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Thermally activated switching at long time scales in exchange-coupled magnetic grains
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Rate coefficients of the Arrhenius-Néel form are calculated for thermally activated magnetic moment reversal
for dual layer exchange-coupled composite (ECC) media based on the Langer formalism and are applied to study
the sweep rate dependence of MH hysteresis loops as a function of the exchange coupling I between the layers.
The individual grains are modeled as two exchange-coupled Stoner-Wohlfarth particles from which the minimum
energy paths connecting the minimum energy states are calculated using a variant of the string method and the
energy barriers and attempt frequencies calculated as a function of the applied field. The resultant rate equations
describing the evolution of an ensemble of noninteracting ECC grains are then integrated numerically in an applied
field with constant sweep rate R = −dH/dt and the magnetization calculated as a function of the applied field
H . MH hysteresis loops are presented for a range of values I for sweep rates 105 Oe/s � R � 1010 Oe/s and a
figure of merit that quantifies the advantages of ECC media is proposed. MH hysteresis loops are also calculated
based on the stochastic Landau-Lifshitz-Gilbert equations for 108 Oe/s � R � 1010 Oe/s and are shown to be
in good agreement with those obtained from the direct integration of rate equations. The results are also used to
examine the accuracy of certain approximate models that reduce the complexity associated with the Langer-based
formalism and which provide some useful insight into the reversal process and its dependence on the coupling
strength and sweep rate. Of particular interest is the clustering of minimum energy states that are separated by
relatively low-energy barriers into “metastates.” It is shown that while approximating the reversal process in
terms of “metastates” results in little loss of accuracy, it can reduce the run time of a kinetic Monte Carlo (KMC)
simulation of the magnetic decay of an ensemble of dual layer ECC media by 2–3 orders of magnitude. The
essentially exact results presented in this work for two coupled grains are analogous to the Stoner-Wohlfarth
model of a single grain and serve as an important precursor to KMC-based simulation studies on systems of
interacting dual layer ECC media.
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I. INTRODUCTION

After many decades, the Landau-Lifshitz-Gilbert (LLG)
equation continues to provide the foundation for micromag-
netic modeling of the dynamic evolution of granular magnetic
material, with an increasing number of applications devoted to
the study of the effects of thermal fluctuations [1,2]. The LLG
equation is commonly used to study granular recording media,
but it is limited to the study of phenomena over relatively
short time scales (ms). Modern exchange-coupled composite
(ECC) recording media are composed of a high anisotropy
“hard” layer exchange coupled to one or more lower anisotropy
“soft” layers [3–9]. One of the most important applications of
micromagnetic modeling is the characterization of recording
media through MH hysteresis loops. Often, model param-
eters are determined by fitting results to experimental data.
Inconveniently, experimental hysteresis loops typically require
minutes to hours to complete, time scales that are outside the
range of standard LLG simulations. In addition, the thermally
activated decay of recorded bits requires a micromagnetic
model that is valid over much longer time scales (years).
Various scaling arguments, based on the Arrhenius-Néel law,
have been proposed as a means to extrapolate LLG results to
longer times which appear useful for older single layer type
recording media [10]. Thermally activated processes in ECC
media, however, are more complex and the simple scaling
arguments appear to break down in this case [11].

For the purpose of studying long time scale micromag-
netics governed by thermally activated processes, kinetic
Monte Carlo (KMC) methods have proven useful [12–16].
In Ref. [17], a KMC algorithm to study long time scale
thermally activated grain reversal of single layer recording
media was described. The Arrhenius-Néel expression for the
rate coefficients between the minimum energy states of the
individual grains was used to calculate the time between
successive reversals. The minimum energy states and the
energy barriers separating them were calculated using a
modified version of the Wood analytic expression for single
Stoner-Wohlfarth particles [18] (SWPs) which includes the
effective exchange and magnetostatic fields from neighboring
grains. For weakly interacting recording media, the effective
field approximation appears valid. For the attempt frequency,
the temperature- and field-dependent formula of Wang and
Bertram [19], based on a single energy barrier, was used.
This algorithm was subsequently used to study the magnetic
MH hysteresis loops of high anisotropy magnetic recording
media at both short and long time scales over a wide range
of temperatures relevant to heat-assisted magnetic recording
[20]. Good agreement between the KMC results and those
from LLG simulations at relatively short time scales was
demonstrated.

In Ref. [21], this KMC algorithm was applied to study MH

hysteresis loops of dual layer ECC recording media at finite
temperature and long time scales in which the effect of ECC
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interlayer exchange coupling was treated in the same way as
the intralayer exchange coupling by means of an effective
field. ECC media for practical applications have a relatively
strong exchange coupling and it is not evident that treating
the interlayer coupling through an effective field is a good
approximation [8] for this purpose as it ignores the correlated
nature of the rotation of the layers in the reversal process.
In addition, the expression used for the attempt frequency is
based on a single energy barrier, and is unlikely to be valid
for multilayer ECC media at relevant (moderate) coupling
strengths. The absence of simple Arrhenius-Néel–type scaling
between thermal and temporal effects for ECC media supports
these conclusions [11].

In this work, we study the reversal process for two
interacting magnetized grains which treats the correlated
reversal process in a more systematic way. The approach
includes the complete set of minimum energy states for the
ECC grains, while the calculation of the rate coefficients,
based on the Langer formalism [22], takes into account the
complex minimum energy paths (MEPs) connecting them. The
resultant energy barriers and attempt frequencies provide a
comprehensive treatment of reversal process that is applicable
to both weak and strong interlayer couplings.

In order to study statistical effects, we also consider
an ensemble of noninteracting exchange-coupled dual layer
grains. This has the benefit that we can describe the evolution
of the ensemble from some initial distribution of states in terms
of a system of rate equations that can be integrated numerically.
In particular, we present a series of MH hysteresis loops calcu-
lated at constant sweep rate over a range of coupling constants
to examine the effect of the exchange parameter and sweep
rate on the MH hysteresis loops. This work complements
and extends previous studies of dual-grain-reversal energy
landscapes [23] and formulations of the dual-grain attempt
frequency [19,24] and serves as a precursor to our formulation
and application of the combined MEP-KMC algorithm to study
interacting N × N × 2 ECC thin films which includes both
magnetostatic and intralayer exchange interactions [25].

