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A local interaction between photons can be engineered by coupling a nonlinear system to a transmission line.
The required transmission line can be conveniently formed from a chain of Josephson junctions. The nonlinearity
is generated by side-coupling this chain to a Cooper pair box. We propose to probe the resulting photon-photon
interactions via their effect on the current-voltage characteristic of a voltage-biased Josephson junction connected
to the transmission line. Considering the Cooper pair box to be in the weakly anharmonic regime, we find that the
dc current through the probe junction yields features around the voltages 2eV = n�ωs , where ωs is the plasma
frequency of the superconducting circuit. The features at n � 2 are a direct signature of the photon-photon
interaction in the system.
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I. INTRODUCTION

Creating strong light-matter interaction attracts increasing
attention due to both fundamental reasons [1–4] and its poten-
tial application in quantum communication science [1,5,6]. A
prototypical system for studying that interaction consists of a
quantum system inside a photonic cavity [7]. However, recent
rapid experimental advances in several areas [8–13] have
focused attention on one-dimensional systems in which the
quantum system is embedded in a waveguide or transmission
line. In the absence of coupling, photons propagate freely
down the line. A coupling between the quantum system and
the line generates an effective photon-photon interaction that
causes correlations among the photons. This has led to, for
instance, the prediction of Kondo physics [14], antibunching
resulting from a photon-blockade effect [15,16], inelastic
photon scattering [15,17,18], giant Kerr nonlinearities [19],
and entanglement among photons of different frequencies in
the line [20].

The strength of the coupling between the local quantum
system and the transmission line has been studied theoretically
in detail in the Ohmic spin-boson model, which consists of a
single two-level system (the spin) bilinearly coupled to the
photons in the line (the bosons). It was shown [21,22] that the
coupling parameter is set by the ratio of the line impedance,
Z, to the quantum of resistance, RQ = h/(2e)2 ≈ 6.45 k�.
The impedance of typical transmission lines is of order the
vacuum impedance, Zvac ≈ 377 �, thereby allowing only
weak coupling.

Superconducting circuits are a promising platform for ex-
ploring strong-coupling phenomena, and, indeed, the first ex-
periments observing such phenomena have appeared [23,24].
One benefit of using superconducting circuits is that a chain
of Josephson-coupled superconducting islands acts as a trans-
mission line with a large tunable impedance Z � RQ, which
is only limited by the superconductor/insulator transition [25].
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Recent experiments have studied the microwave properties of
such Josephson junction chains [26–29]. Moreover, supercon-
ducting circuits allow the realization of a variety of quantum
systems that behave like artificial atoms [1,30].

In our work, we take the quantum system coupled to
the transmission line to be a Cooper pair box [31,32].
Then, we propose to detect the photon-photon interaction
generated by that system by measuring the dc current-voltage
characteristic of an additional Josephson junction connected
to the transmission line. According to dynamical Coulomb
blockade theory [also called P (E) theory] [33], Cooper pairs
can tunnel incoherently through that probe junction provided
that they can release their energy 2eV into the environment,
which in our case consists of the transmission line with the
side-coupled circuit. Therefore, the dc current reflects both the
elastic and inelastic scattering properties of photons.

Let us consider the current-voltage characteristic in more
detail: In the harmonic regime, the effective impedance of
the environment is almost flat, except at frequencies near the
plasma frequency ωs of the superconducting side circuit (the
Cooper pair box). This results in a feature at 2eV = �ωs in the
current-voltage characteristic. Anharmonic corrections cause
additional features near the voltages 2eV = n�ωs (n � 2
integer) through inelastic photon scattering. These additional
features are most pronounced in the strong-coupling regime
when Z approaches RQ (Z � RQ).

The paper is organized as follows. In Sec. II, we introduce
the Hamiltonian that describes the circuit studied. The current-
voltage characteristic of the probe junction in the harmonic
regime is calculated in Sec. III. In Sec. IV, we include a weak
anharmonic correction and study the effect of the resulting
photon-photon interaction on the current. Finally, we conclude
in Sec. V.

II. THE CIRCUIT STUDIED

We are interested in the interactions of photons propagating
in a nonlinear electromagnetic environment. In particular, we
study a transmission line, consisting of a chain of Josephson
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FIG. 1. The system consists of a transmission line that is
capacitively coupled (capacitor Cc) to a Josephson junction, shown
inside the dashed box. The transmission line is realized using a chain
of Josephson junctions with Josephson energy EJ much larger than
the charging energy EC . The system is probed at node m using another
Josephson junction (outside the dashed box) whose current-voltage
characteristic is sensitive to the properties of the system.

junctions, to which an additional Josephson junction acting
as the nonlinear element is side-coupled at node n = 0 as
shown in Fig. 1 (dashed box). We assume weak coupling;
namely the coupling capacitance, Cc, is much smaller than
the characteristic capacitances of the chain and the nonlinear
element.

The Hamiltonian of the system is, thus, assembled from
three parts,

H = HT + HJ + Hc, (1)

where HT is the Hamiltonian of the transmission line, HJ is
the Hamiltonian of the side-coupled Josephson junction, and
Hc is the coupling Hamiltonian.

