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Giant isochoric compressibility of solid 4He: The bistability of superclimbing dislocations
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A significant accumulation of matter in solid 4He observed during a superflow event, dubbed the giant isochoric
compressibility (or the syringe effect), is discussed within the model of dislocations with superfluid core. It is
shown that solid 4He in contact with a superfluid reservoir can develop a bistability with respect to the syringe
fraction, with the threshold for the bias by chemical potential determined by a typical free length of dislocations
with superfluid core. The main implications of this effect are hysteresis and strongly nonlinear dynamical behavior
leading to growth, proliferation, and possibly exiting from a crystal of superclimbing dislocations. Three major
channels for such dynamics are identified: (i) injection and inflation of the prismatic loops from the boundary,
(ii) Bardeen-Herring generation of the loops in the bulk, and (iii) helical instability of the screw dislocations.
It is argued that the syringe instability may have already been observed in the experiments on the superflow
through solid Helium-4. Several testable predictions for the time and the bias dependencies of the dynamics are
suggested.
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I. INTRODUCTION

The superflow through solid 4He observed first by the
UMASS group [1] and then confirmed by other groups [2,3]
is now at the focus of experimental and theoretical efforts in
the field of superfluidity and quantum crystals. One of the
striking features is the syringe effect (or the giant isochoric
compressibility) [4]. In its essence, a solid exhibits the
response on external chemical potential applied at a point
practically the same way as liquid does—absorbs or expels
a macroscopic fraction of atoms.

As it has been suggested in Ref. [4], this effect can be asso-
ciated with the so-called superclimb of edge dislocations—the
climb supported by the superfluid transport along dislocation
core. The unusual feature of this scenario is that the linearized
isochoric compressibility of a solid permeated by a network of
dislocations with superfluid core is independent of density of
the superclimbing dislocations and is, instead, determined by
the dimensionless parameter—the asymmetry between lengths
of superclimbing and nonsuperclimbing parts. This implies
that the effect is strongly nonperturbative, that is, it cannot
be treated as a small correction with respect to dislocation
density. In particular, as shown in Ref. [4], the linear isochoric
compressibility of a symmetric network is essentially the same
as that of a liquid. Here we show that, even if the initial network
is strongly asymmetric in favor of the non-super-climbing
(superfluid) dislocations, there are scenarios still leading to
the giant isochoric compressibility.

According to the suggestion [4] the vycor “electrodes”
are creating a contact between superfluid reservoirs and a
preexisting static network of dislocations with superfluid
cores. Such dislocations are characterized by the Burgers
vector along the main symmetry axis and can be of two basic
types: screw [5] and edge [4] (as well as of the mixed type).
The edge part of the network can execute a superclimb that
is responsible for the syringe effect. An example of such a
network with combined segments is shown in Fig. 1.

There is an alternative to the “preexisting static network”
scenario—a dynamical network which is created and disrupted
by the external bias μ. Here the analysis of the superclimb is

extended beyond the linear response considered in Ref. [4],
and it is shown that a segment of a rough superclimbing
dislocation is unstable with respect to its unlimited growth
if the bias by chemical potential μ exceeds a threshold μc

which is inversely proportional to a length L of the segment.
In high-quality crystals typical a value of L can be as large
as several μm or a fraction of mm or even reach a sample
size. Thus, the threshold can be macroscopically small, so it
may well be exceeded by several orders of magnitude in the
experiments [1–3]. The reason for such a generic situation is
that a number of the conducting pathways is ∝1/L2, so, in
order to detect the superflow, the bias μ needs to be increased
at least as μ ∝ L2 which leads to μ � μc ∝ L−1.

It will also be shown that a straight screw dislocation (which
cannot perform superclimb) with a superfluid core [5] can
develop a helical instability under the bias so the edgelike
rim is formed and, accordingly, the syringe effect will also
be induced. The threshold for this instability has the same
dependence ∝1/L on length of the screw dislocation. (Helical
screw dislocations have been first observed in silicon at high
temperatures [6].)

The instability has two important consequences: First,
rough superclimbing segments of dislocations pinned inside
solid 4He bulk can generate prismatic loops upon bias μ in
a manner very similar to the Frank-Reed source of gliding
dislocation loops under shear stress [7]. The difference is that
the generated loops during the superclimbing instability carry
extra matter or vacancies. (In this case the instability should
rather be called Bardeen-Herring [8].) A typical diameter of the
loop is determined by the original length of the edge segment
L = L0. This process is schematically shown in Fig. 2. Second,
superclimbing dislocations existing at a solid-vycor boundary
can proliferate into the bulk upon applying the bias, so a
percolating network of superfluid pathways is created even
if it did not exist originally. This process is shown in Figs. 3
and 4. Both effects are symmetric with respect to the sign of
the bias μ. In one case an additional matter is injected into the
solid in the form of parts of extra basal planes and in the second
existing basal planes are being dissolved, that is, vacancies are
being injected instead.
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FIG. 1. (Color online) A forest of screw dislocations containing
edge superclimbing segments. Dashed and solid lines indicate pure
screw and pure edge segments, respectively, all characterized by the
Burgers vector along the hcp axis.

The presented analysis is conducted at the level of a single
dislocation. It ignores how pinning by 3He impurities or
crosslinks with other dislocations may affect the dynamics of
the instability. It is clear that the instability may also result in
the dislocations exiting the solid from its edges. Several grow-
ing segments may also merge or recombine. These processes
as well as the interaction between superclimbing and basal
plane gliding dislocations are also not considered. In some
sense the analysis presented here is limited by low density
of superclimbing dislocations so there is some reasonably
long time during which the dynamics can be treated within an
approximation of a single dislocation segment. This situation
differs from the linearized approach [4] where the main
assumption was that a typical distance between superclimbing
segments is of the same order as a typical length of the each
segment. The single loop strongly nonlinear dynamics consid-

A B

C 'C

FIG. 2. (Color online) A prismatic loop (solid line) generated by
an edge segment AB, from Fig. 1, according to the Bardeen-Herring
mechanism: An originally straight edge segment AB (solid horizontal
line) bows under the bias (dashed-double-dotted line). Then further
bowing results in the overhangs (dashed-dotted line). Points C and
C′ in the overhangs approach each other and eventually the whole
prismatic loop detaches from points A and B.