In the following section, we discuss the energy landscapes
for a dual layer grain, which we model as a system consisting
of two coupled SWPs in a magnetic field. We briefly outline
how the rate coefficients may be calculated based on the
Langer formalism for such a system of exchange-coupled
SWPs in the strong and weak coupling regimes. The details
of the Langer formalism are presented in the Appendix. In
Sec. III, we show how the equations may be integrated and
the rate coefficients determined from the MEP calculated
using a variant of the so-called “string method” [26–28], and
a series of MH hysteresis loops are presented for various
sweep rates and couplings. A figure of merit to assist in the
evaluation of the benefits of ECC media is proposed based
on the ratio of the switching field and the energy barriers
and is calculated as a function of the exchange coupling for
several different sweep rates. In Sec. IV, we compare the MH

hysteresis loops obtained from the rate equation approach
with those obtained using stochastic LLG simulation over
a range of sweep rates, where both approaches should be
valid. The good agreement between the results from the two
methods gives confidence that the results obtained from the rate
equation approach, which can be extended to very low sweep

rates, are essentially of the same quality as those obtained
from stochastic LLG, which is restricted to very high sweep
rates.

In addition to the MEP-based calculations of the thermally
activated dual-grain reversal, we also examine the validity of
two important approximation schemes. The first, based on
approximations to the MEP, allows us to obtain analytical
expressions for the energy barrier and attempt frequency in the
strong and weak coupling limits, respectively. A comparison of
results obtained based on this scheme with MEP calculations
is presented in Sec. V and shows good agreement over a
range of couplings and sweep rates. The second approximation
method exploits the fact that in dual layer ECC media, the
rate coefficients calculated from the MEPs separating pairs of
energy minima can differ by orders of magnitude. A direct
consequence of this is that pairs of minima will equilibrate on
time scales that are significantly shorter than the time taken to
complete a single sweep, or portion of a sweep. In such cases,
it is possible to combine the two minimum energy states into
a single “metastate.” In Sec. VI, we show how this approach
can be used to reduce a four-state model to an equivalent
two-metastate representation that gives essentially the same
results. While the difference in computation time required
to solve the rate equations for the four-state model and the
equivalent two-metastate model is negligible, the same is not
true when we use KMC to calculate MH hysteresis loops that
include the interlayer interaction between the layers. In this
case, the large variation in rate coefficients causes the KMC
algorithm to slow to a crawl, giving rise to what we refer to as
“stagnation.” In Sec. VII, we illustrate the effects of stagnation
by applying the KMC method to compute magnetization decay
for an ensemble of noninteracting ECC grains. It is shown
that by combining certain pairs of states into metastates, the
calculation speeds up by a factor of 600 with negligible loss in
accuracy. KMC studies on dual layer ECC grains that include
the magnetostatic and intralayer exchange interactions show
that the clustering of minimum energy states separated by
low-energy barriers into metastates to avoid the effects of
stagnation is critical to the successful application of KMC
to systems of interest in magnetic recording media [25].

II. ENERGY LANDSCAPES AND RATE EQUATIONS
IN ECC MEDIA

ECC media consist of magnetic grains with different
layers of varying anisotropy strength and moderate exchange
interactions between these layers [3–8]. The desired effect is
to be able to use the very strong anisotropy of a hard layer
to enhance the grains thermal stability and hence prevent data
loss due to thermally activated grain reversal. The hard layer
is then exchange coupled to a layer with lower anisotropy,
the soft layer. The soft layer will respond more readily to
a switching field and the exchange-coupling interaction will
make switching the hard layer easier. The result is a thermally
stable grain that can be reoriented by using an applied field at
lower magnitudes than would be required if just the hard layer
were presented.

In this work, we consider an ensemble of two exchange-
coupled grains. In order to focus on the role of the exchange
coupling between the layers and to allow a semianalytical
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treatment of the system, we neglect the lateral exchange inter-
action between the grains and the magnetostatic interaction.

The grains are cubic with a side length a = 6 nm stacked
along the z axis. The dimensions of the grains are such that
each may be treated as a single domain ferromagnet and may
be modeled as two exchange-coupled SWPs which we label
as a and b. The energy of a single grain is therefore written in
terms of the normalized magnetization vectors m̂i = �Mi/Mi :

E = − Kava(m̂a · n̂a)2 − Kbvb(m̂b · n̂b)2 − IA(m̂a · m̂b)

− μ0 �H · (Mavam̂a + Mbvbm̂b), (1)

where �H denotes the applied field and Ki , vi , n̂i , and Mi

denote the anisotropy constant, volume, anisotropy axis, and
the saturation magnetization of the ith grain, respectively. The
grains we consider are comprised of a soft layer with Ma =
4.0 × 105 A/m and Ka = 1.5 × 105 J/m3, and a hard layer
with Mb = 5.4 × 105 A/m and Kb = 3.0 × 105 J/m3. The
layers are coupled through ferromagnetic exchange expressed
in terms of the coupling constant I and interfacial area A = a2.
Assuming that both the anisotropy axis n̂i and the field �H are
aligned perpendicular to the plane, then the SWP energy for a
single grain may be written in spherical coordinates as

E = − Kava sin2 θa − Kbvb sin2 θb

− μ0H (Mava sin θa + Mbvb sin θb)

− IA[sin θa sin θb + cos (φa − φb) cos θa cos θb], (2)

where θa and θb denote the polar angles measured relative
to the xy plane and φa and φb denote the azimuthal angles
associated with the grains a and b, respectively.

To understand how the energy of a grain depends on
the variables {θa,φa,θb,φb}, we note first that it is invariant
under rotation about the z axis and thus depends only on the
three independent variables {θa,θb,φb − φa}. Also, since the
exchange coupling between the layers is positive, the energy
is minimized when φa = φb, we therefore find it useful to plot
the two-dimensional subspace defined by φa = φb, which refer
to as the “minimum energy surface.” We consider four specific
cases in some detail corresponding to I = 2.0 × 10−3 J/m2

and I = 0.5 × 10−3 J/m2 for both H = 0 and μ0H = 4 kOe.

A. Strong exchange coupling

In Fig. 1(a), the contour plot of the minimum energy surface
over the range −π/2 < θa < π/2 and −π/2 < θb < π/2 for
H = 0 and I = 2.0 × 10−3 J/m2 is presented. The energy
landscape shows two minima corresponding to two stable
states with the magnetic spins aligned ferromagnetically along
the z axis. We refer to this as the strong exchange coupling
regime and denote the two minimum energy states {θa,θb} =
{−π/2, − π/2} and {π/2,π/2} as σ1 and σ4, respectively.
We note that in the absence of a field, the energy landscape
is symmetric under spin inversion and hence the minimum
energy states are degenerate E1 = E4.

The contour plot of the minimum energy surface of a grain
is presented in Fig. 1(b) for H = 4 kOe. The minimum energy
landscape again shows two minima located at σ1 and σ4,
however, because of the applied field, the energies are no
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FIG. 1. (Color online) The contour plot of the minimum energy
surface for the strong coupling case I = 2.0 × 10−3 J/m2 for (a)
H = 0 and (b) H = 4 kOe. The black lines indicate the boundary
separating the two basins of attraction �1 and �4 which we denote
by �14. The red lines indicate the MEP connecting the minimum
energy states σ1 and σ4. The lines cross at the saddle point indicated
by s14.

longer degenerate and E4 < E1 so the system now has one
stable minimum at σ4 and a metastable minimum at σ1.

