional spintronics [7,8]. Most of the research
in this area, both experimental and theoretical, has focused
on proximity junctions involving ferromagnets (F), which
induce triplet correlations by lifting the spin degeneracy (for
a comprehensive review, see Refs. [9,10]). The induced triplet
correlations are also of fundamental interest because they have
an odd frequency dependence; by the Pauli principle, these
triplet states must be isotropic in momentum and therefore
robust to disorder [11–13].

Because spin-orbit coupling (SOC) also lifts the spin
degeneracy, one might expect odd-frequency triplet pairing to
emerge when a ferromagnet is replaced by a spin-orbit material
as well. That the pairing symmetry of a bulk spin-orbit-coupled
superconductor is known to be a mixture of singlet and
triplet [14–16] only enhances these expectations. However, Liu
et al. (Ref. [17]) showed, by solving the exact Bogoliubov-de
Gennes (BdG) equations, that the proximity-induced pairing
amplitude in a 1D metal with Rashba-type [18] SOC (R) has
no triplet component. Previous studies of proximity junctions
involving both SOC and ferromagnetism that were carried
out to leading order in the quasiclassical approximation also
did not find any triplet pairing induced by SOC [19]. Only
very recently has the singlet-triplet mixing effect of SOC
in such structures been noted by working beyond leading
quasiclassical order [20,21]. However, because the induced
triplet pairing only shows up to second order, this is expected
to be a very weak effect in any materials for which the
quasiclassical methods are applicable. Spin-orbit scattering
confined to the interface has been shown to generate triplet
pairing in 3D ballistic superconductor/normal-metal junctions;
however, this triplet component is anisotropic in momentum
and therefore sensitive to disorder [22]. To date, odd-frequency
triplet pairing induced by SOC in the proximity effect has not
been explicitly investigated.

In this paper, we show by directly solving the fully
quantum-mechanical Gor’kov equations that spin-triplet su-
perconducting correlations are induced by Rashba SOC in
both 1D and 2D proximity junctions. However, we find that

the induced triplet component in 1D vanishes when integrated
over the momentum; this result is in agreement with Ref. [17].
In 2D, we show that the induced triplet amplitude has an
odd-frequency component that is isotropic in momentum. In
agreement with Ref. [19], we also find that the triplet pairing
induced by SOC vanishes to leading order in the quasiclassical
approximation. For this reason, our results are most relevant to
materials that have a spin-orbit energy scale comparable to the
Fermi energy [23], when no quasiclassical expansion can be
made. Examples include the surface states of noble metals [24]
and semimetallic bismuth [25], InSb quantum wires [26], as
well as the bulk [27] and surface [28] states of the bismuth tel-
lurohalides. The proximity effect in materials with strong SOC
is also relevant to recent experiments probing the existence of
Majorana fermions in semiconductor quantum wires [29].

The remainder of the paper is organized as follows. In
Sec. II, we demonstrate that the presence of triplet pairing
and the spatial dependence of the induced pairing amplitude
can be deduced by considering Andreev reflection processes.
We review the well-known S/F proximity effect from this
point of view in Sec. II A before discussing the qualitative
similarities and differences of the S/R proximity effect in
Sec. II B. In Sec. III, we solve the Gor’kov equations in
the S/R geometry to show that triplet pairing is induced
via the proximity effect. Our explicit model is described
is Sec. III A, and details of the calculation are given in
Sec. III B. Solution details for the superconductor and Rashba
regions are given in Sec. III B.1 and Sec. III B.2, respectively,
while the enforcement of boundary conditions is discussed in
Sec. III B.3. Results in 1D and 2D are discussed in Secs. III C
and III D. In Sec. III E, we show that the induced triplet pairing
amplitude vanishes to leading order in the quasiclassical limit.
Our conclusions are given in Sec. IV.

II. TRIPLET PAIRING FROM ANDREEV REFLECTION

The proximity effect can be understood qualitatively
through Andreev reflection, whereby an electron (hole) with
excitation energy ε below the superconducting gap � is
retroreflected as a hole (electron) with opposite spin, thus
injecting a spin-singlet Cooper pair into the superconductor
[30]. While typically studied in the context of transport
[31–34], Andreev reflection can also give insight into the
type of pairing that is induced by the proximity effect. Due
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FIG. 1. (Color online) Bogoliubov-de Gennes excitation spectra of (a) a 1D ferromagnet and (b) a 1D Rashba metal with Rashba vector
g = (0,0,−ikx). Colors denote different spin states, while solid (dashed) lines represent electron (hole) bands. An incident electron (e↑ or e↓)
with energy ε < � is Andreev reflected as a hole of opposite spin (h↓ or h↑, respectively). The presence of a triplet pairing component with
zero spin projection results from the lifted spin degeneracy. (c) Fermi surfaces of a 2D Rashba metal, with Rashba vector g = (iky,−ikx,0),
taking EF > 0. Because the two Rashba subbands are not associated with a definite spin, an incident electron (e1 or e2) with momentum
|ky | < kF1 can be Andreev reflected into either subband (h1 or h2). The total pairing amplitude is a sum of oscillatory and nonoscillatory terms,
resulting from interband and intraband Andreev reflection, respectively. Note: though they appear different, the 1D picture displayed in (b) and
the ky = 0 limit of the 2D picture displayed in (c) are physically equivalent.

to the coherence between electrons and holes, it is these
processes which allow the pairing amplitude to penetrate into
the nonsuperconducting material.

By examining the eigenstates of the BdG equation [35], we
will show that SOC on its own is sufficient to induce triplet
pairing in the proximity effect. For the sake of completeness,
we will first review the case of triplet pairing in S/F junctions
before extending the discussion to S/R junctions.