FIG. 3. (Color online) Sketch of the growing superclimbing dis-
location (dashed line). The area to its left indicates either building of
extra plane of atoms or dissolving of the existing plane (not shown)
between the upper and lower ones.

ered here relies on a different limit, that is, a typical distance
between superclimbing segments is much larger than L0.

The injection of the dislocations from the vycor-solid
boundary and the Bardeen-Herring-type loop generation as
well as the helical instability of screw dislocations result in
the syringe effect. The dynamics of the instabilities, however,
turn out to differ: While in the case of the boundary instability
the injected dislocation can grow to sizes far exceeding its
original length L = L0, in the case of the Bardeen-Herring-
type instability the generated loop radius R is of the order of
L0—it is the number of loops that is changing. The helical
screw dislocation can also generate loops in a manner similar
to that proposed in Ref. [6]. (The detailed study of this effect in
the context of the superfluid core will be conducted elsewhere.)

II. GROWTH INSTABILITY OF ROUGH
SUPERCLIMBING DISLOCATION

Let us consider one segment of a superclimbing dislocation
of some initial length L = L0. Such a segment can be at a

                      α 
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FIG. 4. (Color online) Geometry of the growing superclimbing
dislocation (dashed line) sketched in Fig. 3. The end points of the
dislocation are in a contact with the superfluid reservoir. The (solid)
area under the curve indicates either the injected extra matter leading
to the formation of new basal layer (actually two of them in hcp) or
a removed part of the existing one.
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crystal boundary or be a part of the superfluid network. If
the bias μ is applied, the segment will bow due to an extra
matter delivered through its ends. Such bowing occurs in the
basal plane while the Burgers vector b is perpendicular to the
plane, that is, along the high-symmetry axis. This process is
schematically shown in Fig. 3 as an arc protruding between
two basal layers.

At this point, let us specify the bias μ. An increase
of chemical potential of the superfluid reservoir μl either
by applying pressure [1–3] or through the fountain effect
[1] creates a difference μ = μs − μl < 0 between chemical
potentials of the solid μs and the liquid. As a result, an
additional matter can be injected into the solid in a form of
growing pairs of basal plane layers. The boundary of one pair
of layers is the superclimbing dislocation. If μ > 0, then an
existing pair of layers is being dissolved. Its boundary is also
a superclimbing dislocation. The added or removed part of the
planes is shown by a colored solid area under the arc in Fig. 3.

It is important to realize that imposing any finite value
of μ (that is, deviation from the equilibrium value) results,
strictly speaking, in the instability. This can be understood
from simple energy balance: the energy gain due to the bowing
δEb = |μδN |, with δN being a number of atoms delivered
through the core to support the bowing, always exceeds the
energy δEcr ∝ (L − L0) due to the core length increase from
L0 to L for large-enough L because δN is given by the area
swept during the bowing. Thus, for large-enough L the energy
gain due to the bowing always dominates the energy loss
due to the length increase. However, in the limit μ → 0 the
(meta-)stability is protected by a macroscopic energy barrier.
This barrier vanishes if |μ| exceeds a threshold ∼1/L0 so
the absolute instability develops. The estimates performed
below show that the absolute instability may have already
been realized in the experiments [1–3].

Let us estimate the threshold value μc for the bias. The
energy of the dislocation per its unit length is given by the
shear modulus G and the Burgers vector b as εc ≈ Gb2/4π ,
so δEcr ≈ εc(L − L0). The energy gain δEb is proportional to
the area ∼|μ|(L/b)2 swept by the bowing dislocation. Thus,
equating one to the other gives μc as

μc ∼ Gb4

L0
. (1)

The value of b in Eq. (1) is the Burgers vector along the
hcp axis, that is, b = √

8/3a, where a is the interatomic
distance a ∼ 3.5 Å. As was found in the simulations [5], this
dislocation splits into two partials with b → b/2 and the fault
in between. Thus, effectively, b is reduced by a factor of 2 so
the actual threshold (1) becomes lower by a factor of about 24.
In the following discussions I will ignore this peculiarity of
the structure, which can only modify the numerical coefficient
without affecting the dependence μc ∝ 1/L0. Accordingly, in
all the following estimates the value of b will be taken as
b ≈ a ≈ 3.5 Å and the core splitting will be ignored.

The above relation can be supported by a more quantitative
analysis. In the quasistatic situation, so μ is the same over
the whole dislocation length, the bowing dislocation takes the
shape of a circular arc characterized by a base L0 and an angle
α, as indicated in Fig. 4. At small |μ| the center of the circle
is outside the crystal so the circle radius R � L0 and α0 → 0.

As the arc grows, α0 eventually reaches π and R decreases to
R = L0/2 and then α0 → 2π so the center of the circle enters
the crystal and R starts growing to become R � L0. The total
energy of such a configuration can be represented as

E = Gb2

4π
Rα0 − |μ|

b2
R2(α0 − sin α0), (2)

where the radius R of the arc is determined by L0 and the
angle α0 as L0 = 2 sin(α0/2)R. This expression indicates
that the dislocation is absolutely unstable toward inflation
R → ∞, α0 → 2π for arbitrary small |μ| simply because the
second term is negative and can dominate at large-enough R.
There is, however, an energy barrier to overcome before the
instability develops unless |μ| exceeds some critical value.
Let us consider a specific situation when the end points of the
dislocation are pinned by a contact with a superfluid reservoir
so that L0 is fixed. Then the energy (2) becomes a variable of
the angle α0 only:

E(L0,α0) = E0
α0 sin(α0/2) − g̃(α0 − sin α0)

sin2(α0/2)
, (3)

where E0 ≈ Gb2L0/8π , g̃ ≡ π |μ|L0/(b4G). As the analysis
of the function (3) indicates, for g̃ � gc = 0.5 there is a
metastable minimum at α ≈ 4g̃ � 1 followed by a maximum
at larger α0. At g̃ = gc both the minimum and the maximum
coincide at α0 = π , which is the inflection point indicating
ending of the metastability domain, so at g̃ > gc the dislocation
becomes unstable toward unlimited inflation α0 → 2π . As can
be seen, the threshold g̃ = 0.5, that is,