A transmission line with large impedance can be realized
using a chain of Josephson junctions in the limit where the
Josephson energy EJ is much larger than the charging energy
EC [26,27]. The chain is described by the charge and phase
operators at each node n, denoted Qn and φn, respectively.
They are conjugate variables satisfying the commutation re-
lation [Qn,φm] = −2ieδnm. As EJ � EC , phase fluctuations
are small and we may approximate the Josephson coupling
by a quadratic term. We further consider the case where the
capacitance to the ground C0 is much larger than the mutual
capacitance C. Then, for frequencies much smaller than the
plasma frequency of Josephson junctions in the chain, the
Hamiltonian takes the simple form [25]

HT =
∑

n

[
Q2

n

2C0
+ 1

(2e)2

(φn − φn+1)2

2L

]
, (2)

where the inductance is L = 1/(4e2EJ ). Note that we use units
where � = 1. At frequencies ω � ω0, where ω0 ≡ 1/

√
LC0,

the transmission line has a linear spectrum.
The side-coupled Josephson junction with Josephson en-

ergy Es
J is described by the Hamiltonian

HJ = (Qδ + CgVg)2

2C�

− Es
J cos φδ, (3)

where Qδ and φδ are the conjugate charge and phase operators
at node δ (see Fig. 1). Furthermore, Cg and Vg are the gate
capacitance and gate voltage, respectively, and C� = Cs + Cg

is the total capacitance of the side-coupled Josephson junction.
Finally, we turn to the coupling Hamiltonian Hc. When

the coupling capacitance is small, Cc � C0,C� , the coupling
Hamiltonian reads

Hc = Cc

C0C�

Q0(Qδ + CgVg), (4)

where we used the fact that for C � C0 the coupling is local;
i.e., the side-coupled Josephson junction couples only to the
charge Q0 at n = 0. The Hamiltonian H fully describes our
nonlinear system.

As a next step, we introduce the probe circuit used to
characterize the photon-photon interactions generated by the
nonlinear system. The probe circuit consists of yet another
Josephson junction, with Josephson energy E

p
J and in series

with a voltage source as shown in Fig. 1, coupled to the
transmission line at node m [34,35]. The current-voltage
characteristic of the probe Josephson junction is influenced
by the correlations of the phase φm(t) at node m, correlations
that depend on the fluctuations in the nonlinear environment.
The I -V characteristic may, thus, be used to characterize the
photon-photon interactions in the nonlinear system.

In particular, using P (E) theory, it can be shown that at zero
temperature the current flowing through the probe Josephson
junction takes the form [33]

I (V ) = πe
(
E

p
J

)2
P (2eV ), (5)

for voltages eV < 2�, where � is the superconducting gap,
and

P (E) = 1

2π

∫ ∞

−∞
dt eiEt 〈eiφm(t)e−iφm(0)〉Henv (6)

is the probability of the probe Josephson junction to emit en-
ergy E to its environment, described by the Hamiltonian Henv.
Though P (E) theory is usually presented in the context of a lin-
ear environment (Henv is assumed to be quadratic) [33,36–38],
Eqs. (5) and (6) hold more generally for a nonlinear en-
vironment [34]. If the capacitance of the probe Josephson
junction is sufficiently small, Cp � C0, the Hamiltonian of the
environment in Eq. (6) may be replaced by the Hamiltonian
H of the nonlinear system we want to characterize. Our task
is then to compute the phase correlator 〈eiφm(t)e−iφm(0)〉H .

III. THE LINEAR REGIME

As a first step, we will consider the system in the linear
regime, where photons do not interact. That is, we assume
Es

J � e2/(2C�) and approximate the junction Hamiltonian
HJ in Eq. (3) by

H
(0)
J = (Qδ + CgVg)2

2C�

+ Es
J

2
φ2

δ . (7)

In this section, we study the behavior of this simplified system
described by H (0) = HT + H

(0)
J + Hc to set the basis for

investigating interaction effects, the main focus of our work,
in the following section. In this regime, the gate voltage Vg

can be gauged out of the Hamiltonian, and the side-coupled
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circuit behaves as a harmonic oscillator with plasma frequency
ωs ≡ 2e

√
Es

J /C� . We will assume that ωs � ω0.

A. Phase-phase correlator

As the system is noninteracting, the phase-phase correlation
function in Eq. (6) can be simplified by exploiting Wick’s
theorem [33]:

〈eiφm(t)e−iφm(0)〉H (0) = eJ (t), (8)

where

J (t) ≡ 〈[φm(t) − φm(0)]φm(0)〉H (0) . (9)

To evaluate the correlator, we use the retarded Green’s function
G

(0)
R (φn,φm; t) = i	(t)〈[φn(t),φm(0)]〉H (0) , where 	(t) is the

Heaviside step function. The relation between the two is most
easily written in frequency space. At zero temperature, it reads

〈φn(t)φn(0)〉H (0) = 2
∫ ∞

0

dω

2π
e−iωt Im[G(0)

R (φn,φn; ω)]. (10)

The local Green’s function G
(0)
R (φm,φm; ω) needed to

compute J (t) is obtained by deriving its equation of motion and
using scattering theory (see Appendix A). Photons propagate
freely in the transmission line and are scattered by the
side-coupled harmonic oscillator at node n = 0, yielding the
reflection coefficient

r(ω) = −
[

1 − 2i
ω0

ω

(
1 + C0C�

C2
c

ω2 − ωs
2

ω2

)]−1

. (11)

In terms of this reflection coefficient, the Green’s function is

G
(0)
R (φm,φm; ω) = i

π

ω

Z0

RQ

[
1 + r(ω)e2i ω

ω0
m]

, (12)

where Z0 = √
L/C0 is the impedance of the chain. Under the

conditions specified above, C0C�/C2
c � 1 and ωs � ω0, the

reflection coefficient has a narrow resonance at ω = ωs with
width


 = 1

4

C2
c

C0C�

ωs

ω0
ωs. (13)

Close to the resonance, we can approximate Eq. (11) as r(ω) =
−1/[1 − i(ω − ωs)/
].