Associated with each of the local minimum energy states
σα is a basin of attraction defined as the region of phase space
comprising the states that evolve asymptotically to the state σα .
We denote the basin of attraction associated with the state σα

as �α . Figures 1(a) and 1(b) show the boundary separating
the two basins of attraction �1 and �4 which we denote
by �14.

The probability distribution of the grains in phase space
is given by the probability density ρ(x,t), where x denotes a
vector that specifies a point in phase space in terms of some
generalized coordinates [e.g., (x1,x2,x3,x4) = (θa,φa,θb,φb)].
The evolution of the probability density is given by the Fokker-
Planck equation (FPE). For the energy and time scales of
interest to us, the system will be in local equilibrium. Local
equilibrium assumes that, except for a narrow crossover region

14 that runs along the boundary �14, the probability density
ρ(x,t) is given by the Boltzmann distribution

ρ(x,t) ≈ cα(t) exp

(
−E(x,t)

kBT

)
for x ∈ �α − 
14, (3)

where (except in the case of thermal equilibrium) c1 �= c2. The
probability pα that a grain in the ensemble is located in �α is
therefore given by

pα(t) = cα(t)
∫

�α

exp

(
−E(x,t)

kBT

)
d� ≡ cα(t)Zα. (4)

In the crossover region 
14, the system is not in equilibrium
and the probability density is given by the more general
form ρ(x,t) = c(x,t) exp[−E(x,t)/kBT ], where the crossover
function c(x,t) is obtained from the FPE and interpolates
between the coefficients c1(t) and c4(t) defined by Eq. (3).
The inhomogeneous nature of c(x,t) in the crossover region
gives rise to a net flux of probability across the boundary that
is driven by the thermal fluctuations. For the energy scales of
interest, this probability flux is concentrated at the point of
minimum energy on the boundary �14. This point, which we
denote by s14, is a saddle point with ∂E/∂xμ = 0 and a Hessian
matrix ||∂2E/∂xμ∂xν || that has two positive eigenvalues, one
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negative eigenvalue, and a zero eigenvalue (the latter arising as
a consequence of the rotational symmetry of the energy about
the axis perpendicular to the plane).

The rate at which the particles in the ensemble make the
transition from σα → σβ may be expressed in terms of the rate
constant as

Iα→β = −rαβ pα(t), (5)

where the rate constants rαβ are of the Arrhenius-Néel form

rαβ = fαβ exp

(
−
Eαβ

kBT

)
, (6)

where the energy barrier 
Eαβ = E(s14) − E(σα) and the
attempt frequency fαβ may be calculated from the crossover
function c(x,t) in the neighborhood of the saddle point sαβ ,
and may be expressed as

fαβ = α0

1 + α2
0

√
g̃(s)

ḡ(α)

γB

m
GU |κ|

√
1

2πkBT

η1η2η3η4

|λ1λ2λ4| , (7)

where α0 is the damping constant, γB is the gyromagnetic
ratio, m = Mava + Mbvb, λi and ηi are the eigenvalues of
the Hessian matrix ||∂2E/∂xμ∂xν || calculated at the saddle
point sαβ and the minimum energy state σα , respectively, κ−1/2

characterizes the width of the crossover region 
αβ in the
vicinity of the saddle point sαβ , and the quantities g̃(s), ḡ(α),
and GU are related to metric associated with the particular
coordinate system (or systems) used in the derivation. The
details of the derivation of Eq. (7) are presented in the
Appendix.

The time dependence of the probabilities pα(t) can be
calculated from the rate equations

dp1

dt
= −r14p1 + r41p4, (8)

dp4

dt
= −r41p4 + r14p1. (9)

B. Weak exchange coupling

Figures 2(a) and 2(b) show the corresponding energy
landscapes for the case I = 0.5 × 10−3 J/m2 for H = 0 and
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FIG. 2. (Color online) The contour plot of the minimum energy
surface for the weak coupling case I = 0.5 × 10−3 J/m2 for (a)
H = 0 and (b) H = 4 kOe. The black lines indicate the boundary
separating each pair of basins of attraction {�α,�β} and is denoted
by �αβ . The red lines indicate the MEP connecting the four minima.
The lines cross at the saddle points sαβ .

H = 4 kOe, respectively. Both cases have four minimum
energy configurations corresponding to the ferromagnetically
aligned states {θa,θb} = {∓π/2, ∓ π/2} and the antiferromg-
netically aligned states {θa,θb} = {±π/2, ∓ π/2}. We denote
the minimum energy states {∓π/2, ∓ π/2} by σ1 and σ4, as
in the strong coupling case discussed above, and the states
{π/2, − π/2} and {−π/2,π/2} as σ2 and σ3, respectively.
We refer to this as the weak exchange coupling regime. As
before, in the absence of an applied field, the system is invariant
under a spin inversion and we have the following degeneracies
E1 = E4 and E2 = E3. Figures 2(a) and 2(b) also show the
basin boundaries �αβ separating the basins of attraction �α and
�β associated with the energy minima σα and σβ , respectively.

For the energy and time scales of interest, the system
will be in local equilibrium and we can therefore define the
probabilities that a grain is located in �α as

pα(t) = cα(t)
∫

�α

exp

(
−E(x,t)

kBT

)
d� ≡ cα(t)Zα(t), (10)

and the probability flux Iα→β between the basins of attraction
{�α,�β} will be concentrated at the saddle point sαβ and may
be expressed in terms of the rate constants rαβ of the forms
given by Eq. (5). The formalism presented in the Appendix
applies equally well to the systems with multiple energy
minima. The rate equations given by Eqs. (8) and (9) for
strong coupling regime may then be written to include the
case of multiple (i.e., more than two) energy minima as

dpα

dt
= −

Ns∑
β=1

(
rαβpα − rβαpβ

)
. (11)

In applying the above formula we note that rαα ≡ 0 and that
the number of minimum energy states Ns will depend on the
strength of the applied field, ranging from 1 to 2 in the strong
coupling regime and from 1 to 4 in the weak coupling regime.