μc = Gb4

2πL0
, (4)

is consistent with the estimate (1).
In a general situation one should expect a distribution of

the lengths L0 so some segments remain in a metastable
equilibrium and some are overcritical. In what follows such
a distribution will be ignored and it will be considered
that there are M segments of some length L0 in a solid
affected by the bias μ. Typical values utilized in the flow
experiments [1], when the syringe effect was observed, are
in the range μ = 5 × 10−4 − 5 × 10−3K (which corresponds
to 0.001–0.01 J/g in the units used in Ref. [1]). This implies
that the lengths of the critical segment L0 � 1−5 μm (for
a typical G ≈ 100 bar and b ∼ 3.5 Å). The expected density
of dislocations in high-quality 4He crystals is at the level of
∼104−106 cm−2, as found in Ref. [9], which implies that
the actual lengths L0 of free segments are about a factor of
10–100 longer than the above estimate. In other words, the
experimental range of μ used in Ref. [1] appears to be well
above the threshold (1) [or (4)]. At this point it should be
mentioned that the dislocation density values [9] are more
relevant to the glide effect than to the superclimb. Nevertheless,
this order of magnitude estimate can be used as a figure of
merit.

A. Helical instability of the screw dislocation
with superfluid core

As found in ab initio simulations [5], screw dislocation in
solid 4He with Burgers along the hcp axis has a superfluid core.
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If this dislocation is straight, there are no edge-type segments
on it, and, therefore, it cannot perform the superclimb. Here it
will be shown that if such a dislocation is biased by chemical
potential similarly to the edge segment discussed above, it will
become unstable toward forming a helix with its axis parallel
to the original orientation of the dislocation. Such a helix has
the edge-type rim and, thus, it can be a cause of the syringe
effect.

Let us consider a screw dislocation of length L oriented
along the z axis (that is, the hcp axis). Then a position of the
core can be described in the cylindrical coordinates by the
radial distance r(z) from its original position r = 0 (in units of
b) as well as by the azimuthal angle θ (z). The energy consists
of two terms: the work done μ�N by the bias μ to accumulate
some amount of matter �N due to creating the edge-type rim
and the energy ∼εc due to the core length increase:

Es =
∫ L

0
dz

{
μγsr

2

2
∂zθ + εc

2
[(∂zr)2 + r2(∂zθ )2]

}
, (5)

where it was taken into account that the additional matter per
unit length of the core is d�N/dz = γsr

2∂zθ/2, with γs = ±1
being the chirality (handedness) of the dislocation. In other
words, the total amount �N is given by the projection of the
helix on the basal plane times the number of the complete
turns. The “sign” of the matter accumulation depends on γs :
If the screw is right handed, γs = 1, and the helix is right
handed, ∂zθ > 0, then the solid mass increases, that is, �N >

0. Similarly, �N > 0 for both the screw and the helix being
left handed (γs = −1, ∂zθ < 0). Conversely, the amount of the
syringe matter becomes negative if the chiralities are opposite
each other. Eventually, it will be seen that the sign of the
syringe fraction does not depend on the screw chirality and is
solely determined by the sign of the bias μ as �N ∼ −μ.

As a specific choice of the boundary condition, let us
presume that this dislocation is pinned at its both ends, that
is, r(0) = r(L) = 0. Then the variation with respect to θ gives
the equation

∂zθ = −μγs

2εc

, (6)

where the boundary condition is taken into account. Its
substitution back to Eq. (5) results in the effective energy
of the dislocation as

E =
∫ L

0
dz

[
− (μr)2

8εc

+ εc

2
(∂zr)2

]
. (7)

This expression features an instability toward unlimited growth
of r . At small μ, similarly to the case of the edge dislocation,
the solution r = 0 is a metastable one. As Eq. (7) indicates,
there is a difference with the edge dislocation case—the screw
shows no linear response of bowing in the limit μ → 0.
There is, however, a threshold μs such that at |μ| > μs

the absolute instability toward r → ∞ develops. In order to
find how μs depends on L and εc it is enough to perform
elementary estimates: r � L changes on the scale of L so the
total elastic energy is ∼εcr

2/L. As long as the bias energy
∼μ2Lr2/εc becomes of the same order, the solution r = 0

becomes absolutely unstable. Thus,

μs ≈ εc

L
≈ Gb4

L
, (8)

which is essentially the same condition as (1). At the threshold
the helix is described by the total angle |α| ≈ μsL/εc ≈ 1, and
at |μ| � μs this angle becomes |μ|/μs � 1.

B. Collective elastic effect in a bulk network
of superfluid dislocations

The injection of extra matter (or vacancies) under the bias μ

is limited by the compression elastic modulus K of a sample,
so the system stabilizes at some finite density of extra matter
delivered through superclimb. The above estimate (1) [or (4)]
obtained for a single dislocation does not take into account this
effect and implies that an inflating loop can reach a sample size.
In reality, the generation must stop after the overall density
change compensates for the bias μ.

Let us presume that the extra matter resides in M dislocation
segments of length L0 which each bowed by an amount y.
Such bowing results in the extra matter �N ∼ LyM/b2 added
to (or subtracted from) the solid. There is the corresponding
compression energy increase Ee ≈ K(�N/N )2
/2, where
N stands for the total number of particles in the bulk of the
volume 
 affected by the injection. The chemical potential
energy gain and the energy loss due to the core length increase
are ∼μLyM/b2 and ∼Gb2y2/L, respectively. Thus, the total
energy change as a function of y,M,L becomes

E ≈ −LMμ

b2
y +

(
Gb2M

L
+ KL2b2M2




)
y2

2
, (9)

where the dimensionless numerical coefficients are omitted.
If |y| � L, then the value of L can be set to L ≈ L0 and the
minimization in y gives

y ≈ L2
0/(Gb4)

1 + KL3
0M/(
G)

μ. (10)

As mentioned above, this solution is actually a metastable
one, which, however, is protected by an exponentially long
waiting time in the limit μ → 0. The bowing determined by
(10) corresponds to the syringe fraction �N/N ∼ MLyb/
,
which for the case depicted in Fig. 1, where M ∼ 
/(L2

sLz),
can be written as

�N

N
≈ L3

0/
(
L2

sLz

)
1 + KL3

0/
(
GL2

sLz

) μ

Gb3
. (11)