Substituting Eq. (10) into Eq. (9) and using the Green’s
function (12), one obtains

J (t) = 2

RQ

∫ ∞

0

dω

ω
Re[Z(ω)](e−iωt − 1), (14)

as expected from P (E) theory [33], with the impedance

Z(ω) = Z0

2

[
1 + r(ω)e2i ω

ω0
m]

. (15)

The prefactor 1/2 corresponds to the fact that the probe
junction “sees” an environment consisting of two half-
infinite transmission lines. Far from the resonance at ωs ,
the impedance is unaffected by the side-coupled Josephson
junction as r(ω) → 0. In contrast, at the resonance, photons
are strongly scattered. In particular when the probe and the
scatterer are coupled to the same node (m = 0), r(ωs) = −1
so that transport is completely blocked due to destructive
interference. Changing the distance between the probe and

FIG. 2. (Color online) The linear regime: Current-voltage char-
acteristic of the probe Josephson junction when placed at m = 0.
The parameters are 
/ωs = 0.02, Ecut-off/ωs = 20, and different
Z0 (Z0/RQ = 0.01, 0.1, 0.2). The side-coupled Josephson junction
causes a resonance at 2eV = ωs . In the limit Z0/RQ → 0, the current
vanishes at the resonance.

the scatterer modulates the phase difference between incoming
and reflected photons and, thus, creates an interference pattern.

B. Current-voltage characteristic

To compute the current-voltage characteristic, we need to
determine P (E). This can be done numerically using the
integral equation [33]

EP (E) = 2
∫ E

0
dE′ Re[Z(E − E′)]

RQ

P (E′). (16)

The result can be obtained by starting with an arbitrary
value P (0) and then using the normalization condition∫ Ecut-off

0 P (E)dE = 1, where Ecut-off � ωs .
The current-voltage characteristic is plotted in Fig. 2 for

several values of the impedance of the transmission line. The
characteristic current is given by

I0 = πe(Ep
J )2

ωs

Z0

RQ

. (17)

The background current decreases with increasing voltage. In
addition, there is a clear resonance feature at 2eV = ωs .

This result can be understood as follows. The starting point
is to recognize that when a bias voltage V is applied, Cooper
pairs can flow through the probe junction provided that they
can release their energy by emitting one or several photons
into the environment.

First, let us concentrate on the regime Z0/RQ � 1. In
that case, multiphoton processes are suppressed, and we can
expand eJ (t) � 1 + J (t). Thus, the current is proportional
to the Fourier transform of J (t) at frequency 2eV . It is
straightforward to show that for a constant impedance this
yields a current that decays with increasing voltage as I (V ) ∝
1/V . On top of this, the resonance in the impedance at
ωs due to the side-coupled Josephson junction leads to a
resonance in the current-voltage characteristic at 2eV = ωs .
Namely, the correction to the current δI1(δV ) at voltages
V = ωs/(2e) + δV takes the form

δI1(δV )

I0
= −
2

(2eδV )2 + 
2

(
cos α − 2eδV



sin α

)
, (18)

134503-3



JIN, HOUZET, MEYER, BARANGER, AND HEKKING PHYSICAL REVIEW B 92, 134503 (2015)

FIG. 3. (Color online) The resonance in the current-voltage char-
acteristic for different values of the distance between the side-coupled
Josephson junction and the probe Josephson junction, α = 2mωs/ω0.
Results in the single-photon, linear regime are plotted [Eq. (18)] with

/ωs = 0.02. Note the effect of interference on the shape of the
resonance.

where α = 2mωs/ω0. This leads to a complete extinction of
the current at δV = 0 (at the one-photon level) when the probe
is coupled to the same node as the side-coupled Josephson
junction (m = 0). The shape of the resonance for different α

is shown in Fig. 3; note the sensitivity to the placement of
the probe produced by interference effects. The width of the
resonance is given by W1 = 
/e, where 
 is given in Eq. (13).

Let us now turn to multiphoton processes corresponding
to higher order terms in J (t). These processes modify the
resonance at 2eV = ωs . In particular, while the scattering from
the side-coupled Josephson junction may completely block
the single-photon process at that voltage, this is not the case
for the multiphoton processes: at most one photon can be on
resonance, whereas the other photons will be off resonance and
therefore propagate freely. Thus, the multiphoton processes
lead to a finite current at the resonance. As an n-photon process
yields a current contribution proportional to (Z0/RQ)n, the

resonant structure weakens with increasing Z0/RQ due to the
increasing importance of multiphoton processes.

In addition, one might expect that multiphoton processes
lead to higher order resonances at voltages 2eV = nωs (n �
2). We find, however, that this is not the case. While 2eV =
nωs is indeed a resonance condition for an n-photon process,
the nonresonant background from the entire frequency range
is large enough to completely overwhelm that contribution.

Thus, in the linear regime where photons do not interact, the
side-coupled Josephson junction leads to a single resonance
in the current voltage characteristic at 2eV = ωs . As we will
show below, additional features at 2eV = nωs with n � 2 are
a signature of photon-photon interactions.

IV. THE NONLINEAR REGIME

To investigate photon-photon interactions, we now take
into account the nonlinearity of the side-coupled Josephson
junction. In particular, we concentrate on the case of weak
nonlinearity in the regime Es

J � e2/(2C�). To do so, we
expand Eq. (3) up to fourth order in φδ ,

HJ ≈ H
(0)
J + V, (19)

where

V = −Es
J

24
φ4

δ . (20)

In the following, we treat V as a perturbation.