A. Triplet pairing in S/F junctions

We first present a brief review of the proximity effect
in ferromagnetic materials, following qualitative arguments
similar to those given in Ref. [36]. In a ferromagnet, the BdG
equation reads(

Ĥ0 − J σ̂z 0
0 −Ĥ0 + J σ̂z

)
ψ(x,ε) = εψ(x,ε), (1)

where Ĥ0 = (−∂2
x + k2

‖)/2m − EF , with k‖ being the con-
served momentum along the S/F interface, J is the ferromag-
netic exchange field, σ̂z is a Pauli matrix (we denote 2 × 2
matrices in spin space by a hat), and ψ(x,ε) is a spinor wave
function in Nambu ⊗ spin space. The 1D BdG excitation
spectrum, containing spin-split bands with distinct Fermi
momenta kF↑(↓) = √

2m(EF ± J ) ≈ kF ± J/vF , is shown in
Fig. 1(a).

Because an incident electron [denoted by e↑ or e↓ in
Fig. 1(a)] must be Andreev reflected as a hole of opposite
spin (h↓ or h↑, respectively), the resulting Cooper pairs in a
1D ferromagnet acquire a finite center-of-mass momentum
Q = kF↑ − kF↓ ≈ 2h/vF , thus causing the Cooper pairing
amplitude to oscillate in space with a period πvF /h. [For
arbitrary incidence, as is possible in higher dimensions, the
center-of-mass momentum is modified to Q = 2J/vF cos θ ,
where θ is the angle the momentum makes with the interface
normal.] The oscillations of the pairing amplitude are a direct
consequence of the broken time-reversal symmetry, which
implies that Ek↑ �= E−k↓. As a result, paired states with
opposite spins must have a finite total momentum. These
oscillations are responsible for several interesting phenomena,

including the possibility of a π phase shift of the current-phase
relation in S/F/S Josephson junctions, as well as nonmonotonic
variations, as a function of the thickness of the ferromagnetic
layer, of both the density of states and the superconducting
critical temperature of S/F multilayers (see Refs. [9,10] and
the references therein for more detail).

As is more relevant to the current work, the lifting of the
spin degeneracy (in this case by the exchange field) also results
in the generation of a triplet pairing component that has zero
spin projection. This is true for any material in which spin is
an eigenstate of the Hamiltonian and can be seen particularly
easily in 1D junctions by considering the contributions of the
e↑ → h↓ and e↓ → h↑ Andreev reflection processes to the
pairing amplitude. In terms of the BdG wave functions uα(x,ε)
(electrons) and vα(x,ε) (holes), the triplet component of the
pairing amplitude with zero spin projection is

F†
t (x,x ′,ε) = 1

2 [F†
↑↓(x,x ′,ε) + F†

↓↑(x,x ′,ε)]

∼ v↑(x,ε)u∗
↓(x ′,ε) + v↓(x,ε)u∗

↑(x ′,ε). (2)

The first term results from the e↓ → h↑ process, while the
second term results from the e↑ → h↓ process. While the most
general case is treated in the Appendix, we can express the
triplet pairing amplitude in the case where the electrons are
perfectly Andreev reflected by

F†
t (x,x ′,ε) ∼ a↑(ε)eikL

↑hxe−ikR
↓ex

′ + a↓(ε)eikL
↓hxe−ikR

↑ex
′
, (3)

where k
R(L)
↑(↓)e(h) is the momentum of a right-moving (left-

moving) spin-up (spin-down) electron (hole) and a↑(↓)(ε) is the
amplitude for Andreev reflection from a spin-down (spin-up)
electron to a spin-up (spin-down) hole. As shown in the
Appendix, the Andreev reflection amplitudes are related by
a↑(ε) = −a↓(ε). Therefore,

F†
t (x,x ′,ε) ∼ a↑(ε)

(
eikL

↑hxe−ikR
↓ex

′ − eikL
↓hxe−ikR

↑ex
′)
. (4)

Because this quantity can only vanish when k↑ = k↓, any
lifting of the spin degeneracy will result in a nonzero triplet
pairing amplitude.
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B. Triplet pairing in S/R junctions

While the proximity effect in S/R junctions is very similar
to that in S/F junctions, there are several important qualitative
differences we will now discuss. In the presence of SOC, the
BdG equation is given by(

Ĥ0 − iλg · σ̂ 0
0 −Ĥ0 − iλg · σ̂ ∗

)
ψ(x,ε) = εψ(x,ε), (5)

where λ is the SOC constant and g is the spin-orbit vector,
which satisfies g(k) = −g(−k).

In a strictly 1D system, where there is no well-defined spin
quantization axis, the two representations of the Rashba vector
g = (0,−ikx,0) and g = (0,0,−ikx) are physically equivalent.
To discuss Andreev reflection in the 1D case, we choose
the latter representation, so that spin remains an eigenstate
of the BdG Hamiltonian. The BdG excitation spectrum,
which contains two Rashba subbands with Fermi momenta
kF1(2) =

√
(mλ)2 + 2mEF ∓ mλ, is shown in Fig. 1(b). While

we take EF > 0 in Fig. 1(b), so that the Fermi energy lies
above the Dirac point, the following physical arguments are
equally valid if EF < 0. Because each Rashba subband can
be associated with a definite spin, an electron incident on the
S/R interface must be Andreev reflected as a hole with nearly
equal momentum [close to kF1 for the e↓ → h↑ process and
to kF2 for the e↑ → h↓ process, as labeled in Fig. 1(b)]. Due
to the momentum matching between the incident electron and
reflected hole, only zero-momentum Cooper pairs are formed
within R, and the induced pairing amplitude does not oscillate
as a function of the center-of-mass coordinate of the Cooper
pair. The spatial dependence of the pairing amplitude can also
be inferred from the preservation of time-reversal symmetry;
because Ek↑ = E−k↓, paired states of opposite spin have zero
total momentum. As shown in Sec. II A, the presence of

a triplet pairing component again follows from the lifted spin
degeneracy.