If Ls ∼ Lz ∼ L, that is, for a uniform network of the
superclimbing dislocations, then this fraction becomes

�N

N
≈ μ

(K + G)b3
, (12)

which constitutes the giant isochoric compressibility [4]. In
the limit L3

0 � L2
sLz, the syringe fraction becomes reduced

within the linearized approach as

�N

N
≈ L3

0

L2
sLz

μ

Gb3
� μ

Gb3
, (13)

If the bias μ exceeds the threshold (1), the bowing of the
edge segments cannot be treated in the linear approximation
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anymore. In order to find the syringe fraction in a generic
situation one can use Eq. (9) where the substitute y ∼ L is
made and, instead of L, the fraction N1 ∼ L2/b2 generated by
one segment is used as a variable. Then Eq. (9) becomes:

E ≈ −|μ|MN1 + Gb3M
√

N1 + Kb6M2

2

N2

1 , (14)

where N1 is taken as a positive value featuring either extra
matter delivered to (μ < 0) or taken out from (μ > 0) the
solid.

For small-enough M this function of N1 features a maxi-
mum at N1 = Nmx ∼ (Gb3/|μ|)2 and then a stable minimum
at N1 = Neq where

Neq ≈ |μ|

MKb6

. (15)

This minimum corresponds to the syringe fraction �N/N =
N1Mb3/
, that is,

�N

N
≈ μ

Kb3
, (16)

where the condition Nmx � Neq, that is,

|μ| � μb ≈
(

G2K
M




)1/3

b4, (17)

must hold. In the case of M bulk segments distributed
uniformly in, e.g., the situation depicted in Fig. 1, the condition
(17) becomes |μ| > (G2K/L2

sLz)
1/3

b4. Thus, if L0 is the
smallest length scale and |μ| obeys (1), then the system is
guaranteed to be unstable, with the equilibrium (15) to be
determined by the bulk elastic energy Ee. The fraction (15)
corresponds to the limit |μ| � μb.

In the case of the bulk structure shown in Fig. 1 this fraction
N1 resides in several prismatic loops Nlp of a radius R ∼ L0

generated by each edge segment. This number can be estimated
as Neqb

2/L2
0, that is,

Nlp ≈ |μ|L2
sLz

Kb4L2
0

>

(
GL2

sLz

KL3
0

)2/3

� 1, (18)

where the condition (17) as well as that L = L0 is the smallest
distance among Ls,Lz,L in Fig. 1 are taken into account.

Thus, in the overcritical regime the equilibrium fraction
(16) is always of the same order as in the liquid—even if the
linearized response predicts much smaller values (13).

C. Collective elastic effects due to the boundary instability

In the case of the vycor-solid boundary, the analysis
should be performed separately because seeds of the unstable
dislocations reside at the boundary. Accordingly, M in this case
is rather a surface than the bulk quantity. Then, in the estimate
of the bulk deformation energy, the affected volume becomes

 ∼ LS, where S stands for the area of the vycor-solid
boundary. Accordingly, the extra fraction of the injected matter
or vacancies is �N ∼ L2M/b2 and N ∼ 
/b3 so

�N

N
∼ LMb

S
, (19)

and the elastic energy takes the form

Ee ≈ KM2b2L3

2S
. (20)

This dependence ∝L3 should be contrasted with the elastic
term ∝N2

1 ∝ L4 in the case of the bulk instability as repre-
sented in Eq. (14). The total energy in terms of N1 (that is, the
extra matter due to one segment) becomes

E ≈ −|μ|MN1 + Gb3M
√

N1 + Kb5M2N
3/2
1

2S
. (21)

This form as a function of N1 (or the segment length L) can
also have two extrema—a maximum followed by the minimum
as N1 grows. It happens when

|μ| � μs ≈
(

GKM

S

)1/2

b4. (22)

This condition for the surface bistability should be compared
with the bulk one (17). The value of M/S is determined by
typical distances between the boundary segments along the
basal plane rb and along the hcp axis rz as M/S ≈ 1/rbrz.
Thus, if L0 <

√
rbrz, then the condition (22) is guaranteed to

be satisfied as long as the instability condition (1) holds. If
|μ| � μs , then the equilibrium is determined by the first and
the last terms in the energy (21). It corresponds to the typical
equilibrium length [obtained from the minimization of E in
(21) with respect to N1 ∼ L2] as

L = Leq ≈ |μ|rbrz

Kb4
. (23)

It is interesting to note that this length becomes of the order
of a sample size (∼1 cm) for the smallest values of the bias
∼5 × 10−4 K used in Ref. [1] (or μ ∼ 10−3 J/g in units of
Ref. [1]) if rb,rz are of the order of the vycor diameter
∼1 mm. This value, however, drops quite fast with the product
rbrz � 1 mm2. In other words, if there are only few seeds of
superclimbing dislocations at the solid-vycor boundary, then
the instability guarantees that the new pathways will reach the
other electrode. Conversely, if there are many such seeds, then
the elastic energy increase due to the injection will stop the
syringe effect close to the boundary.

Generically, a system of superclimbing dislocations can
feature two minima with respect to the syringe fraction. These
minima are separated by a barrier and, therefore, the hysteresis
phenomenon should be anticipated with respect to the bias as
long as the condition (17) [or (22)] is satisfied.

D. Renormalization of the chemical potential

The instability of a single superclimbing dislocation is
eventually stabilized by the increase of the bulk elastic energy
due to finite density of the injected matter (or vacancies).
This corresponds to the renormalization of the difference of
chemical potentials μ between solid and liquid from its initial
value to zero. This renormalized value μ̃ can be obtained from
the expressions of the total energy, Eqs. (14) and (21), as
μ̃ = ∂(E/M)/∂N1. Keeping in mind the symmetry μ → −μ

let us consider μ < 0, that is, that the potential of the liquid in
vycor is higher than in the solid so extra atoms enter the solid.
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In the case of the bulk segments (as in Fig. 1) the differentiation
of the energy (14) results in

μ̃ = μ̃(N1) = μ + Gb3

2
N

−1/2
1 + Kb6M



N1, (24)

and in the case of the vycor-solid boundary Eq. (21) gives

μ̃ = μ̃(N1) = μ + Gb3

2
N

−1/2
1 + 3Kb5M

4S
N

1/2
1 . (25)

There are two roots of μ̃ = 0. At small-enough M [as
presented in Eqs. (17) and (22) and guaranteed by the generic
condition (1)] the first one N1 ≈ [Gb3/(2μ)]2 corresponds to
unstable equilibrium and the second one describes the stable
one. It should be mentioned that the equilibrium characterized
by small bowings (that is, N1 → 0) is not captured by Eqs.
(24) and (25) written for already-large bowings y ∼ L0. Thus,
for all practical purposes this minimum can be viewed as
corresponding to the energy E = 0 reached at N1 = 0.