A. Phase-phase correlator

As the Hamiltonian Hnl
.= H (0) + V describes an interact-

ing system, we can no longer write a closed form expression
for the phase-phase correlator (6) in terms of 〈φn(t)φm(0)〉.
Instead we expand (6) in powers of φm as follows:

〈eiφm(t)e−iφm(0)〉Hnl = 1 + 〈[φm(t) − φm(0)]φm(0)〉Hnl + 1
4

〈[
φ2

m(t) − φ2
m(0)

]
φ2

m(0)
〉
Hnl

− 1
6

{〈[
φ3

m(t) − φ3
m(0)

]
φm(0)

〉
Hnl

+ 〈
[φm(t) − φm(0)]φ3

m(0)
〉
Hnl

} + O
(
φ6

m

)
. (21)

Here the two-point phase-phase correlator represents single-
photon processes, whereas the four-point phase-phase cor-
relators represent two-photon processes. As before, we will
use Green’s functions to evaluate the correlators. In addition
to the two-point Green’s function GR(φm,φm; ω), we now
also need the four-point Green’s functions GR(φ2

m,φ2
m; ω),

GR(φ3
m,φm; ω), and GR(φm,φ3

m; ω). In order to facilitate
doing perturbation theory in the interaction V , we switch to
imaginary-time-ordered or Matsubara Green’s functions, G .

Let us first evaluate the two-point Green’s function
G [φn(τ )φm(0)], corresponding to single-photon processes. As
shown in Appendix B, using the Dyson equation, we can sum
up the perturbation series to all orders in the interactions.
The representation in terms of Feynman diagrams is shown
in Fig. 4. For the corresponding retarded Green’s function

GR(φn,φm; ω), we finally obtain

GR(φn,φm; ω) = G
(0)
R (φn,φm; ω)

+ G
(0)
R (φn,φδ; ω)Es

J

2

〈
φ2

δ

〉
H (0)G

(0)
R (φδ,φm; ω)

1 − Es
J

2

〈
φ2

δ

〉
H (0)G

(0)
R (φδ,φδ; ω)

,

(22)

FIG. 4. (Color online) Dyson equation for the two-point Green’s
function. The nonlinearity results in a self-energy, � = Es

J 〈φ2
δ 〉H (0)/2.

134503-4



DETECTING PHOTON-PHOTON INTERACTIONS IN A . . . PHYSICAL REVIEW B 92, 134503 (2015)

where G
(0)
R is the Green’s function in the absence of interac-

tions.
Using the Green’s functions G

(0)
R and 〈φ2

δ 〉H (0) derived in
Appendix A, we find that the local Green’s function preserves
its form though with a shifted resonance frequency ω′

s . Namely,

GR(φm,φm; ω) = i
π

ω

Z0

RQ

[
1 + r ′(ω)e2i ω

ω0
m]

, (23)

where

r ′(ω) = −
[

1 − 2i
ω0

ω

(
1 + C0C�

C2
c

ω2 − ω′
s

2

ω2

)]−1

(24)

with ω′
s ≈ ωs[1 − ωs/(8Es

J )]. In the same way, we can show
that this is true for all two-point Green’s functions. Note
that δωs = ω2

s /(8Es
J ) � ωs coincides with the shift of the

excitation energy between the ground and first excited states
of the Hamiltonian (19).

Next we turn to the four-point Green’s functions, corre-
sponding to two-photon processes. Using perturbation theory,
we may express them in terms of the two-point Green’s
functions. As we saw above, it is essential to sum up the
perturbation series to all orders in V to obtain these two-point

FIG. 5. (Color online) The Feynman diagrams for the interaction
correction to the four-point Green’s functions. (a) δG int[φ2

n(τ )φ2
m(0)].

(b) G [φ3
n(τ )φm(0)] and G [φ3

n(τ )φm(0)].

Green’s functions. By contrast, we will keep only the lowest
order term in V accounting for interactions between the two
photons. Then, the four-point Green’s function GR(φ2

n,φ
2
m; ω)

has two contributions: the first one describes the independent
propagation of the two photons, whereas the second one de-
scribes the interaction effects. More precisely, the imaginary-
time-ordered four-point Green’s function may be written as
G [φ2

n(τ )φ2
m(0)] = G 2[φn(τ )φm(0)] + δG int[φ2

n(τ )φ2
m(0)] with

δG int
[
φ2

n(τ )φ2
m(0)

]
� Es

J

∫ ∞

0
dτ ′ G 2[φn(τ )φδ(τ ′)]G 2[φδ(τ ′)φm(0)]. (25)

The corresponding Feynman diagram is shown in Fig. 5(a).
The expression for the local retarded Green’s function at zero
temperature reads (see Appendix C)

δGint
R

(
φ2

m,φ2
m; ω

) � Es
J

π2

(∑
±

∫ ∞

0
dω1 Im[GR(φm,φδ; ω1)]GR(φm,φδ; ω ± ω1)

)2

. (26)

The leading order term for the other four-point Green’s functions GR(φ3
n,φm; ω) and GR(φn,φ

3
m; ω) is linear in Es

J . In particular,
we find the local Green’s functions

GR

(
φ3

m,φm; ω
) � Es

J

π2
GR(φδ,φm; ω)

∫ ∞

0
dω1

∫ ∞

0
dω2 Im[GR(φm,φδ; ω1)]Im[GR(φm,φδ; ω2)]

∑
s1,s2=±

GR(φm,φδ; ω + s1ω1 + s2ω2)

(27)

and GR(φm,φ3
m; ω) = GR(φ3

m,φm; ω). The Feynman diagrams
for the corresponding time-ordered Green’s functions are
shown in Fig. 5(b).