Unlike in the ferromagnetic case, the proximity effect in 2D
S/R junctions is qualitatively different than in 1D. In 2D, the
Rashba spin-orbit vector lies in the plane: g = (iky,−ikx,0).
Spin-orbit coupling again splits the Fermi surface into two
Rashba subbands, see Fig. 1(c), but the crucial difference
compared to 1D is that these subbands can no longer be
associated with a definite spin. Therefore, for the case where
EF > 0 and |ky | < kF1, as illustrated in Fig. 1(c), interband
reflections (e1 → h2 or e2 → h1) are allowed. Because the
momentum of an Andreev reflected hole within the opposite
band differs from that of the incident electron, the Cooper
pairs that are formed by processes of this type have a finite
center-of-mass momentum. The induced pairing amplitude in
two dimensions is thus a sum of oscillatory (from interband
processes) and nonoscillatory (from intraband processes)
terms. The proximity effect is qualitatively similar when EF <

0; even though only a single Rashba subband is occupied, the
inner and outer radii of the annular Fermi surface play the
same role as the two distinct Fermi momenta in Fig. 1(c).

III. SOLUTIONS OF GOR’KOV EQUATIONS

A. Model and equations

We will now show how the physics described in Sec. II B
follows from the microscopic theory. We consider a two-
dimensional model of a S/R proximity junction (Fig. 2) and
allow the mass m(x), the SOC constant λ(x), the Fermi energy
EF (x), and the pairing potential �(x) to vary in a stepwise
manner across the S/R interface. Specifically, we take m(x) =
mRθ (x) + mSθ (−x), EF (x) = EFRθ (x) + EFSθ (−x),
λ(x) = λθ (x), and �̂(x) = �θ (−x)iσ̂y . The model can be
represented by an explicitly Hermitian Hamiltonian,

H =
∫

d2x

{
ψ†(x)

[
−1

2
∂x

(
1

m(x)
∂x

)
+ k2

y

2m(x)
− EF (x) − i

2
σ̂y{λ(x)∂x + ∂x[λ(x)]} − σ̂xλ(x)ky

]
ψ(x)

+ 1

2

(
ψ†(x)�̂(x)[ψ†(x)]T + [ψ(x)]T �̂†(x)ψ(x)

)}
. (6)

Interfacial scattering is incorporated through a mismatch in Fermi velocities/momenta across the S/R interface. The Gor’kov
equations in this model are given by [37][

iω + 1

2
∂x

(
1

m(x)
∂x

)
− k2

y

2m(x)
+ EF (x) − i

2
σ̂y{λ(x)∂x + ∂x[λ(x)]} − σ̂xλ(x)ky

]
Ĝω,ky

(x,x ′) + �̂(x)F̂†
ω,ky

(x,x ′) = δ(x − x ′),

(7a)[
− iω + 1

2
∂x

(
1

m(x)
∂x

)
− k2

y

2m(x)
+ EF (x) − i

2
σ̂y{λ(x)∂x + ∂x[λ(x)]} + σ̂xλ(x)ky

]
F̂†

ω,ky
(x,x ′) − �̂†(x)Ĝω,ky

(x,x ′) = 0. (7b)

We solve the fully quantum-mechanical Gor’kov equations
rather than the quasiclassical Eilenberger equations so that we
can treat the limit of strong SOC, where the splitting of Rashba
subbands must be taken into account.

Even without performing a detailed calculation, it is evident
from Eq. (7b) that SOC generates triplet pairing in the
proximity region. If we parametrize the pairing amplitude by

F̂† = (s + d · σ̂ )iσ̂y, (8)

then the four coupled Gor’kov equations describing the pairing
induced in R can be written out explicitly as(

a∗2
R + ∂2

x

)
s + 2mRλ(kydx − i∂xdy) = 0,(

a∗2
R + ∂2

x

)
dx + 2mRλ(kys + ∂xdz) = 0,(

a∗2
R + ∂2

x

)
dy − 2mRiλ(kydz − ∂xs) = 0,(

a∗2
R + ∂2

x

)
dz + 2mRλ(ikydy − ∂xdx) = 0,

(9)
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x
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S R

FIG. 2. (Color online) Geometry of the S/R proximity effect,
together with the band structure of each material. System is taken
to be infinite in the y direction in 2D, while 1D corresponds to the
single-channel limit ky = 0.

where we define a2
R(S) = 2mR(S)[iω + EFR(S)] − k2

y . In 2D
(ky �= 0), all three triplet components are coupled to the singlet
component through SOC, whereas only the component dy is
coupled to s in 1D (ky = 0).

B. Calculation details

We now proceed with detailed solutions of Eq. (7) in
both the superconductor and Rashba metal. Because we are
ultimately interested in the pairing amplitude induced in R, we
fix x ′ > 0. In the context of Eq. (7), this choice for x ′ simply
ensures that the delta-function source term on the right-hand
side appears only when solving for the Green’s functions in R.

1. Solutions in superconductor

We begin by solving the Gor’kov equations within S, which
can be expressed as

(
a2

S + ∂2
x

)
ĜS

ω,ky
(x,x ′) + 2mS�iσ̂yF̂†S

ω,ky
(x,x ′) = 0, (10a)(

a∗2
S + ∂2

x

)
F̂†S

ω,ky
(x,x ′) + 2mS�iσ̂y ĜS

ω,ky
(x,x ′) = 0. (10b)

We denote Green’s functions in the superconductor by

ĜS
ω,ky

(x,x ′) = Ĝω,ky
(x < 0,x ′), (11a)

F̂†S
ω,ky

(x,x ′) = F̂†
ω,ky

(x < 0,x ′). (11b)

Solving Eq. (10b) for Ĝ, we obtain

ĜS
ω,ky

(x,x ′) = iσ̂y

(
a∗2

S + ∂2
x

2mS�

)
F̂†S

ω,ky
(x,x ′). (12)

Substituting this expression for Ĝ into Eq. (10a), we obtain a
fourth-order equation describing F̂†,[(

a2
S + ∂2

x

)(
a∗2

S + ∂2
x

) + 4m2
S�

2
]
F̂†S

ω,ky
(x,x ′) = 0. (13)