As discussed above, the practical values of μ correspond
to the situation when N1 is to evolve from the unstable
toward the stable equilibrium. This what is called above as
the overcritical regime |μ| > μc, Eq. (1). As will be seen,
the overcritical dynamics exhibits strongly nonlinear features
before N1 approaches the vicinity of the stable equilibrium.

E. Liquid-gas type transition and hysteresis

It is useful to look on Eqs. (14) and (21) from a different
perspective. Small bowing of dislocations corresponds to
N1 → 0, that is, to zero energy E = 0. There can exist another
equilibrium solution ∂E/∂N1 = 0 characterized by finite N1.
Thus, there is a value of chemical potential |μ| = μI at which
two phases N1 ≈ 0 and N1 finite have the same energies. This
can be interpreted as a point of first-order phase transition. For
the case of the bulk system, Eq. (14),

μI = 1.5

(
G2K

M




)1/3

b4. (26)

At smaller values of |μ| the second solution for N1 becomes
metastable and at |μ| = μsp, where

μsp = 2−1/3μI ≈ 0.794μI , (27)

it vanishes. Thus, |μ| = μsp corresponds to the spinodal, that
is, to the point where the bistability (and hysteresis) vanishes.

Similar situation occurs for the case of the interface,
Eq. (21). The transition occurs at |μ| = μIs , where

μIs =
√

2

(
GK

M

S

)1/2

b4, (28)

and the hysteresis vanishes at |μ| = μsps, where

μsps =
√

3

2
μIs ≈ 0.866μIs. (29)

The transition is not characterized by any underlying
symmetry and, to some extent, resembles the first-order
liquid-gas transition, where density exhibits a jump. However,
there is also a significant difference. The energies (14) and (21)
contain essentially a nonanalytical term ∼√

N1 determined by
the geometrical nature of dislocations. This term is always

dominant at small N1 and is the reason for the energy
barrier. Thus, in contrast to the standard liquid-gas transition,
the syringe effect does not have a critical point where the
first-order transition ends.

III. DYNAMICS OF THE INSTABILITY AT
THE VYCOR-SOLID BOUNDARY

Now let us consider the dynamical aspects of the evolution
of the syringe fraction. In this work, the focus is on the
dynamics of the edge segments. The dynamics of the helical
instability will be analyzed elsewhere.

A single loop dynamics during the instability stage is
characterized by a short ballistic period during which phase
slips and dissipation can be ignored. Then, as the superfluid
velocity along cores reaches some terminal value, phase
slips induce dissipation which is strongly nonlinear in the
velocity. Finally, once length of a growing segment approaches
equilibrium value [determined by the largest root of μ̃ = 0
in Eq. (25)], the linearized dynamics sets in. The analysis
is conducted within the assumption that distance between
dislocations is large enough so there is enough time for a
segment to grow to a length L which is much larger than
the initial length L0. Within this approach other growing
loops are taken into account self-consistently through the
renormalization of the chemical potential given by the last
term in Eqs. (24) and (25). Practically, this means distances
∼10−3−10−2 cm for dislocation densities 106−104 cm−2.

A. Ballistic growth from the boundary

The analysis will be conducted for an almost circular loop
of radius R (that is, α0 ≈ 2π in Fig. 4). In general, the
parametrization of the loop should include deviations of its
shape from circle. This can be achieved by introducing R as a
function of polar angle α (as defined in Fig. 4) and time t . The
Lagrangian can be written as

L =
∫ 2π

0
dα

−φ̇σR2

2
− E1, (30)

where the first term is the Berry contribution in units � =
1,b = 1 and σ = ±1 is to be chosen depending on whether
the matter is injected to (σ = +1) or from (σ = −1) the
solid; the term E1 is the energy of one loop which takes into
account the elastic energy, that is, the last term in Eq. (21),
attributed to one loop. In addition, the kinetic energy of the
flow along the core ρs (∂αφ)2

2dl/dα
, where φ is the superfluid phase and

ρs stands for the superfluid stiffness and dl
dα

=
√

R2 + (∂αR)2,
should be taken into account. Thus,

E1 =
∫ 2π

0
dα

[
ρs(∂αφ)2

2dl/dα
− |μ|N1+εc

dl

dα

]
+ κN

3/2
1 , (31)

where κ ≈ Kb5M/S, εc = Gb3/4π , and N1 as the amount of
extra matter absorbed by one loop is N1 = ∫ 2π

0 dαR2/2. As
discussed above, the system is invariant with respect to μ →
−μ. Thus, without loss of generality, the value of μ can be
taken negative and σ = +1 so N1 describes extra matter added
to the solid. There is also the boundary condition indicating
that the dislocation is in a contact with the superfluid reservoir
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at its two end points, that is, φ(α = 0) = φ(α = 2π ) = φR ,
where φR is the phase of the reservoir, which can be set to
zero.