With the above results we can now write the phase-phase
correlator needed to compute P (E) in the following form:

〈eiφm(t)eφm(0)〉Hnl � eJ ′(t) + δJ int(t) (28)

with

J ′(t) = 1

π

∫ ∞

0
dω Im[GR(φm,φm; ω)](e−iωt − 1), (29)

δJ int(t) � 1

π

∫ ∞

0
dω

{
1

4
Im

[
δGint

R

(
φ2

m,φ2
m; ω

)]

− 1

3
Im

[
GR

(
φ3

m,φm; ω
)]}

(e−iωt − 1). (30)

B. Current-voltage characteristic

Using Eq. (28) to compute P (E), we obtain the current

I (V ) � e
(
E

p
J

)2
{

1

2

∫ ∞

−∞
dt exp[i2eV t + J ′(t)]

+1

4
Im

[
δGint

R

(
φ2

m,φ2
m; 2eV

)]
− 1

3
Im

[
GR

(
φ3

m,φm; 2eV
)]}

. (31)

The first line describes the resonant structure discussed in
Sec. III. Here the only effect of the nonlinearity is to shift
the resonance from ωs to ω′

s . The second line describes
interaction effects between two photons. The current-voltage
characteristic including these effects is shown in Fig. 6: it
displays additional structure at 2eV = 2ω′

s .
The new peak at 2eV = 2ω′

s comes from the contribution
∼δGint

R (φ2
m,φ2

m; 2eV ). This contribution describes a process
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FIG. 6. (Color online) The nonlinear regime: Current-voltage
characteristic of the probe Josephson junction when placed at m = 0.
The parameters are ω′

s/E
s
J = 0.9, 
/ω′

s = 0.02, Ecut-off/ω
′
s = 20, and

Z0/RQ = 0.2. Photon-photon interactions lead to a second resonant
feature at 2eV = 2ω′

s . A zoom on that feature with amplitude
δI2/I0 ∝ (Z0/RQ)(ω′

s/E
s
J ) is shown in the inset.

in which a Cooper pair tunnels through the probe Josephson
junction emitting two photons. When both photons are on
resonance with the side-coupled Josephson junction, they
interact strongly. This happens when each photon takes away
half of the energy of the Cooper pair, ω = eV � ω′

s . The
resulting correction to the current is obtained using Eq. (26).
As shown in Appendix C, for voltages V = ω′

s/e + δV , it
takes the form

δI2(δV )=−I0
π

32

Z0

RQ

ω′
s

Es
J


2

[(eδV )2 + 
2]2

×
{

eδV cos(2α′)− 1

2
[(eδV )2−
2] sin(2α′)

}
, (32)

where α′ = 2mω′
s/ω0.

The characteristic amplitude A2 of the change in current
is, thus, much smaller than I0 or the single-photon resonant
structure δI1,

A2 = π

64

Z0

RQ

ω′
s

Es
J

I0 � I0. (33)

Here, the suppression factor Z0/RQ is due to the fact that it is
a two-photon process, whereas the suppression factor ω′

s/E
s
J

is due to the fact that it is an interaction effect. Notice that the
widths of the resonances at 2eV = ω′

s and 2eV = 2ω′
s are the

same. The dependence of the shape of the second resonance on
the distance ∝α′ between the side-coupled Josephson junction
and the probe Josephson junction is shown in Fig. 7.

We finally consider the current contribution stemming from
GR(φ3

m,φm; ω). While it is in principle of the same order
as the current contribution from δGint

R (φ2
m,φ2

m; ω), i.e., it is
proportional to (Z0/RQ)(ω′

s/E
s
J )I0, in this case it is impossible

to fulfill the resonance condition simultaneously for all the
photons involved. Therefore, this contribution acquires an
additional suppression factor 
/ω′

s , and we can neglect it.
The main interaction effect is, thus, the appearance of a

resonance at 2eV = 2ω′
s due to two-photon processes. Higher

order processes are expected to lead to additional features
at 2eV = nω′

s (n � 3). However, their amplitude decreases
rapidly with increasing n and may be estimated as An ∼
[(Z0/RQ)(ω′

s/E
s
J )]n−1I0 � A2.

FIG. 7. (Color online) The second resonance in the current-
voltage characteristic for different values of the distance between the
side-coupled Josephson junction and the probe Josephson junction,
α′ = 2mω′

s/ω0. Results are plotted near 2eV = 2ω′
s in the two-

photon, nonlinear regime [Eq. (32)] with 
/ω′
s = 0.02.

Taking typical parameters for realistic systems, we may
estimate the amplitude A2. While the Josephson energy EJ

and the mutual capacitance C of a junction depend mainly on
the junction area and, thus, cannot be varied independently,
the capacitance to ground C0 depends on the geometry and
is therefore tunable. In the regime C0 � C, the requirement
Z � RQ limits the critical current and, by consequence, also
the signal. We estimate that A2 would be on the order of pA,
making the effect accessible experimentally. A larger signal is
expected in the opposite regime C � C0, where one could use
junctions with a much larger critical current. In this regime, the
interaction between the side-coupled Josephson junction and
the chain becomes nonlocal. This would make the theoretical
analysis somewhat more complicated, but we expect that the
results would not change qualitatively.