Solving Eq. (13) and keeping only those solutions that decay
in the limit x → −∞, we obtain

F̂†S
ω,ky

(x,x ′) = ĉ1(x ′)e−ipx + ĉ5(x ′)eip∗x, (14)

where p2 = 2mS(i + EFS) − k2
y and 2 = ω2 + �2. Here

and throughout the rest of the calculation, we choose the branch
cut of the square root function to lie along the negative real
axis. Note that each coefficient ĉi is a 2 × 2 matrix in spin
space and thus contains four unknown quantities,

ĉ1(x ′) =
(

c1(x ′) c2(x ′)
c3(x ′) c4(x ′)

)
. (15)

Substituting solution (14) into Eq. (12) gives the normal
Green’s function,

ĜS
ω,ky

(x,x ′) = −iσ̂y[ĉ1(x ′)e−ipxeiη + ĉ5(x ′)eip∗xe−iη], (16)

where we define η = cos−1(iω/�).

2. Solutions in Rashba metal

The Gor’kov equation describing the normal Green’s
function in R is given by[

a2
R + ∂2

x − 2mRλ(iσ̂y∂x + σ̂xky)
]
ĜR

ω,ky
(x,x ′) = δ(x − x ′).

(17)

(Note that ĜR denotes the Matsubara Green’s function in the
Rashba metal,

ĜR
ω,ky

(x,x ′) = Ĝω,ky
(x > 0,x ′), (18)

and should not be confused for a retarded Green’s function.)
Equation (17) consists of four equations describing the four
spin components of the matrix Ĝ. This system can be easily
solved by considering two equations at a time; for example (we
suppress explicit reference to the dependence of the Green’s
function on ω and ky here),

(
a2

R + ∂2
x

)
GR

↑↑(x,x ′) − 2mRλ(ky + ∂x)GR
↓↑(x,x ′) = δ(x − x ′),

(19a)(
a2

R + ∂2
x

)
GR

↓↑(x,x ′) − 2mRλ(ky − ∂x)GR
↑↑(x,x ′) = 0. (19b)

The Green’s functions can be uniquely expressed as the sum
of a particular solution to Eq. (19) and the general solution to
the corresponding homogeneous system of equations.

The particular solution to Eq. (19) is equal to the Green’s
function of a bulk Rashba metal, which we denote by
G(0)R

αβ (x − x ′), and is a function of only the difference x − x ′.
This function can be obtained by Fourier transforming to
momentum space,

(
a2

R − k2
x

)
G(0)R

↑↑ (kx) − 2mRλ(ky + ikx)G(0)R
↓↑ (kx) = 1, (20a)(

a2
R − k2

x

)
G(0)R

↓↑ (kx) − 2mRλ(ky − ikx)G(0)R
↑↑ (kx) = 0. (20b)

Solving the algebraic system (20), we find

G(0)R
↑↑ (kx) = 2mR

(
a2

R − k2
x

)
(
a2

R − k2
x

)2 − 4m2
Rλ2(k2

x + k2
y)

, (21a)

G(0)R
↓↑ (kx) = 4m2

Rλ
(
ky − ikx

)
(
a2

R − k2
x

)2 − 4m2
Rλ2

(
k2
x + k2

y

) . (21b)
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To obtain the Green’s function in coordinate space, we perform
an inverse Fourier transform,

G(0)R
αβ (x − x ′) =

∫
dkx

2π
G(0)R

αβ (kx)eikx (x−x ′). (22)

The integrals evaluate to

G(0)R
↑↑ (x − x ′) = − imR

k1D
1 + k1D

2

[
s1k

1D
1

k1
eik1s1|x−x ′ |

+ s2k
1D
2

k2
eik2s2|x−x ′ |

]
, (23a)

G(0)R
↓↑ (x − x ′) = imR

k1D
1 + k1D

2

{[
i sgn(x − x ′) − s1ky

k1

]

× eik1s1|x−x ′ | −
[
i sgn(x − x ′) − s2ky

k2

]

× eik2s2|x−x ′ |
}
. (23b)

Whereas the states in the superconductor are characterized by
a single momentum p, in the Rashba metal we must define
two different momenta due to the band splitting by SOC,

k2
1(2) = [

k1D
1(2)

]2 − k2
y, (24)

where

k1D
1(2) =

√
m2

Rλ2 + 2mR(iω + EFR) ∓ mRλ (25)

are the corresponding momenta in 1D. We also denote sα =
sgn[Im(kα)], which evaluates to

s1 =
⎧⎨
⎩

sgn(ω) if EFR > 0,

−sgn(ω) if EFR < 0, ω2 < −4EsoEFR,

sgn(ω) if EFR < 0, ω2 > −4EsoEFR,

(26a)

s2 = sgn(ω). (26b)

In Eq. (26a), we define the spin-orbit energy Eso = mRλ2/2
(see also Fig. 2). Based on the symmetry of Eq. (17), the
remaining spin components of the bulk Rashba solution can
be obtained directly from Eq. (23) by noting that G↑↑ → G↓↓
and G↓↑ → G↑↓ upon flipping the signs of both λ and ky . The
full bulk solution is given by

Ĝ(0)R
ω,ky

(x − x ′)

= − imRs1

k1D
1 + k1D

2

[
k1D

1

k1
− s1 sgn(x − x ′)σ̂y + ky

k1
σ̂x

]
eik1s1|x − x ′ |

− imRs2

k1D
1 + k1D

2

[
k1D

2

k2
+ s2 sgn(x − x ′)σ̂y − ky

k2
σ̂x

]
eik2s2|x−x ′ |.