Within the simplified approach deviations from the circular
shape can be ignored, that is, ∂αR = 0. Then, a certain minimal
assumption must be made about the spatial dependence of the
phase φ along the dislocation core. Given the symmetry of
the problem (Fig. 4) and because the total current through the
loop must be zero in the syringe regime, the current along the
core ∼∂φ/∂α must be antisymmetric with respect to α = π .
Thus, the lowest nontrivial angular harmonic satisfying this
requirement as well as the boundary condition is

φ = φ0(t) sin

(
α

2

)
. (32)

Then a substitution of this ansatz into Eqs. (30) and (31), after
performing explicit integration and variation in φ0, gives

dR2

dt
= πρs

8

φ0

R
. (33)

This equation is essentially the statement of the continuity: The
flux of matter through two ends of the growing loop controls
the rate of the loop area change. The variation of the action in
R gives

dφ0

dt
= μ̄, (34)

where

μ̄ = π |μ|
2

+ πρsφ
2
0

32R3
− πεc

2R
− 3π3/2κR. (35)

For |μ| exceeding the threshold (1) and when R is yet far from
the equilibrium, the dominant time dependence is determined
by the first two terms in μ̄. Then the solution of Eqs. (33)–
(35) can be found in the form φ0 = At,R = Btν with some
unknown parameters A,B,ν. This gives

φ0(t) = 3πμ

4
t, R(t) =

(
9π2ρs |μ|

128

)1/3

t2/3. (36)

These dependencies describe the ballistic stage of the syringe
effect far from the equilibrium. The accumulated fraction is
given by Eq. (19) where the role of L is played by R from
Eq. (36), that is,

�N

N
∝ (ρs |μ|)1/3t2/3, (37)

which corresponds to the local pressure variation
∼K|�N |/N . These fractional powers are specific to the dis-
location superclimb and, thus, their experimental observation
would be a “smoking gun” for the effect. The question, though,
is how long this ballistic stage can last.

During the ballistic stage the flow velocity grows in time
until some terminal velocity VT is reached (at the dislocation
end points). Then frequent phase slips take place which convert
kinetic energy of superflow into excitations. Thus, as an order
of magnitude estimate, a typical time for the phase slip tps

can be taken from the ballistic stage—how long it takes to
accelerate the flow from zero to, say, VT ∼ 100 m/s. The
velocity profile along the growing loop is determined by the

phase (32) as V (t,α) = ∂αφ/(mR), that is,

V (t,α) = φ0(t)

2mR(t)
cos(α/2), (38)

where m is 4He atomic mass. Using the solution for φ0 and
R(t) in this equation, one finds

V (t,α) = V0 cos(α/2), V0 = �

mb

(
t

τb

)1/3

(39)

in standard units, where the time scale τb is given by

τ−1
b = 3πμ2b

4ρs

≈ 2.4
μ2mb

�3n
(1D)
s

, (40)

and n(1D)
s ≈ mρs is the superfluid linear density along the

dislocation core. Using its value n(1D)
s ∼ 1 Å

−1
found in sim-

ulations of screw dislocation [5] and b ∼ 3.5 Å (so �/mb ≈
50 m/s), the terminal speed VT (at α = 0,2π ) is reached at
time tT ≈ τb, which for the lowest μ value used in Ref. [1]
gives ∼1 ms. At this moment it looks unlikely that the available
time resolution allows us to observe the time dependence
during this stage. There is, however, an initial portion of the sy-
ringe effect which on the experimental time scale (of minutes)
[1,2] is accumulated in a jumplike manner right after the bias μ

is imposed (or removed). This quantity will be discussed later.
Close to the stable equilibrium point R → Req (determined

by φ̇ = 0), where

Req = |μ|
6
√

πκ
, (41)

which is essentially Eq. (23), Eqs. (33) and (34) can be
linearized R = Req + ξ with |ξ | � Req. The corresponding
dynamics is oscillatory:

ξ̈ + ω2
μξ = 0, ω2

μ = 27π7/2ρsκ
3

4μ2
. (42)

Thus ωμ scales as ∝1/|μ|. These oscillations, however, can
take place only if their amplitude is small so the velocity
of the flow along the core remains much smaller than the
terminal velocity. Thus, detecting them presents a significant
challenge. It should also be mentioned that the phase slips
in the ohmic regime at finite temperature T (see below) may
make the oscillations overdamped.

B. Dissiptaive stage

At the experimental time scale of minutes [1,2] the
dynamics is dominated by diffusive (dissipative) processes.
The nature of these processes is not exactly known. One
possible scenario is that quantum phase slips assisted by
thermal processes in the superflow along dislocation cores are
responsible for the dissipation. The dependence of the flow
rate vs bias [1] is consistent with the picture of the phase slips
in Luttinger liquid containing a weak link [10,11]. At the same
time, the origin of a significant temperature dependence [1,2]
observed in the nonlinear regime is not fully understood. In
this situation, a phenomenological approach should be used in
order to describe the loop inflation. Specifically, in the ballistic
dynamical equation (34) the left-hand side can be rewritten in
terms of the velocity amplitude V0 in Eq. (38) as φ0 → mRV0.
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Then the effective friction rate γ (T ,V0)V0, with some friction
coefficient γ depending on V0,T , should be added to the flow
acceleration dV0/dt in Eq. (34). This transforms Eq. (34) into

dV0

dt
+ γV0 ≈ μ̄

mR
(43)

μ̄ ≈ π |μ|
2

+ πm2ρsV
2

0

32R
− πεc

2R
− 3π3/2κR, (44)

where the Bernoulli pressure is now expressed in terms of the
velocity rather than the phase.

The growth rate of the loop area ∼Ṙ2 is determined by V0.
The actual relation (stemming from the continuity equation)
is exactly the same as in Eq. (33) where, however, the phase is
now expressed in terms of the velocity V0:

πdR2

dt
= 2ρsV0, (45)

where it is understood that V = V (α = 2π ) = −V (α = 0) so
the matter is delivered symmetrically from the both ends of
the growing loop of radius R � L0.

Let us now make a choice for γ . According to the
quantum phase slip scenarios [10,11] energy of 1D superflow
is converted into excitations of the Luttinger liquid. Generi-
cally, the quantum effects assisted by thermal excitations are
characterized by power-law dependencies of the phase slip
rate τ−1

ps ∝ T ζ with some ζ > 0 determined by the Luttinger
liquid parameter g. At zero T the flow velocity V controls the
dissipation. Within the weak link situation a phase jump by
∼π occurs at microscopic distances across the link which is
reasonable to take as ∼b. This jump is accompanied by energy
transfer ∼V between the link and the Luttinger liquid. Thus, V0

plays the role of temperature so the dependence on V0 should
be characterized by the same exponent τ−1

ps ∝ |V0|ζ , with the
crossover taking place at some V0 = VT ≈ T b. Thus, as a
single equation the friction rate in Eq. (43) can be represented
as

τ−1
ps ∼ γV0 = γ0Im[bT + iV0]ζ , (46)

with some coefficient γ0. In the weak-link scenario γ0 is
determined by frequent phase slips occurring at the location
of the link. Thus, the associated time constant ∝γ −1

0 can be
much shorter than a typical time scale set by the period of
Debye frequency in solid 4He. This may essentially eliminate
the ballistic stage for practical durations of the experiments.
So the estimate for the loop inflation will be obtained below
under this assumption, that is, that the ballistic stage is too
short to produce any significant syringe effect.