V. CONCLUSION

We have shown that the dc current-voltage characteristic
of a Josephson junction provides a sensitive probe to study
photon-photon interactions in a nonlinear environment. In
particular, we investigated the case of a transmission line
side-coupled to another Josephson junction whose nonlinearity
leads to local photon-photon interactions. Scattering of indi-
vidual photons by the side-coupled Josephson junction results
in a resonance feature in the current-voltage characteristic
of the probe Josephson junction at 2eV = ω′

s , where ω′
s is

the plasma frequency of the side-coupled Josephson junction.
By contrast, the interactions due to the nonlinearity yield an
additional resonance feature at 2eV = 2ω′

s due to two-photon
processes. Such a feature is thus a clear indication of photon-
photon interactions. While we concentrated here on the regime
of a weak nonlinearity, it will be interesting to see how these
features are modified in the strongly nonlinear regime.
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APPENDIX A: TWO-POINT RETARDED GREEN’S
FUNCTIONS

In this appendix, we derive the two-point retarded Green’s
functions G

(0)
R of the linear system using equations of motion

and scattering theory.
We start with the coupled equations of motion for

G
(0)
R (φn,φm; ω) and G

(0)
R (φδ,φm; ω),

ω2G
(0)
R (φn,φm; ω) − ω2

0

(
1 + C2

c

C0C�

δn0

)[
2G

(0)
R (φn,φm; ω) − G

(0)
R (φn+1,φm; ω) − G

(0)
R (φn−1,φm; ω)

]

− Cc

C0
ω2

s G
(0)
R (φδ,φm; ω)δn0 + (2e)2

C0
δnm = 0, (A1)

(
ω2 − ω2

s

)
G

(0)
R (φδ,φm; ω) − Cc

C�

ω2
0

[
2G

(0)
R (φ0,φm; ω) − G

(0)
R (φ1,φm; ω) − G

(0)
R (φ−1,φm; ω)

] = 0. (A2)

Combining Eqs. (A1) and (A2) then yields the following equation for G
(0)
R (φn,φm; ω),

ω2G
(0)
R (φn,φm; ω) − ω2

0

(
1 + C2

c

C0C�

ω2

ω2 − ω2
s

δn0

)[
2G

(0)
R (φn,φm; ω) − G

(0)
R (φn+1,φm; ω) − G

(0)
R (φn−1,φm; ω)

]= − (2e)2

C0
δnm. (A3)

If there is no side-coupling, Cc = 0, Eq. (A3) describes
photons propagating freely along the infinite transmission line.
At frequencies ω � ω0, the dispersion is linear, ω = ω0k with
wave vector k � 1, and the solution is

G
(0)
R, chain(φn,φm; ω) = i

π

ω

Z0

RQ

eik|n−m|. (A4)

The side-coupling leads to scattering of photons at the node
n = 0. Then, for m > 0, the solution may be written in the form

G
(0)
R (φn,φm; ω) =

⎧⎪⎨
⎪⎩

Aeikn n > m,

B[e−ikn + r(ω)eikn] 0 < n < m,

Bt(ω)e−ikn n < 0,

(A5)

where the reflection and transmission coefficients, r(ω) and
t(ω), as well as the amplitudes A and B have to be determined
using the boundary conditions at n = 0 and n = m. One finds
t(ω) = 1 + r(ω) with r(ω) given by Eq. (11) in the main text.
Furthermore,

B = i
π

ω

Z0

RQ

eikm, (A6)

A = B[e−2ikm + r(ω)]. (A7)

The result is obtained by substituting Eqs. (11), (A6), and (A7)
into Eq. (A5). Generalizing to arbitrary m, we find

G
(0)
R (φn,φm; ω) = i

π

ω

Z0

RQ

[eik|n−m| + r(ω)eik(|n|+|m|)]. (A8)

The local Green’s function needed to evaluate P (E), thus,
reads

G
(0)
R (φm,φm; ω) = i

π

ω

Z0

RQ

[1 + r(ω)e2ik|m|]. (A9)

While this is the only Green’s function needed in the linear
case, more Green’s functions are required in the nonlinear
case. Using Eq. (A2), we obtain

G
(0)
R (φδ,φm; ω) = −2

π

ω

1

RQCcω
r(ω)eik|m|. (A10)

Similarly, the Green’s functions G
(0)
R (φm,φδ; ω) and

G
(0)
R (φδ,φδ; ω) obey coupled equations of motion. One may

show that G(0)
R (φm,φδ; ω) = G

(0)
R (φδ,φm; ω), whereas the equa-

tion for G
(0)
R (φδ,φδ; ω) is

(
ω2 − ω2

s

)
G

(0)
R (φδ,φδ; ω) − Cc

C�

ω2
0

[
2G

(0)
R (φ0,φδ; ω) − G

(0)
R (φ1,φδ; ω) − G

(0)
R (φ−1,φδ; ω)

] = − (2e)2

C�

. (A11)

Using Eq. (A10), one obtains

G
(0)
R (φδ,φδ; ω) = −4i

π

ω

1

RQZ0(Ccω)2
r(ω). (A12)

Using the explicit expression for r(ω), Eq. (A12) may be rewritten as

G
(0)
R (φδ,φδ; ω) = − 2π

RQC�

1

ω2 − ω2
s + i

C2
c

2C0C�

ω2

ω0
(ω − 2iω0)

. (A13)
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Finally, using the fact that C2
c /(C0C�) � 1, we approximate

G
(0)
R (φδ,φδ; ω) � − 2π

RQC�

1

ω2 − (ωs − i
)2
, (A14)

where


 = 1

4

C2
c

C0C�

ωs
2

ω0
.