(27)

We now seek solutions to the homogeneous system of
equations

(
a2

R + ∂2
x

)
GR

↑↑(x,x ′) − 2mRλ(ky + ∂x)GR
↓↑(x,x ′) = 0, (28a)(

a2
R + ∂2

x

)
GR

↓↑(x,x ′) − 2mRλ(ky − ∂x)GR
↑↑(x,x ′) = 0. (28b)

Because this is a linear system, it can easily be solved by matrix
methods. We transform the system (28) into a first-order matrix
equation,

∂xX =

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 1

−a2
R −2mRλky 0 −2mRλ

−2mRλky −a2
R 2mRλ 0

⎞
⎟⎟⎟⎠X,

(29)

describing the vector X = [GR
↑↑,GR

↓↑,∂xGR
↑↑,∂xGR

↓↑]T . The four
eigenvalues of the matrix in Eq. (29) are ±ik1 and ±ik2, but we
choose only the solutions that decay in the limit x → ∞. The
prefactors of the exponentials in the solution are determined by
the eigenvectors. Thus, a full solution to the Gor’kov equations
in the Rashba metal is given by

ĜR
ω,ky

(x,x ′) =
⎛
⎝ ik1s1+ky

k1D
1

c9(x ′) c10(x ′)

c9(x ′) − ik1s1−ky

k1D
1

c10(x ′)

⎞
⎠eik1s1x

+
⎛
⎝− ik2s2+ky

k1D
2

c11(x ′) c12(x ′)

c11(x ′) ik2s2−ky

k1D
2

c12(x ′)

⎞
⎠eik2s2x

+ Ĝ(0)R
ω,ky

(x − x ′). (30)

Turning now to the solution for the pairing amplitude in the
Rashba metal, the Gor’kov equations that we must solve are
given by[

a∗2
R + ∂2

x − 2mRλ(iσ̂y∂x − σ̂xky)
]
F̂†R

ω,ky
(x,x ′) = 0. (31)

Noting that Eq. (31) becomes Eq. (17) upon flipping the signs
of both ω and ky (save for the delta-function term), we obtain
the pairing amplitude directly from Eq. (30) by making these
changes,

F̂†R
ω,ky

(x,x ′) =
⎛
⎝− ik∗

1 s1+ky

k∗1D
1

c13(x ′) c14(x ′)

c13(x ′) ik∗
1 s1−ky

k∗1D
1

c14(x ′)

⎞
⎠e−ik∗

1 s1x

+
⎛
⎝ ik∗

2 s2+ky

k∗1D
2

c15(x ′) c16(x ′)

c15(x ′) − ik∗
2 s2−ky

k∗1D
2

c16(x ′)

⎞
⎠e−ik∗

2 s2x.

(32)

3. Enforcing boundary conditions

Now that we have obtained general solutions to the Gor’kov
equations in both the superconductor and Rashba metal, the
sixteen unknown coefficients must be determined by boundary
conditions. The boundary conditions can be obtained by direct
integration of Eq. (7) over a narrow region near x = 0; they
are

ĜR
ω,ky

(0,x ′) = ĜS
ω,ky

(0,x ′), (33a)

(
∂x

mR

− iσ̂yλ

)
ĜR

ω,ky
(0,x ′) = ∂x

mS

ĜS
ω,ky

(0,x ′), (33b)
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with the same boundary conditions applying for F̂† as
well.

Because the bulk solution (27) contains two linearly
independent terms, we can separate the dependence of the
coefficients on x ′ by writing

ci(x
′) = ci,1e

ik1s1x
′ + ci,2e

ik2s2x
′
. (34)

Each of the sixteen boundary conditions then separates
into two linearly independent parts, thus giving a total of
32 boundary conditions that must be solved. The pairing
amplitude in Eq. (32) becomes

F̂†R
ω,ky

(x,x ′)

=
(− ik∗

1 s1+ky

k∗1D
1

c13,1 c14,1

c13,1
ik∗

1 s1−ky

k∗1D
1

c14,1

)
e−ik∗

1 s1xeik1s1x
′

+
(− ik∗

1 s1+ky

k∗1D
1

c13,2 c14,2

c13,2
ik∗

1 s1−ky

k∗1D
1

c14,2

)
e−ik∗

1 s1xeik2s2x
′

+
( ik∗

2 s2+ky

k∗1D
2

c15,1 c16,1

c15,1 − ik∗
2 s2−ky

k∗1D
2

c16,1

)
e−ik∗

2 s2xeik1s1x
′

+
( ik∗

2 s2+ky

k∗1D
2

c15,2 c16,2

c15,2 − ik∗
2 s2−ky

k∗1D
2

c16,2

)
e−ik∗

2 s2xeik2s2x
′
. (35)

Due to the matched momenta in the exponentials of the first
and last terms of Eq. (35), these terms correspond to Cooper
pairs with zero net momentum; these terms do not oscillate
as a function of the center-of-mass coordinate of the pair
(x + x ′)/2. Conversely, the terms with mismatched momenta
correspond to Cooper pairs with a finite momentum; these
terms are oscillatory.

To compactify our notation, we can express the singlet and
triplet parts of the induced pairing amplitude, as defined in
Eq. (8), as

(s,d) =
2∑

α,β=1

[
f 0

αβ (ω,ky),fαβ(ω,ky)
]
e−ik∗

αsαxeikβsβx ′
. (36)

The sums in Eq. (36) run over the two Rashba subbands and
(f 0,f) describes a four-vector of 2 × 2 matrices that can be
directly related to the spatial dependence of the induced pairing
amplitude. The four elements of the newly defined f i matrices
correspond to the four terms of Eq. (35); for example, the upper
diagonal element of f 0 is given by the singlet component of
the matrix in the first term of Eq. (35), f 0

11 = (c14,1 − c13,1)/2.
For this reason, we associate the diagonal elements of the f i

matrices with nonoscillatory terms of the pairing amplitude
and off-diagonal elements with oscillatory terms.