The power ζ can be empirically related to the power p

observed in the flow rate vs bias dependence |V | ∝ |μ|p in
Ref. [1] as γV0 ∼ |μ|p so

ζ = p−1. (47)

According to Ref. [10] ζ−1 = 2/g − 1 and the self-consistent
result [12] gives ζ−1 = 1/(2g − 1). In what follows the power
p will be used as a quantity measured directly in the experiment
in Ref. [1]. This power was found to vary in the range 0.25 <

p < 0.5.
For |V | � VT = T b Eq. (46) implies an ohmic regime,

γV0 = γ0Im[bT + iV0]1/p → p−1γ0(bT )p
−1−1V0. (48)

Equations (46) and (48) will be used below in the analysis
of the loop dynamics in the long-time limit where the inertial
part in Eq. (43) can be omitted. Then far from the equilibrium
at low T the dynamics is dominated by the first term in the
brackets of Eq. (44). Thus,

V0 ≈
( |μ|

mγ0R

)p

(49)

in the nonlinear regime (46), and

V0 ≈ p(bT )1−p−1

mγ0R
|μ| (50)

in the ohmic regime (48).
These expressions must be used in Eq. (45). Accordingly,

in the nonlinear regime the loop radius obeys

dR2

dt
≈ 2ρs

( |μ|
mγ0R

)p

, (51)

which implies R ∝ |μ/γ0|p/(2+p)(tρs)1/(2+p) or, for the syringe
fraction,

�N

N
∝ R ∝

( |μ|
γ0

) p

2+p

(ρst)
1

2+p . (52)

As Eq. (49) indicates, the flow speed actually drops with time
as V ∝ t−1/(2+p). Thus, eventually, the nonlinear regime must
change to the ohmic one characterized by

dR2

dt
≈ 2ρs

pT 1−p−1

mγ0

|μ|
R

, (53)

which gives

�N

N
∝ R ∝ T

1−p−1

3

(
ρs |μ|t

γ0

) 1
3

. (54)

Equations (52) and (54) are obtained under the assumption
that the system is far from the equilibrium. If, however, it
approaches the equilibrium, the last term in the brackets of
Eq. (44) becomes important (with the second and the third
ones still being irrelevant). This term stabilizes the system at
the equilibrium radius Req, Eq. (41). Close to the equilibrium
the dynamics becomes linear in the deviation |Req − R| �
Req. As mentioned above, the time dependence would become
either dissipative at high T or oscillatory as in Eq. (42).

At this point it should be mentioned that the stabilization
of the instability may also happen due to the dynamical rather
than due to static equilibrium. Specifically, if Req exceeds a
system size, the stabilization is to be achieved by the balance
of growing new loops and the loops exiting the sample. This
picture essentially depends on sample geometry and size and
will not be discussed here.

C. The jump in the syringe fraction due to the ballistic inflation

As discussed above, the ballistic stage may lead to a jump of
the accumulated syringe fraction right after the bias is applied
(or removed). Let us estimate this fraction, first, for T = 0. In
the dynamical equation (43) the dissipative part can be ignored
as long as |V̇ | � γ0V

1/p. Using the ballistic solution (39) in

134504-8



GIANT ISOCHORIC COMPRESSIBILITY OF SOLID . . . PHYSICAL REVIEW B 92, 134504 (2015)

this estimate, the limiting time becomes

tbal ∝ τ
1−p

1+2p

b

γ
3p

1+2p

0

∝ ρ
1−p

1+2p

s |μ|− 2(1−p)
1+2p

γ
3p

1+2p

0

, (55)

where the definition (40) of τb is used. A substitution of it into
the ballistic fraction, Eq. (52), gives the jump as

|�N |
N

∝ ρ
1

1+2p

s

γ
2p

1+2p

0 |μ| 1−2p

1+2p

, |μ| > μc. (56)

The value of p was found in Ref. [1] to be below 0.5. Thus, the
ballistic jump is a decreasing function of the bias, provided it
exceeds the threshold for the instability and the jump itself does
not exceed the equilibrium syringe fraction ∝|μ|. [In this case,
the last term in μ̄, Eq. (44), should be taken into account which
will change the ballistic solution (39)]. However, as mentioned
earlier, the friction “amplitude” γ0 in the denominator may
actually suppress the jump below the experimental resolution.

Let us now consider finite T . Comparing the acceleration
rate with the thermal phase slips in Eq. (43) the ballistic
evolution takes place (before it is interrupted by the ohmic
regime) as long as t is shorter than the smallest of either
the ohmic dissipation time γ −1

0 T 1−1/p or the time when the
terminal velocity V = bT is reached. Clearly, at very small T

and p < 1 the latest dominates, which from Eq. (39) follows as
t ≈ tT ∝ τbT

3. Then, at longer times, the evolution becomes
essentially the same as that at T = 0 and leads to the estimates
(55) and (56). However, at the experimental values of T

and large γ −1
0 , the estimate t < tT ≈ τb(γ −1

0 T 1−1/p)3 is more
appropriate for the time limiting the ballistic evolution. Then
a substitution of tT into Eq. (37) gives the jump as

|�N |
N

∝ ρsT
2(1−p−1)

γ0|μ| . (57)

This dependence should be considered in the limit γ0 → ∞,
that is, the maximum typical time for the phase slips ∼γ −1

0 is
below (T/T0)2+1/pτb, where T0 ∼ 1 K is a typical temperature
corresponding to the velocities ∼100 m/s. At this point, it
is worth mentioning that the jumps of the syringe fraction
have been observed in Ref. [2]. To what extent these can be
interpreted in terms of the ballistic stage remains to be seen.