III. MINIMUM ENERGY PATH AND THE EVALUATION
OF M H HYSTERESIS LOOPS

To evaluate the MH hysteresis loop for a layer of noninter-
acting ECC grains using the rate equations given by Eq. (11),
we consider that at some initial time t = ti , the system is fully
saturated p1(t = ti) = 1 in a large positive applied field with
only one minimum energy state σ1. The field is then reduced
at a constant rate dH/dt = −R until the system is again fully
saturated in the opposite direction at time tf , p4(t = tf ) = 1.
Since the rate of change of the applied field is constant, we
have that dpα/dt = −Rdpα/dH and the rate equations may
be written as

dpα(H )

dH
= R−1

Ns∑
β=1

[rαβ(H )pα(H ) − rβα(H )pβ(H )]. (12)

Integrating these equations with the initial condition p1(H =
Hi) = 1 yields the probabilities pα(H ) from which we can
then compute the magnetization as a function of H :

m(H ) =
∑

α

mαpα(H ), (13)

where mα denotes magnetic moment of a grain in state σα .
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FIG. 3. (Color online) A plot of the energy along the length of the parametric MEP (red line) and the initial path used to generate it (black
line) for I = 2.0 × 10−3 J/m2 (a) H = 0 and (b) H = 4 kOe.

Calculating the rate constant rαβ as a function of H requires
that we determine the location of the minimum energy states
and the saddle point located on the boundaries separating
their basins of attraction for each field value. For this simple
example, locating the energy minima is straightforward. How
best to determine the location of the saddle points is less
obvious. One technique is to compute the MEP that connects
the two minima σα ↔ σβ . This may be done numerically by
discretizing an initial guess of the MEP and allowing the
points to relax until the derivatives of the energy perpendicular
to the tangent line at each point of the path are zero. Two
methods that successfully implement this scheme are the

nudged elastic band (NEB) method and the string method
[26–28]. In this work, we have used a variant of the string
method to calculate the MEPs. MEPs for both the strong
coupling (I = 2.0 × 10−3 J/m2) and the weak coupling (I =
0.5 × 10−3 J/m2) regimes are shown in Figs. 1 and 2 for both
H = 0 and H = 4 kOe. It should be noted that not every pair
of energy minima are directly connected by an MEP. For such
cases, rαβ = 0.

Parametric plots of the energy E(θa,θb) along the MEP are
shown in Figs. 3(a) and 3(b) for I = 2.0 × 10−3 J/m2 and
in Figs. 4(a)–4(d) for I = 0.5 × 10−3 J/m2. The figures also
show parametric plots for the energy along the initial path. For
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FIG. 4. (Color online) A plot of the energy along the length of the four parametric MEPs (red and blue lines) and the initial paths used to
generate them (black and green lines) for I = 0.5 × 10−3 J/m2 (a) H = 0 and (b) H = 4 kOe.
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FIG. 5. (Color online) MH hysteresis loops calculated at T = 300 K by direct integration of the rate equations for different sweep rates
R: (a) I = 2.0 × 10−3 J/m2, (b) I = 1.5 × 10−3 J/m2, (c) I = 1.0 × 10−3 J/m2, (d) I = 0.5 × 10−3 J/m2, (e) I = 0.25 × 10−3 J/m2, and (f)
I = 0.1 × 10−3 J/m2.

the strong coupling regime (I = 2.0 × 10−3 J/m2), the initial
path used is given by (θ,θ ), while in the weak coupling regime
(I = 0.5 × 10−3 J/m2), where there are up to four MEPs, the
initial paths used were (θ, − π/2), (π/2,θ ), (−π/2,θ ), and
(θ,π/2) where −π/2 � θ � π/2. The saddle point is located
at the point of the peak energy on the MEP.

The integration of Eq. (12) proceeds as follows: the
minimum energy states for several values of H over the
range −5 kOe � μ0H � 2 kOe and the MEPs joining them
are determined. The saddle points are located at the point
of maximum energy on the MEP. Once the minimum energy
states and the saddle points have been determined, the nonzero
rate constants rαβ(H ) are calculated using the expression
given by Eqs. (6) and (7) at these selected values of H .
The rate coefficients for values of H intermediate between
these discrete values are then determined by interpolation.
The rate equation (12) is then be solved numerically using
Mathematica.

The range of sweep rates chosen corresponds approxi-
mately to time scales involved in experimental MH hystere-
sis loop measurements R ∼ 103 Oe/s to magnetic record-
ing rates R ∼ 1010 Oe/s [20]. Figure 5 shows the calcu-
lated MH hysteresis loops at T = 300 K with α0 = 0.1
for different exchange coupling values I = 2.0, 1.5, 1.0,

0.5, 0.25, and 0.1 × 10−3 J/m2, respectively. MH hysteresis
loops are calculated at all the different sweep rates, but only the
range 105 Oe/s � R � 1010 Oe/s is shown in these figures.

From these results, the expected trend of the coercivity Hc

decreasing at slower sweep rates can be observed. In addition,
there is little difference between the strong coupling cases
of I = 2.0 × 10−3 J/m2 and I = 1.5 × 10−3 J/m2. Moder-
ate couplings I = 1.0 × 10−3 J/m2 and I = 0.5 × 10−3 J/m2

represent a crossover regime between the two grains acting
as a single grain, and the two grains responding quasi-
independently. Here, the hysteresis loops are quite sensitive
to the coupling I . Weak coupling is clear in the case of
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FIG. 6. (Color online) (a) The nucleation field Hn, (b) coercivity
Hc, and (c) saturation field Hs extracted from Fig. 5 as a function of
I at different sweep rates.

I = 0.1 × 10−3 J/m2 at the fast sweep rate, where the plateau
indicates that the soft grain switches first.

From the hysteresis loops, we can extract the nucle-
ation field Hn = H (M/Ms = 0.95), the coercive field Hc =
H (M/Ms = 0.0), and the saturation field Hs = H (M/Ms =
−0.95) [20]. Figure 6 shows these extracted values of Hn, Hc,
and Hs as a function of I for different sweep rates. Although the
nucleation field exhibits monotonic decrease with increasing
I and R, both Hc and Hs show clear minima at weak to

moderate coupling values in the cases of the faster sweep
rates.

IV. COMPARISON WITH LLG

As mentioned above and discussed in more detail in the
Appendix, the calculation of the rate coefficients follows from
the FPE, which can be derived from the stochastic LLG
equation [22,29,30]. In fact, the derivation of the FPE from
the stochastic LLG equation imposes nontrivial requirements
on the integration schemes that can be used to solve the
stochastic LLG equation. It is therefore interesting to compare
the MH hysteresis loops obtained from stochastic LLG and
those obtained in Sec. III. Previous comparisons for interacting
grains where the rate equations have been solved using both
kinetic Monte Carlo (KMC) [17,20] and stochastic LLG have
shown good agreement between the two approaches over a
limited range of sweep rates (108 Oe/s � R � 1010 Oe/s).
The range of sweep rates over which we might expect good
agreement between the two approaches is limited by the fact
that LLG results are only accessible within a reasonable
amount of simulation time for R � 108 Oe/s while for
R > 1010 Oe/s, the Arrhenius-Néel expression for the rate
coefficient, that serves as a basis for the KMC algorithm,
breaks down, as it does not fully capture the spin dynamics of
the reversal process.