This result also allows us to evaluate

〈φ2
δ 〉H (0) = 1

π

∫ ∞

0
dω Im

[
G

(0)
R (φδ,φδ; ω)

] = ωs

2Es
J

. (A15)

APPENDIX B: THE DYSON EQUATION

In the following, we present the derivation of Eq. (22).
The time-ordered two-point Green’s function is defined as

G[φn(τ )φm(0)] = 〈Tτφn(τ )φm(0)〉Hnl , (B1)

where Tτ is the time-ordering operator. Equation (B1) can be rewritten as

G[φn(τ )φm(0)] = 〈Tτφn(τ )φm(0)S(∞)〉H (0)

〈S(∞)〉H (0)
, (B2)

where S(∞) = Tτ exp [− ∫ ∞
0 dτ ′ V (τ ′)].

Expanding Eq. (B2) up to first order in the perturbation V = −Es
J φ4

δ /24 and using Wick’s theorem yields

G[φn(τ )φm(0)] � G(0)[φn(τ )φm(0)] +
∫ ∞

0
dτ ′G(0)[φn(τ )φδ(τ ′)]

Es
J

2

〈
φ2

δ

〉
H (0)G(0)[φδ(τ ′)φm(0)]. (B3)

After Fourier transformation and analytical continuation, one obtains the corresponding retarded Green’s function,

GR(φn,φm; ω) � G
(0)
R (φn,φm; ω) + G

(0)
R (φn,φδ; ω)

Es
J

2

〈
φ2

δ

〉
H (0)G

(0)
R (φδ,φm; ω). (B4)

While far from the resonance at ω = ωs the second term is much smaller than the first one, this is no longer true close to
the resonance. Thus, this first-order expansion is not sufficient is to describe the modifications to the resonance due to the
perturbation. It is possible to go beyond the first-order expansion by realizing that Es

J 〈φ2
δ 〉H (0)/2 is a local self-energy, �(φδ,φδ).

Thus, one obtains the Dyson equation

GR(φn,φm; ω) = G
(0)
R (φn,φm; ω) + G

(0)
R (φn,φδ; ω)

Es
J

2

〈
φ2

δ

〉
H (0)GR(φδ,φm; ω), (B5)

A similar equation can be written for the Green’s function GR(φδ,φm; ω). Namely,

GR(φδ,φm; ω) = G
(0)
R (φδ,φm; ω) + G

(0)
R (φδ,φδ; ω)

Es
J

2

〈
φ2

δ

〉
H (0)GR(φδ,φm; ω). (B6)

Combining Eqs. (B5) and (B6), we obtain the result

GR(φn,φm; ω) = G
(0)
R (φn,φm; ω) + G

(0)
R (φn,φδ; ω)Es

J

2

〈
φ2

δ

〉
H (0)G

(0)
R (φδ,φm; ω)

1 − Es
J

2

〈
φ2

δ

〉
H (0)G

(0)
R (φδ,φδ; ω)

. (B7)

Then, using the Green’s functions G
(0)
R of the linear problem derived in Appendix A, we find that the full Green’s

function GR(φn,φm; ω) has the same form as G
(0)
R (φn,φm; ω) though with a shift of the resonance frequency, ωs → ω′

s ≈
ωs(1 − 〈φ2

δ 〉H (0)/4). Similarly, we find that this frequency shift appears in all two-point Green’s functions.

APPENDIX C: THE CONTRIBUTION OF PHOTON-PHOTON INTERACTION

The four-point retarded Green’s function δGint
R (φ2

m,φ2
m; ω), needed to compute the interaction contribution to the current-voltage

characteristic, is obtained from Eq. (25) by taking the Fourier transform and then performing the analytical continuation from
Matsubara to real frequencies, iων → ω + i0+, and using standard methods of contour integration. One obtains Eq. (26) which
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takes the form δGint
R (φ2

m,φ2
m; ω) � (Es

J /π2)f 2(ω), where

f (ω) =
∑
±

∫ ∞

0
dω1 Im[GR(φm,φδ; ω1)]GR(φm,φδ; ω±ω1). (C1)

The integral is dominated by frequencies where both Green’s functions are close to resonance, ω1 ≈ ω ± ω1 ≈ ω′
s . This requires

ω ≈ 2ω′
s . We, thus, approximate ω = 2ω′

s + δω and ω1 = ω′
s + δω1. The Green’s functions close to resonance take the form

G
(0)
R

(
φδ,φm; ω′

s + δω
) � 2

π

ω′
s

1

RQCcω′
s

1

1 − i δω



e
i

ω′
s

ω0
|m|

. (C2)

We then rewrite

f (ω) �
(

2π

RQCc(ω′
s)2

)2

e
i

ω′
s

ω0
|m|

∫ ∞

−∞
dδω1

sin ω′
s |m|
ω0

+ δω1



cos ω′
s |m|
ω0

1 + (
δω1



)2

1

1 − i δω−δω1



. (C3)

It is straightforward to evaluate the convolution integrals to obtain

Re[f (ω)] � π

(
πCc

2RQC0C�

)2
δω cos α′ + 2
 sin α′

(δω)2 + 4
2
, (C4)

Im[f (ω)] � −π

(
πCc

2RQC0C�

)2 2
 cos α′ − δω sin α′

(δω)2 + 4
2
. (C5)

Finally, to compute the current-voltage characteristic, we need

Im
[
δGint

R

(
φ2

m,φ2
m; 2ω′

s + δω
)] � 2Es

J

π2
Re

[
f (2ω′

s + δω)
]
Im

[
f (2ω′

s + δω)
]

� −π2

8

1

Es
J

(
Z0

RQ

)2 4
2

[(δω)2 + 4
2]2

{
2δω
 cos(2α′) − 1

2

(
δω2 − 4
2

)
sin(2α′)

}
. (C6)

[1] R. J. Schoelkopf and S. M. Girvin, Wiring up quantum systems,
Nature (London) 451, 664 (2008).