C. Pairing amplitude in 1D

Solving the boundary conditions in 1D, we obtain f x =
f z = 0, while f y ∝ σz and f 0 ∝ σ0. Consistent with our
previous discussion of Andreev reflection, we find that the
pairing amplitude is a mixture of singlet and triplet components
and does not oscillate with (x + x ′)/2. In order to simplify
the analytic result, we assume that the Fermi energy and

the spin-orbit energy are the largest energy scales, so that
ω,� � Eso,EFR(S). This allows us to expand

p = pF + i/vF , (37a)

k1 = (kF1 + iω/vR)sgn(EFR), (37b)

k2 = kF2 + iω/vR, (37c)

where vF = √
2EFS/mS = pF /mS and vR =√

λ2 + 2EFR/mR are the Fermi velocities of the
superconductor and Rashba metal, respectively. We also
note that, in this limit, s1 = sgn(ω)sgn(EFR). The sole
nonzero triplet component can then be expressed as

dy(x,x ′) = − vF � sgn(ω)

2vF vR|ω| + (
v2

F + v2
R

)
 sgn(EFR)

e
− |ω|

vR
(x+x ′)

× (e−ikF1 sgn(ω)(x−x ′) − e−ikF2 sgn(ω)(x−x ′)). (38)

As is customary, we can also express the nonlocal pairing
amplitude in terms of the center-of-mass coordinate and the
momentum of the relative motion. In this mixed representation
(x now denotes the center-of-mass coordinate), the triplet
pairing amplitude when EFR > 0 is given by

dy(x,k) = 2πvF vR� sgn(k)

2vF vR|ω| + (
v2

F + v2
R

)


e−2|ω|x/vR

× [
δ(ξ1) − δ(ξ2)

]
θ (−kω), (39)

where ξ1(2) = vR(|k| − kF1(2)); a similar expression can be
written if EFR < 0. In both cases, the triplet component in
Eq. (39) consists of terms localized to each of the two split
Fermi surfaces. However, this triplet component vanishes
if integrated over the momentum, as the integrated triplet
amplitude is proportional to the difference in the densities
of states on the two Rashba subbands,

dy(x) =
∫

dk

2π
dy(x,k) ∝ N1(EFR) − N2(EFR). (40)

Since the subband densities of states in 1D are equal regardless
of the position of the Fermi level, N1(EFR) = N2(EFR) =
1/πvR , dy(x) vanishes. This result is consistent with that
of Ref. [17], which found no induced local (equivalently,
momentum-integrated) triplet pairing amplitude in 1D. [Ad-
ditional Rashba coupling arising from a lateral confining
potential in quasi-1D wires makes the velocities of spin-split
subbands, and thus the densities of states, different [39], but
this effect is expected to be small and ignored here, as well as
in Ref. [17].]

D. Pairing amplitude in 2D

In 2D, all four components of the pairing amplitude
are nonzero. While the explicit analytic expressions are too
cumbersome to be included here, we find, again taking ω,� �
Eso,EFR(S), that the coefficients of Eq. (34) are interrelated as
follows:

c14,1 = −c13,1, c16,2 = −c15,2, c14,1,c16,2 ∈ R,

c14,2 = −c∗
13,2 = −c15,1 = c∗

16,1, c14,2 ∈ C.
(41)
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FIG. 3. (Color online) Spatial dependence of proximity-induced (a) singlet and (b) triplet pairing amplitudes, as defined in Eq. (43), in a
2D Rashba proximity junction for various strengths of SOC (ξS = vF /� is the coherence length of the superconductor). Pairing amplitude is
plotted in units of its value in the bulk of the superconductor. (c) Quantitative comparison between induced singlet and triplet amplitudes for
Eso/EFR = 2 [dotted curves from (a) and (b)], which is a reasonable choice for BiTeI [38]. All pairing amplitudes are plotted with ω/� = 0.8,
mR/mS = 0.1, EFR/EFS = 0.05, and EFS/� = 200. By the Pauli principle, the triplet component has an odd frequency dependence.

Given these relations, the matrices in Eq. (36) can be expressed as

f 0 =
(

c14,1 Re[c14,2]

Re[c14,2] c16,2

)
, (42a)

f x =
(

− sin θ1c14,1 −Im[sgn(ω)eiθ1 sgn(ω)c14,2]

−Im[sgn(ω)e−iθ2 sgn(ω)c14,2] sin θ2c16,2

)
, (42b)

f y =
(

cos θ1c14,1 Re[eiθ1 sgn(ω)c14,2]

−Re[e−iθ2 sgn(ω)c14,2] − cos θ2c16,2

)
sgn(ω), (42c)

f z =
(

0 i Im[c14,2]
−i Im[c14,2] 0

)
, (42d)

where we define θ1(2) = sin−1(ky/kF1(2)). We see that f z ∝ σy ,
while the remaining components contain both diagonal and
off-diagonal terms. We therefore conclude that intraband
Andreev reflection processes contribute to the singlet com-
ponent and to only those triplet components that have d ‖ g,
while interband processes contribute to all types of pairing.
Additionally, each of the pairing components has a definite
symmetry with respect to ky ; s and dy are even functions of
ky , while dx and dz are odd. So, while a single trajectory
parameterized by ky can produce all four pairing components,
only the components s and dy are nonzero when averaged over
all possible trajectories.

To facilitate a quantitative comparison of the induced
amplitudes of different symmetry in 2D junctions, we define
a dimensionless analog to the angular-averaged quasiclassical
Green’s function, whereby we integrate the Gor’kov Green’s
function over the momentum,

F̂†
ω(x) = 1

mR

∫ ∞

−∞

dky

2π
F̂†

ω,ky
(x,x). (43)

Note that we explicitly integrate over ky , while the integration
over kx is done implicitly by setting x = x ′ in the nonlocal
solution given in Eq. (35). In addition to allowing a quantitative
comparison between singlet and triplet components, integrat-
ing over the momentum has the added benefit of picking out

the odd-frequency triplet terms; this follows directly from
the Pauli principle, as any triplet pairing amplitude is a
sum of an even-frequency, odd-momentum component and
an odd-frequency, even-momentum component.