MH hysteresis loops obtained from LLG simulations for
a system of 16 × 16 noninteracting, exchange-coupled dual
layer grains using the same parameters detailed in Sec. II
are presented in Figs. 7(a)–7(c) together with loops obtained
by the MEP method. The time step used was 2 ps and the
integration was performed using the Runge-Kutta fourth-order
method based on a quaternion representation of the rotations
with the damping parameter set at α0 = 0.1. The simulations
performed at T = 300 K. The comparison shown in Fig. 7(a)
for I = 2.0 × 10−3 J/m2, Fig. 7(b) for I = 0.5 × 10−3 J/m2,
and Fig. 7(c) for I = 0.1 × 10−3 J/m2 indicates a very
good agreement between the two methods at all sweep
rates.

V. FIGURE OF MERIT FOR ECC MEDIA

The benefit of coupling hard and soft layers can be
quantified in a figure of merit (FOM), which is the ratio of
a measure of the thermal stability and the field required to
switch the grain magnetization [3–8]. This can be defined as
the ratio between the energy barrier EB (thermal stability)
and saturation field (switching energy) at a particular sweep
rate as

FOM = EB

μ0Hs(Mava + Mbvb)
. (14)

For strong coupling, EB is given by the zero field energy
barrier between the minimum energy of state σ1 and the
saddle point along the path to the minimum energy of state
σ4, while for weak coupling, EB is the zero field energy
barrier between the minimum energy of state σ1 and the
saddle point along the path to the minimum energy of state
σ2. A larger FOM is the goal for ECC-type media. The results
shown in Fig. 6(c) indicate that increasing I , for small I ,
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FIG. 7. (Color online) Comparison of MH hysteresis loops from
the MEP method (solid curves) and stochastic LLG (dashed curves)
at different sweep rates for (a) I = 2.0 × 10−3 J/m2, (b) I = 0.5 ×
10−3 J/m2, and (c) I = 0.1 × 10−3 J/m2.

will decrease the saturation field which makes switching the
magnetic moment easier. On the other hand, increasing I

will increase the energy barrier which enhances the thermal
stability (not shown). Figure 8 shows the FOM at three sweep
rates (R = 106, 108, and 1010 Oe/s), and the optimal value
of I can be easily obtained from the graph: Iop(106 Oe/s)
∼ 0.2 × 10−3 J/m2, Iop(108 Oe/s) ∼ 0.35 × 10−3 J/m2, and
Iop(1010 Oe/s) ∼ 0.50 × 10−3 J/m2. These results suggest
that weak to moderate coupling is preferred and that there
is a strong dependence on sweep rate. Large FOM values
at smaller sweep rates may not be realized at larger sweep
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FIG. 8. (Color online) Figure of merit calculated by Eq. (14) for
three sweep rates (106, 108, and 1010 Oe/s).

rates, and optimal coupling strengths estimated on the basis
of experimental MH hysteresis loops obtained at slow sweep
rates may thus not be the optimal value at recording time
scales.

VI. APPROXIMATION SCHEMES

In this section, we describe some approximation schemes
which allow simplification of the rate equations used in Sec. III,
not only making calculations less onerous but also, in certain
cases, allowing for analytical solutions. Comparisons with the
exact rate equations show that for certain regions of parameter
space, these approximation methods are surprisingly accurate
and can provide insight into the complex nature of the reversal
process in ECC media.

A. Direct path approximation

Figures 3 and 4 show that the energy calculated along the
paths used as an initial guess in the determination of the MEP
are in fact very close to those given by the MEP for both
the strong coupling case (I = 2.0 × 10−3 J/m2) and the weak
coupling case (I = 0.5 × 10−3 J/m2). This suggests that, in
the strong coupling case, a reasonably good approximation to
the rate coefficients can be found by replacing the MEP with
the direct path θ1 = θ2 = θ . For this path, the energy can be
written as

E = − (Kava + Kbvb) sin2 θ

− μ0H (Mava + Mbvb) sin θ − IA. (15)

This expression for the energy is of the SW form and hence the
expressions for the attempt frequency and energy barrier can
be found analytically using the expressions in Brown’s classic
paper [2]:

fαβ =
√

KT v

πkBT

(
α0 γ

1 + α2
0

)(
1 − H 2

HK
2

)
(HK ± H ), (16)


Eαβ = −KT v

(
1 ∓ H

HK

)2

, (17)
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FIG. 9. (Color online) (a) shows the MH hysteresis loops at
different sweep rates for I = 2.0 × 10−3 J/m2 and (b) for I =
0.5 × 10−3 J/m2. Solid lines are obtained from the MEP method
and the dashed lines are from the direct path approximation. The
extracted coercivity as a function of the sweep rate for I = 2.0,0.5,
and 0.1 ×10−3 J/m2 is shown in (c).

where HK = 2KT /MT , KT = Ka + Kb, and MT = Ma +
Mb. In Fig. 9(a), we show a comparison of the MH hysteresis
loops calculated using the rate coefficients calculated using the
MEP method and the direct path approximation, with α0 = 0.1
and I = 2.0 × 10−3 J/m2 for several sweep rates.

Similarly in the weak coupling case, we can re-
place the four MEPs that link the minima {σ1 ↔
σ2,σ2 ↔ σ4,σ1 ↔ σ3,σ3 ↔ σ4,} by the paths {θa,θb} ∈ {{θ, −
π/2},{π/2,θ},{−π/2,θ},{θ,π/2}}. It is straightforward to
show that along each of the paths, the energy will be of the
SW form and the rates may be calculated using Eqs. (16)

TABLE I. The energy barriers, attempt frequencies, rate coeffi-
cients, and mean escape times calculated from the MEPs connecting
the minimum energy states for the case I = 0.5 × 10−3 J/m2 and
H = 0 corresponding to the energy landscape shown in Fig. 2(a).


Eαβ/kBT fαβ (GHz) rαβ (MHz) ταβ (μs)

1 → 2 12.4826 20.5832 7.80502 ± 10−2 1.28121 ± 101

2 → 1 3.79107 8.47542 1.91303 ± 102 5.22731 ± 10−3

1 → 3 19.6502 51.7315 1.51275 ± 10−4 6.56705 ± 103

3 → 1 10.9587 21.3012 3.7078 ± 10−1 2.69701
2 → 4 10.9846 8.52533 3.60141 ± 10−1 2.77668
4 → 2 19.6762 51.5684 1.46935 ± 10−4 6.75972 ± 103

3 → 4 3.78935 8.52533 1.92759 ± 102 5.18781 ± 10−3

4 → 3 12.4809 20.7044 7.86445 ± 10−2 1.27153 ± 101

and (17). In Fig. 9(b), we show a comparison of the MH

hysteresis loops calculated by the MEP method and the direct
path approximation with I = 0.5 × 10−3 J/m2, for several
sweep rates. The coercive field is shown as a function of
sweep rate for I = 2.0, 0.5, and 0.1 ×10−3 J/m2 in Fig. 9(c),
using both methods. As can be seen, for both the strong and
the weak coupling cases, the differences between the MH

hysteresis loops calculated from the MEP (exact) formulation
and direct path approximation are generally small and only
weakly dependent on the sweep rate R.