[2] Serge Haroche, Nobel lecture: Controlling photons in a box and
exploring the quantum to classical boundary, Rev. Mod. Phys.
85, 1083 (2013).

[3] David J. Wineland, Nobel lecture: Superposition, entanglement,
and raising Schrödinger’s cat, Rev. Mod. Phys. 85, 1103 (2013).

[4] I. Carusotto and C. Ciuti, Quantum fluids of light, Rev. Mod.
Phys. 85, 299 (2013).

[5] T. E. Northup and R. Blatt, Quantum information transfer using
photons, Nat. Photonics 8, 356 (2014).

[6] Nicolas Gisin and Rob Thew, Quantum communication, Nat.
Photonics 1, 165 (2007).

[7] S. Haroche and J.-M. Raimond, Exploring the Quantum (Oxford
University Press, Oxford, 2006).

[8] Io-Chun Hoi, C. M. Wilson, Göran Johansson, Joel Lindkvist,
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K. Wilhelm, Measuring Non-Gaussian Fluctuations through
Incoherent Cooper-Pair Current, Phys. Rev. Lett. 93, 247005
(2004).

[35] D. M. Basko and F. W. J. Hekking, Disordered Josephson
junction chains: Anderson localization of normal modes and
impedance fluctuations, Phys. Rev. B 88, 094507 (2013).

[36] S. Jezouin, M. Albert, F. D. Parmentier, A. Anthore, U. Gennser,
A. Cavanna, I. Safi, and F. Pierre, Tomonaga-Luttinger physics
in electronic quantum circuits, Nat. Commun. 4, 1802 (2013).

[37] Philippe Joyez, Self-Consistent Dynamics of a Josephson
Junction in the Presence of an Arbitrary Environment, Phys.
Rev. Lett. 110, 217003 (2013).

[38] J.-R. Souquet, I. Safi, and P. Simon, Dynamical Coulomb
blockade in an interacting one-dimensional system coupled to
an arbitrary environment, Phys. Rev. B 88, 205419 (2013).

134503-10

http://dx.doi.org/10.1103/PhysRevB.89.121108
http://dx.doi.org/10.1103/PhysRevB.89.121108
http://dx.doi.org/10.1103/PhysRevB.89.121108
http://dx.doi.org/10.1103/PhysRevB.89.121108
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1103/PhysRevLett.105.237001
http://dx.doi.org/10.1103/PhysRevLett.105.237001
http://dx.doi.org/10.1103/PhysRevLett.105.237001
http://dx.doi.org/10.1103/PhysRevLett.105.237001
http://dx.doi.org/10.1103/PhysRevB.30.1138
http://dx.doi.org/10.1103/PhysRevB.30.1138
http://dx.doi.org/10.1103/PhysRevB.30.1138
http://dx.doi.org/10.1103/PhysRevB.30.1138
http://dx.doi.org/10.1103/PhysRevLett.109.137002
http://dx.doi.org/10.1103/PhysRevLett.109.137002
http://dx.doi.org/10.1103/PhysRevLett.109.137002
http://dx.doi.org/10.1103/PhysRevLett.109.137002
http://dx.doi.org/10.1103/PhysRevLett.109.137003
http://dx.doi.org/10.1103/PhysRevLett.109.137003
http://dx.doi.org/10.1103/PhysRevLett.109.137003
http://dx.doi.org/10.1103/PhysRevLett.109.137003
http://dx.doi.org/10.1063/1.4832074
http://dx.doi.org/10.1063/1.4832074
http://dx.doi.org/10.1063/1.4832074
http://dx.doi.org/10.1063/1.4832074
http://dx.doi.org/10.1103/PhysRevB.91.014507
http://dx.doi.org/10.1103/PhysRevB.91.014507
http://dx.doi.org/10.1103/PhysRevB.91.014507
http://dx.doi.org/10.1103/PhysRevB.91.014507
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1238/Physica.Topical.076a00165
http://dx.doi.org/10.1238/Physica.Topical.076a00165
http://dx.doi.org/10.1238/Physica.Topical.076a00165
http://dx.doi.org/10.1238/Physica.Topical.076a00165
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1103/PhysRevLett.93.247005
http://dx.doi.org/10.1103/PhysRevLett.93.247005
http://dx.doi.org/10.1103/PhysRevLett.93.247005
http://dx.doi.org/10.1103/PhysRevLett.93.247005
http://dx.doi.org/10.1103/PhysRevB.88.094507
http://dx.doi.org/10.1103/PhysRevB.88.094507
http://dx.doi.org/10.1103/PhysRevB.88.094507
http://dx.doi.org/10.1103/PhysRevB.88.094507
http://dx.doi.org/10.1038/ncomms2810
http://dx.doi.org/10.1038/ncomms2810
http://dx.doi.org/10.1038/ncomms2810
http://dx.doi.org/10.1038/ncomms2810
http://dx.doi.org/10.1103/PhysRevLett.110.217003
http://dx.doi.org/10.1103/PhysRevLett.110.217003
http://dx.doi.org/10.1103/PhysRevLett.110.217003
http://dx.doi.org/10.1103/PhysRevLett.110.217003
http://dx.doi.org/10.1103/PhysRevB.88.205419
http://dx.doi.org/10.1103/PhysRevB.88.205419
http://dx.doi.org/10.1103/PhysRevB.88.205419
http://dx.doi.org/10.1103/PhysRevB.88.205419