We calculate the Green’s function defined in Eq. (43)
numerically without making any approximations. The pairing
amplitude at a given ω is determined by four parameters:
mR/mS , EFR/EFS , Eso/EFR, and EFS/�. Figures 3(a) and
3(b) illustrate the effects of SOC on the induced singlet and
triplet amplitudes, respectively. While the magnitude of the
pairing amplitude is largely determined by the Andreev re-
flection coefficient, which is controlled by all four parameters,
we find that Eso/EFR is the only parameter that controls the
singlet-to-triplet ratio. Figure 3(c) compares the singlet and
triplet pairing amplitudes using parameters appropriate for a
giant Rashba semiconductor BiTeI, where Eso/EFR ≈ 2 [38].
As is seen from the plot, the singlet and triplet amplitudes can
be comparable in magnitude in a real physical system.

As discussed previously in Sec. II B, the generation of
a triplet pairing component does not require occupation of
both Rashba subbands. Figure 4 shows that the induced triplet
component is qualitatively similar when only a single subband
is occupied. This observation is also relevant for BiTeI, as, in
samples studied in Ref. [38], only the lowest Rashba subband
is occupied at ambient pressure.
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FIG. 4. (Color online) Quantitative comparison between induced
triplet pairing amplitude in two-subband (solid line) and one-subband
(dotted line) cases. Chosen parameters are the same as those in Fig. 3,
with only a change in the sign of EFR/EFS for the one-subband case.

E. Recovering the quasiclassical limit

We will now show that the induced triplet pairing amplitude
vanishes to leading order in the quasiclassical limit, where
SOC is taken to be weak (λ � vF ) and the splitting of the
Fermi surfaces is neglected. If there is no Fermi surface
mismatch between superconductor and Rashba metal (mR =
mS and EFR = EFS), the system can be described by a single
Fermi momentum kF and a single angle θ = sin−1(ky/kF ).
Expanding the coefficients from Eq. (41) to linear order in
λ/vF , we find

c14,1 = c16,2 = − �

2vF cos θ ( + |ω|) + O
(
λ2

/
v2

F

)
,

(44)
c14,2 = O

(
λ2

/
v2

F

)
.

Because there is only one Fermi momentum, we can rewrite
Eq. (36) as

(s,d) = e−ik∗sxeiksx ′
2∑

α,β=1

[
f 0

αβ(ky,ω),fαβ(ky,ω)
]
, (45)

where k2 = 2m(iω + EF ) − k2
y and s = sgn(ω). We immedi-

ately see from Eqs. (42) that all three triplet components vanish
to first order in λ/vF . The nonzero triplet pairing amplitude
occurs to order λ2/v2

F (see also Refs. [20,21]) and is very small
in materials with weak SOC. Therefore, in order to achieve
a sizable singlet-triplet mixing, one needs to study the S/R
proximity effect beyond the quasiclassical limit.

IV. CONCLUSIONS

We provided a qualitative physical argument, based on the
consideration of possible Andreev reflection processes, for
the presence of triplet Cooper pairing in a Rashba material
placed in proximity to a conventional superconductor. We also
proved the existence of this triplet state by solving the exact
Gor’kov equations. Even though the triplet state vanishes in
1D when integrated over the momentum, it can be comparable
in magnitude to the singlet component in 2D when Eso ∼ EFR.

Because triplet pairing occurs only to order λ2/v2
F in the

quasiclassical limit, where λ is the spin-orbit coupling constant
and vF is the Fermi velocity, the results of this paper are most
relevant to materials with large λ. For example, the spin-orbit
constant in the bulk Rashba semiconductor BiTeI has been
reported as λ ∼ 1 eV Å, corresponding to a spin-orbit energy
of Eso = m∗λ2/2�

2 ∼ 100 meV (m∗ ∼ 0.1me) [38]. More
conventional semiconductors provide a wide range of spin-
orbit coupling strengths. While GaAs/AlGaAs quantum wells
are weak spin-orbit materials with λ ∼ 1 meV Å [40], other
semiconductor heterostructures, such as InAs/InAlAs [41] and
InSb/InAlSb [42–44] quantum wells, have been reported to
have λ ∼ 0.1 eV Å. Additionally, Ge/Si core/shell [45], InAs
[46], and InSb [26] nanowires can reach spin-orbit strengths
of λ ∼ 0.1 − 1 eV Å. With so many materials belonging to
the strong spin-orbit coupling regime, it is imperative to
understand the proximity effect in such materials beyond the
quasiclassical approximation.

Even though we do not treat disorder here explicitly, we can
comment on its effect. In the presence of impurity scattering,
the triplet Cooper pairs in a spin-orbit system are subjected to
spin relaxation. Therefore, in the diffusive limit, where � � ξS

and � � �so (� is the mean free path and �so ∼ �
2/m∗λ is

the spin-orbit length), the decay length of the odd-frequency
triplet component is ∼√

D/τso, where τso is the spin relaxation
time and D is the diffusion coefficient. In the diffusive limit
of the Dyakonov-Perel mechanism [47], the spin relaxation
time is given by τso ∼ D/�2

so, so the wave function of the
triplet Cooper pairs is expected to decay on the scale set by
�so. However, in materials with strong spin-orbit coupling for
which the induced triplet pairing is relevant, the spin-orbit
length is comparable to the Fermi wavelength; therefore, as
long as these materials remain “good metals” (kF � � 1), the
results of this paper should apply. Recent experiments have
measured an electron mobility exceeding 200 000 cm2/V s
in an InSb/InAlSb quantum well [48], thus demonstrating an
ability to fabricate ultraclean materials with strong spin-orbit
coupling.
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APPENDIX: TRIPLET PAIRING AMPLITUDE AS A
CONSEQUENCE OF LIFTED SPIN DEGENERACY

In this appendix, we prove that a nonzero triplet pairing
amplitude is induced in any 1D proximity junction with lifted
spin degeneracy. For our purposes here, we assume that spin
remains an eigenstate of the Hamiltonian, as is the case for both
a ferromagnet and a 1D Rashba material. By calculating the
BdG wave functions describing the Andreev reflection of an
electron to a hole, we will be able to determine the pairing
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amplitude and show that the triplet component is always
nonzero when the spin degeneracy is lifted.