One drawback of this approach is the fact that it is actually
two distinct approximations, one valid for the strong coupling
regime and another valid for the weak coupling regime, and
it does not really provide an obvious way of interpolating
between them.

B. Transient state approximations and metabasins

The second approximation to consider is based on the fact
that, depending on the parameters, there can be significant
differences in the energy barriers and the attempt frequencies
separating the energy minima. By way of an example, the
calculated energy barriers and attempt frequencies between
minima are presented in Table I together with the calculated
rate constants rαβ and the mean escape times ταβ = 1/rαβ for
the case I = 0.5 × 10−3 J/m2 and H = 0, shown in Fig. 2(a).
Because of the factor exp(−
E/kBT ) in the Arrhenius-Néel
expression, the differences in 
Eαβ (which are approximately
4–5) can lead to rate coefficients that differ by several orders
of magnitude. This suggests that some of the states, in this
case specifically states σ2 and σ3, are very short lived and
will not contribute significantly to the magnetization for
processes involving long time scales [i.e., MH hysteresis loops
generated using the vibrating sample magnetometer (VSM)].
However, one has to be careful in removing such transients
as they serve as intermediate states in the process of grain
reversal.

Consider, for example, state σ1 with both grains aligned
along the positive z axis. It can make the transition to states
σ2 or σ3. Comparing the mean escape times associated with
the two transitions it is obvious, since τ1→2 � τ1→3, that the
predominant transition will be to state σ2. From state σ2 the
grain again has two choices. It can make the transition to state
σ4 or back to state σ1. Comparing the mean escape times it
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is clear, since τ2→1 � τ2→4, that the predominant transition
is for the grain to return to its initial state σ1. This implies
that grains in the states σ1 and σ2 will fluctuate back and forth
with a characteristic time scale of the order of 10 μs for some
time before it will transition to 1 → 3 or 2 → 4. The effect of
these fluctuations will be to establish a local thermodynamic
equilibrium between the two states σ1 and σ2 with a time scale
on the order of a fraction of a ms. When local equilibrium
is established, the net average probability flux between the
two states will be zero and hence I1→2 = I2→1. A similar
argument may be applied to the states σ3 and σ4.

The above argument implies that, while p1(t) and p2(t) are
time dependent, they will nevertheless satisfy the constraint

p1(t)

p2(t)
= r21

r12
= exp

(
−
G12

kBT

)
, (18)

where 
G12 = G1 − G2 and Gα is expressed in terms of Zα ,
defined in Eq. (4), as

Gα = −kBT lnZα. (19)

This is consistent with the requirement that states in the
metabasin �A = �1 ∪ �2 satisfy the condition of local
equilibrium c1(t) = c2(t) = cA(t) and hence the probability
density within the metabasin formed by the union �A =
�1 ∪ �2 is given by a Boltzmann distribution ρA(x,t) =
cA(t) exp[−E(x,t)/kBT ]. Again, a similar argument can be
made for grains in the states σ3 and σ4.

The above reasoning implies that for processes with
time scales on the order of ms or greater, we can assume
that p1(t)/p2(t) = r21/r12 and p4(t)/p3(t) = r34/r43. If we
therefore define metabasins as those regions of phase space
�A = �1 ∪ �2 and �B = �3 ∪ �4, then the probability of
finding a grain in one of these metabasins is simply given by
pA(t) = p1(t) + p2(t) and pB(t) = p3(t) + p4(t) which can
be shown to satisfy the following rate equations:

dpA

dt
= −rABpA + rBApB,

(20)
dpB

dt
= −rBApB + rABpA,

where the rate coefficients rAB and rBA are given by

rAB = r13r21 + r12r24

r12 + r21
, rBA = r31r43 + r34r42

r34 + r43
.

Using this concept of metastates, the set of four rate equations
has been reduced to two, where pA(H ) and pB(H ) can be
obtained by numerical integration. The probabilities pα(H )
for α ∈ {1,2,3,4} can be determined from the values of
pA(H ) and pB(H ) together with the ratios r21(H )/r12(H ) and
r43(H )/r34(H ) and hence the magnetization calculated as a
function of H .

Figure 10 shows a comparison of the MH hysteresis
loops for I = 0.5 × 10−3 J/m2 between the original four-state
model (solid curves) and the two-state approximation (open
circles). The two models show very good agreement up to
R � 108 Oe/s above which the assumption of a Boltzmann
probability distribution within the metastates A and B is no
longer accurate.

The above analysis in terms of metastates not only sim-
plifies the system of equations that need to be solved for a
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FIG. 10. (Color online) A comparison of the MH hysteresis
loops for I = 0.5 × 10−3 J/m2 for the four-state model (solid lines)
and the two-state approximation (open circles).

range of R values, but also provides some insight into how to
understand the complex relationship between the sweep rate
R and the response of ECC media. It is also important to
note that while the case in which the system is described in
terms of two metabasins, how the phase space up is divided
into metastates for a given set of parameters is dependent on
the nature of the energy landscape and time scales of interest.
Indeed, it is possible to adjust the number and regions of phase
space occupied by the metabasins as the system evolves. In
contrast to the previous approximation schemes, note that the
two-state model described in this section evolves smoothly
into the coherent rotation of the strong coupling case as the
exchange coupling constant I increases.

VII. METASTATES AND KINETIC MONTE CARLO

When the present model is extended to include mag-
netostatic and intralayer exchange interactions, the direct
integration of the rate equations is no longer feasible. An
alternative approach is the KMC algorithm, which utilizes
a stochastic algorithm to integrate the rate equations, and
which can be adapted to include the interactions between
the grains [25]. However, the presence of low-energy barriers
can significantly increase the simulation time, effectively
rendering the KMC approach no longer feasible at low sweep
rates. This is a long-standing problem with KMC simulations
[31]. One way of dealing with this problem is by combining
clusters of minimum energy states separated by low-energy
barriers into “metabasins” as described in the previous section.