IV. THE BARDEEN-HERRING TYPE INSTABILITY

While a dislocation injected from crystal edge to the bulk
can grow up to Req which is much larger than its initial size (or
even as large as sample size), a finite superclimbing segment
inside a solid, e.g., in the case shown in Fig. 1, can generate
loops only of a size of the order of its initial length. According
to the Bardeen-Herring mechanism [8] originally considered
for gliding dislocations and known as Frank-Reed instability
[7], an initially straight segment bows under the bias, and
eventually the overhangs are created (Fig. 2). These overhangs
merge together so a circular (prismatic) loop of a radius RL,
which is of the order of initial length L0 of the straight segment,
is created. This process is cyclic and is characterized by time
tFR needed for the loop to grow until the overhangs (C,C′ in
Fig. 2) merge together so the loop becomes separated from

the main network. At this point what happens to this loop is
not important—it can, e.g., diffuse away or merge with newly
created loops.

An estimate for this time can be obtained from Eq. (51) in
the nonlinear regime or from Eq. (53) in the ohmic regime,
where the time tFR is found as a function of the loop radius R

reaching the length of the order of the original segment length
L0. It is natural to assume that this time tFR is much shorter
than the experimental time t , so many loops are generated
by one segment before the equilibrium μ̃ = 0 is reached.
Thus, the accumulated fraction (far from the equilibrium)
can be written as �N/N ∝ t/tFR � 1. Thus, the syringe rate
d�N/dt becomes

d�N

dt
∝ 1

tFR
∝ ρs |μ|p

γ
p

0 L
2+p

0

(58)

in the nonlinear regime and

d�N

dt
∝ 1

tFR
∝ ρsT

1−p−1 |μ|
γ0L

3
0

(59)

in the ohmic one. After the bulk accumulated fraction
approaches the equilibrium value (16) the constant rates (58)
and (60) transform into the exponential diffusive slowing
down. In contrast to the boundary instability in this case, the
Bardeen-Herring mechanism is inherently dissipative and no
oscillations are to be anticipated.

For short loops the Bardeen-Herring cycle can occur in the
ballistic regime. In this case the time tFR can be estimated from
Eq. (36) as tFR ∝ L

3/2
0 (ρs |μ|)−1/2. Thus the rate becomes

d�N

dt
∝ 1

tFR
∝ (ρs |μ|)1/2

L
3/2
0

. (60)

V. DISCUSSION

Solid 4He with finite density of superclimbing dislocations in
contact with a superfluid reservoir is found to be, in general,
characterized by bistability with respect to the syringe fraction.
This feature is due to the interplay among three contributions:
(i) the chemical potential energy gain due to a transfer of atoms
between two phases, solid and superfluid; (ii) the energy of
the deformation of dislocations needed to accommodate the
transfer; and (iii) the collective elastic energy. The control
parameter of the system are chemical potential and the density
of the dislocations. At low densities of dislocations the two
fractions differ considerably from each other and, therefore,
the transition between them can be viewed as a strongly first-
order transition with significant hysteresis. There is a similarity
between this and liquid-gas transitions, with the exception of
no critical point in the first case.

It is highly likely that the syringe effect observed in
Refs. [1,2] is essentially in the overcritical regime. In this
regime the equilibrium syringe fraction is given by the liquid
type isochoric compressibility despite that the linearized
response may predict much smaller values.

The are two major scenarios for the instability. First, the
vycor-solid boundary can be a source of the superclimbing
dislocation loops entering the bulk. Its dynamics is charac-
terized by the ballistic and dissipative stages which can be
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ohmic or strongly nonlinear in the flow velocity. Each regime
is characterized by specific powers of the bias and time at the
initial stages of the evolution, Eqs. (37), (52), and (53).

Second, there is also an option for the bulk syringe
effect where the accumulated fraction is distributed evenly
throughout the bulk. In its turn, the bulk scenario can proceed
in two ways: through the Bardeen-Herring generation of the
prismatic loops or through the helical instability of screw
dislocations. The accumulated fraction in the case of the
Bardeen-Herring instability is determined by constant rate
dependencies [(58) and (60)] in the nonlinear and ohmic
regimes, respectively. The nonlinear regime (58) turns out to
be showing the same type of the dependence of the syringe
rate on the bias as the flow rate through the sample observed in
Ref. [1]. In this regard, it is worth mentioning a possibility that
the flow through solid may not actually be taking place through
a static network of dislocations percolating between both vycor
electrodes. Instead, the loops generated during the Bardeen-
Herring cycles may eventually be moving between two vycor
electrodes. These loops are mobile due to the superflow along
their rim and can serve as “vehicles” transporting the mater
across a sample. The center-of-mass speed Vc.m. of such a loop
is locked to the speed of the superflow V along its rim by a
simple geometrical relation Vc.m. ∼ V b/R stemming from the
matter conservation. Experimental studies of the actual bias-
time-temperature dependencies of the syringe fraction and
rates are needed to see if any of the above scenarios take place.

One of the key questions to answer is about the nature of the
T dependence observed in the nonlinear regime of the flow rate
[1]. Similar dependence was also observed in a different setup
[2]. Equations (52), (54), (58), and (60) contain the superfluid
density ρs in the corresponding powers as overall factors.

To what extent the observed temperature dependence can be
attributed to these factors remains to be seen. One possibility
could be that the superfluidity along the cores is strongly
affected by structural excitations of dislocation—kinks [13]
and jogs—so as T increases these excitations suppress the
overall superfluid density ρs in the cores and, thus, reduce the
total flow rate. It should also be mentioned that superclimbing
dislocation does not fit exactly into the paradigm of Luttinger
liquid because its excitation spectrum is not linear in the
momentum [4]. To what extent this feature may modify the
results [(46) and (48)] is an open question, too.

The “smoking gun” evidence for truly superfluid flow
would be the detection of the ballistic jump in the syringe
fraction which is a decreasing function of the bias. Some
jumps have been observed in Ref. [2]. Thus, their detailed
study is of crucial importance.

The main assumption of this work is that density of super-
climbing dislocations is low and a sample size is large enough
so the equilibrium for the generated loops is achieved at typical
sizes smaller than sample size. If this condition is not satisfied,
as could be the case for very small samples [3], a completely
different scenario may take place: The conducting network
may be created by dislocations proliferating directly between
the electrodes. In this case the actual dynamics may be con-
trolled by changing the number of conducting pathways, that
is, balanced by pathway creation and exiting from a sample.
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