In any nonsuperconducting material where spin is an
eigenstate of the Hamiltonian, the scattering wave function
describing an electron incident on the superconducting inter-
face can be expressed as

ψN (x,ε) = ψi(x,ε) + a↑(ε)

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠eikL

↑hx + a↓(ε)

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠eikL

↓hx

+ r↑(ε)

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠eikL

↑ex + r↓(ε)

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠eikL

↓ex , (A1)

where ψi(x,ε) is the wave function of the incident electron,
k

R(L)
↑(↓)e(h) is the momentum of a right-moving (left-moving)

spin-up (spin-down) electron (hole), a↑(↓)(ε) are the Andreev
reflection amplitudes, and r↑(↓)(ε) are the normal reflection
amplitudes. On the superconducting side, the wave function is
given by

ψS(x,ε) = t1(ε)

⎛
⎜⎝

u0

0
0
v0

⎞
⎟⎠eiq+x + t2(ε)

⎛
⎜⎝

0
u0

−v0

0

⎞
⎟⎠eiq+x

+ t3(ε)

⎛
⎜⎝

v0

0
0
u0

⎞
⎟⎠e−iq−x + t4(ε)

⎛
⎜⎝

0
−v0

u0

0

⎞
⎟⎠e−iq−x, (A2)

where q2
± = 2mS(EFS ± i

√
�2 − ε2), u2

0 = (1 +
i
√

�2 − ε2/ε)/2 and v2
0 = (1 − i

√
�2 − ε2/ε)/2 are the

usual BCS coherence factors, and the ti(ε) are transmission
amplitudes. Boundary conditions to be imposed on the wave
functions are

ψN (0) = ψS(0), (A3a)

v̂NψN (0) = v̂SψS(0). (A3b)

The velocity operator is a 4 × 4 matrix given by v̂ =
∂H/∂(−i∂x), where H is the Hamiltonian of the BdG equation
[Hψ(x,ε) = εψ(x,ε)].

We first consider the scattering of an incident spin-up
electron. In that case, [ψi(x,ε)]T = (1,0,0,0)eikR

↑ex . Imposing

the boundary conditions gives us a set of four equations
(a↑ = r↓ = 0 for this choice of incident wave function):

1 + r↑ = t1u0 + t3v0, vF↑(1 − r↑) = vFS(t1u0 − t3v0),

a↓ = t1v0 + t3u0, vF↓a↓ = vFS(t1v0 − t3u0), (A4)

where vF↑(↓) is the Fermi velocity of the spin-up (spin-down)
band of the nonsuperconducting material and vFS is the Fermi
velocity of the superconductor. In obtaining Eq. (A4), we
expanded in the limit ε,� � EFN(S). We also must consider
the scattering of an incident spin-down electron, with wave
function given by [ψi(x,ε)]T = (0,1,0,0)eikR

↑ex . The boundary
conditions for this second case are

1 + r↓ = t2u0 − t4v0, vF↓(1 − r↓) = vFS(t2u0 + t4v0),

a↑ = −t2v0 + t4u0, −vF↑a↑ = vFS(t2v0 + t4u0).
(A5)

By solving Eqs. (A4) and (A5), we find that the Andreev and
normal reflection amplitudes are related by

a↓(ε) = −vF↑
vF↓

a↑(ε), (A6a)

r↑(ε) =
(
u2

0 − v2
0

)(
vF↑vF↓ − v2

FS

) + vFS(vF↑ − vF↓)(
u2

0 − v2
0

)(
vF↑vF↓ − v2

FS

) − vFS(vF↑ − vF↓)
r↓(ε).

(A6b)

The relations of Eq. (A6) will allow us to prove the existence
of a triplet pairing component.

The pairing amplitude is given in terms of the BdG wave
functions uα(x,ε) (electrons) and vα(x,ε) (holes) by

F†
αβ(x,x ′,ε) ∼ vα(x,ε)u∗

β(x ′,ε). (A7)

Therefore, the triplet component of the pairing amplitude with
zero spin projection is

F†
t (x,x ′,ε) = 1

2 [F†
↑↓(x,x ′,ε) + F†

↓↑(x,x ′,ε)]

∼ v↑(x,ε)u∗
↓(x ′,ε) + v↓(x,ε)u∗

↑(x ′,ε). (A8)

These two terms correspond to the two scattering processes
considered above. Substituting the wave functions from
Eq. (A1), we find that

F†
t (x,x ′,ε) ∼ a↑(ε)

[
e−ikR

↓ex
′ + r∗

↓(ε)e−ikL
↓ex

′]
eikL

↑hx

+ a↓(ε)
[
e−ikR

↑ex
′ + r∗

↑(ε)e−ikL
↑ex

′]
eikL

↓hx . (A9)

Given the relations in Eq. (A6), we can reexpress Eq. (A9) as

F†
t (x,x ′,ε) ∼ a↑(ε)

(
eikL

↑hxe−ikR
↓ex

′ − vF↑
vF↓

eikL
↓hxe−ikR

↑ex
′
)

+ a↑(ε)r∗
↓(ε)

×
(

eikL
↑hxe−ikL

↓ex
′ − vF↑

vF↓

sgn(ε − �)
(
u2

0 − v2
0

)(
vF↑vF↓ − v2

FS

) + vFS

(
vF↑ − vF↓)

sgn(ε − �)
(
u2

0 − v2
0

)(
vF↑vF↓ − v2

FS

) − vFS(vF↑ − vF↓)
eikL

↓hxe−ikL
↑ex

′
)

. (A10)

Note that the triplet amplitude only vanishes when the two spin bands are degenerate, k↑ = k↓ and vF↑ = vF↓. Therefore, triplet
pairing is induced by the proximity effect any time the spin degeneracy is lifted.
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