To demonstrate the significance of the role of metabasins in
the application of the KMC algorithm, consider the decay of an
initially fully polarized ensemble of N identical noninteracting
grains (p1 = 1) with zero field and I = 0.5 × 10−3 J/m2.
Using the rate coefficients presented in Table I, the wait times
for each of the N grains is given by

tα→β(n) = r−1
αβ ln(x), (21)

where x is a uniformly distributed random number ∈ {0 < x <

1}, α denotes the state of the nth grain, and β represents the two
possible states it can transition into. The wait times describe
how long we might expect to wait before the nth grain would
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FIG. 11. (Color online) Decay of the normalized magnetization at zero applied field with I = 0.5 × 10−3 J/m2 (a) for the two-state model
(red line) and the four-state model (blue line) from the KMC method together with the numerical integration of the four-state model (black
line) and (b) comparison of KMC results for two-state model averaged over 1000 runs (red line) together with results obtained from numerical
integration of the four-state model (black line).

make the transition α → β. The shortest of these wait times
defines the first reversal time. The KMC step then takes the
transition with the shortest reversal time and switches the grain
from state α to a new state β. This process is then repeated
generating a stochastic sequence that models the process of
thermally activated grain reversal.

Figure 11(a) shows the magnetization m plotted as a
function of t calculated using the KMC method for both
the four-state model and the two-“metastate” representation
for a system of 1000 noninteracting grains, together with
the numerical solution of the rate equations for the four-
state model. The KMC solutions show the effects of the
stochastic fluctuations and both are in reasonable agreement
with the solution obtained by direct integration of the rate
equations. However, for the four-state model, the average
first reversal time was 6.1038 × 10−9 s while for the two-
metastate representation, the average first reversal time was
3.1595 × 10−6 s, a factor of approximately 500 times greater
than the four-state case. This difference arises from the fact
that a vast majority of KMC steps in the four-state model were
simply fluctuations within the metabasins A (σ1 ↔ σ2) and B

(σ3 ↔ σ4). The difference in the average KMC time step is
reflected in the run times: 39 min in the case of the four-state
model and approximately 4 s in the case of the two-metastate
representation. The speedup factor of 600 in completion times
for the four- and two-state representations includes not only
the shorter time steps, but also the computational overhead
associated with the four-state model. To demonstrate the
equivalence of the results obtained from the two-state KMC
calculations and those obtained by the direct integration of the
four-state model, Fig. 11(b) shows good agreement between a
plot of the average m versus t obtained from the two-metastate
representation averaged over 1000 independent KMC runs and
those obtained by direct integration of the four-state model.

These results illustrate that for future applications with
interacting grains, where direct integration of the rate equations
is not feasible and the time scales of stochastic LLG restricts
its application to μs time scales, the KMC approach represents
a viable model of long time processes dominated by thermally
activated reversal. Further, when the system in question, such
as ECC media, has a range of energy barriers, the above

example demonstrates that removing the short time scale
fluctuations associated with transient states by combining them
into a single metabasin can result in significant computational
efficiencies with negligible loss of accuracy. In the case of
interacting systems, the gains in run time are even more sig-
nificant given the increased computational overhead involved
in computing the effective fields due to the interactions and
the more complex energy landscapes that typically include
a greater number of critical points than the simple model
discussed here.

VIII. DISCUSSION AND CONCLUSIONS

A set of rate equations are presented that describe the
evolution of a noninteracting ensemble of dual layer ECC
grains based on processes of thermally activated grain reversal.
The rate coefficients are calculated from the Langer formalism
and have the Arrhenius-Néel form in which the attempt
frequency and energy barriers are expressed in terms of the
energy and its Hessian matrix calculated at the maximum point
on the minimum energy paths that connect the energy minima.
The particular form for the attempt frequency is outlined in
the Appendix and is not restricted to the canonical coordinates
commonly used in the derivation but is valid for any system
(or systems) of generalized coordinates that parametrize the
surface of a sphere. The minimum energy paths are calculated
using the so-called “string method.” The rate equations can
be integrated numerically for the case of a time-dependent
applied field with a constant sweep rate and the magnetization
calculated to produce MH hysteresis loops.

It is shown that the method may be used to study both the
strong coupling regime, in which the energy landscape has two
energy minima, consisting of two ferromagnetically aligned
layers as well as the more complicated weak coupling regime,
which has an energy landscape that can have up to four distinct
energy minima: two ferromagnetic and two antiferromagnetic
states. Calculating the MH hysteresis loops therefore requires
solving two coupled rate equations for the strong coupling
regime and up to four coupled rate equations for the weak
coupling regime. The results show that, for the parameters used
in this work, the transition from the weak to the strong coupling
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regime occurs when I ∼ 1.0 − 1.5 × 10−3 J/m2, which is the
region of interest for ECC-based recording media.

Verification of our model results for MH hysteresis loop
was achieved through comparison with LLG simulations on
a dual layer system, each layer with a 16 × 16 noninteracting
grains. The high degree of agreement confirms the accuracy
of the rate coefficients and the numerical integration of the
rate equations. In addition, using the MH hysteresis loops
calculated from the rate equations, the effect of sweep rate
dependence and exchange coupling on a figure of merit based
on the ratio between the energy barrier and switching field
was calculated. This provides some guidance on the optimal
coupling between the layers.

Results based on a direct path approximation to the
MEP in the strong and weak coupling limits that permit
analytic expressions for both the energy barriers and the
attempt frequencies are presented in Figs. 9(a) and 9(b). The
results show remarkably good agreement with the exact MEP
calculation for both the strong I = 2.0 × 10−3 J/m2 and the
weak I = 0.5 × 10−3 J/m2 coupling regimes.

Another approximation scheme was presented in which
pairs of minima separated by a relatively low-energy barrier
so that they are very rapidly equilibrated and could be
combined into a single metastate in which the ratio pα/pβ

is given by a Boltzmann factor [Eq. (18)]. It was shown that
for the case I = 0.5 × 10−3 J/m2, the MH hysteresis loops
obtained by integrating the four-state rate equations could be
accurately reproduced by integrating the rate equations for a
two-“metastate” representation with rate coefficients between
the metastates given by Eq. (20). The potential importance
of this mapping of the “exact” four-state model to a model
consisting of two metastates was demonstrated in simulation
of magnetic decay using the KMC algorithm, in which the
two-“metastate” model produced results essentially equivalent
to the four-state model, but with a run time that was reduced
by a factor of 600.

The results of this work serve as a prelude to the extension of
our previous KMC approach [17] to study thermally activated
magnetic grain reversal in dual layer ECC media that includes
magnetostatic and intralayer exchange interactions [25]. The
essentially exact treatment of grain reversal for the dual layer
ECC grain problem as outlined in this work serves as the
foundation for this extension, while combining a cluster of
states that are separated by relatively small energy barriers
to form metastates allows us to deal with the phenomena of
“stagnation” that can severely limit the accessible run times
that can be achieved using the KMC approach.

This extension of our previous KMC algorithm will
allow for the direct comparison of experimentally determined
slow-sweep-rate MH hysteresis loops for ECC media with
corresponding modeled results. This capability is useful for the
estimation of model parameters which characterize recording
media such as intralayer and interlayer exchange couplings.
Such a direct comparison is not possible with traditional LLG
simulations where long time scales are inaccessible. This dual
layer KMC algorithm will also be especially useful in applica-
tions to dual layer media for heat-assisted magnetic recording
where thermally activated moment reversal is pronounced [20].
In addition, the investigation of magnetostatic and intralayer
interaction effects on the FOM of Fig. 8 is of particular interest.
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APPENDIX

The attempt frequency given in Eq. (7) is key to the
analysis presented in the previous sections; we therefore
outline the derivation in some detail. The approach starts
with the Fokker-Planck equation (FPE) for a single magnetic
moment in a magnetic field and the generalization to consider
a set of exchanged-coupled moments.

The FPE can be derived from the stochastic LLG equation
[22,29,30]. From the FPE, the rate constants rαβ defined
by Eq. (6) are calculated using the formalism presented by
Langer [22] adapted to account for the dissipative dynamics
of magnetic moment in an applied field [32]. While the
application of the Langer formalism is facilitated by a judicious
choice of coordinates (φ,z = cos θ ), often referred to as the
canonical coordinates, it is nevertheless possible to derive a
straightforward expression for the rate coefficients based on
any set of generalized coordinates (u1,u2) that parametrize the
surface of the sphere S using as basis vectors the covariant
tangent vectors �gi ≡ ∂m̂/∂ui . An advantage of this approach
is that it allows the direct application of the tools of differential
geometry to be applied to the problem. This is of some practical
importance in the case of spin dynamics as it is not possible
to define a single coordinate system on the surface of a sphere
where the metric is everywhere finite. However, the surface of
a sphere can be treated as a differentiable manifold by dividing
it into overlapping regions, each of which has a metric that is
everywhere finite.

Consider a magnetic moment �ma of volume va with
magnetization Ma , anisotropy constant Ka , and a damping
factor α0 in a magnetic field �H . The equation of motion for
the moment is given by

dm̂a

dt
= γμ0

(
m̂a × �H − α0

1 + α2
0

m̂a × (m̂a × �H )

)
, (A1)

where m̂a = �ma/Mava and �H = −μ−1
0 ∂E/∂ �mα . We

parametrize the unit vector m̂a in terms of the generalized
coordinates u = (u1,u2) [e.g., u = (θa,φa)] which cover the
surface of the unit sphere. Since dm̂a/dt will be tangential to
the surface of the sphere Sa , we define the local covariant basis
vectors [33]

�gi = ∂m̂a

∂ui
. (A2)

Any vector tangential to the surface of the sphere can therefore
be written as �v = �giv

i , where the components vi define a
type (1,0) tensor. The basis vectors �gi are, in general, neither
orthogonal nor normalized to unity, but satisfy

�gi · �gj = ḡij , (A3)
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where ḡij is the metric tensor. We also define the reciprocal,
or contravariant, basis vectors �gi such that

�gi · �g j = δ
j

i , (A4)

where δ
j

i is the Kronecker delta function. Any tangential vector
�v may then also be written in contravariant form as

�v = �g ivi . (A5)
The scalar product of any two tangential vectors �u and �v may
then be written as

�u · �v = uiv
i = ḡij uivj = ḡij u

ivj , (A6)
where the components vi define a type (0,1) tensor. The vector
m̂a may also be written in terms of the basis vectors �gi and �g i as

m̂a = �g1 × �g2

|�g1 × �g2| = �g1 × �g2∣∣�g1 × �g2
∣∣ . (A7)

It is straightforward to show that

m̂a × �gi = √
ḡεij �g j , (A8)

m̂a × �g i = εij

√
ḡ

�gj , (A9)

where εij and εij denote the Levi-Civita symbols defined as

ε11 = ε22 = 0, ε12 = −ε21 = 1,
(A10)

ε11 = ε22 = 0, ε12 = −ε21 = 1,

and ḡ = m̂a · (�g1 × �g2), which is simply the volume of the
vectors triad (m̂a,�g1,�g2). It can be shown that εij /

√
ḡ and√

ḡεij define tensors of the form (2,0) and (0,2), respectively,
on the surface S. The LLG equation can then be written in
covariant form as

vi = dui

dt
= −γB

(
εij

√
ḡ

− α0

1 + α2
0

ḡij

)
μ0Hj

= γB

ma

(
εij

√
ḡ

− α0

1 + α2
0

ḡij

)
∂E(u)

∂uj

. (A11)

We note that the form of the above equations is invariant
under a generalized coordinate transformation.

Consider an ensemble of such spins and denote by ρ(u,t)
the probability density, then the probability of a single spin

will be aligned in the solid angle d� at time t is given by
dp(u,t) = ρ(u,t)d�. The probability density ρ(u,t) may be
calculated from the FPE which can be written in terms of the
coordinates ui as

∂ρ(u,t)

∂t
= −∇iJ

i(u,t), (A12)

where the probability current density J i(u,t) consists of an
advective term and a diffusive term

J i(u,t) = ρ(u,t)vi − γ 2
BDa

1 − α2
0

ḡij∇j ρ(u,t), (A13)

where Da = α0kBT /γBma , with ma = Mava , the velocity
field vi is given by Eq. (A11), and ∇i denotes the absolute
derivative, and

∇iρ(u) = ∂ρ(u)

∂ui

, (A14)

∇iv
i(u) = 1√

ḡ

∂
[√

ḡvi(u)
]

∂ui

= ∂vi(u)

∂ui
+ vi(u)�ij

j , (A15)

where �ij
k denotes the Christoffel symbol of the second kind

[33]. Since we are interested in solutions close to equilibrium,
following Langer [22], we write the probability density in
terms of the crossover function c(u,t) as

ρ(u,t) = c(u,t) exp

(
−Ea(u,t)

kBT

)
. (A16)

It can then be shown that J i(u,t) may be written in terms of
the crossover function c(u,t) as

J i(u,t) = kBT
γB

ma

exp

(
−Ea(u,t)

kBT

)(
εij

√
ḡ

− α0

1 − α2
0

ḡij

)
×∇j c(u,t) + divergenceless terms. (A17)

The above formalism can be readily extended to the problem
of two coupled spins. Let w = (w1,w2) denote the generalized
coordinates that specify the orientation of a second magnetic
moment of volume vb, magnetization Mb, anisotropy constant
Kb, and damping constant α0. In the absence of the interaction,
the probability current density on the surface of the sphere Sb

may then be written as

J i(w,t) = kBT
γB

mb

exp

(
−Eb(w,t)

kBT

)(
εij

√
ḡ

− α0

1 + α2
0

ḡij

)
∇j c(w,t) + divergenceless terms. (A18)

In presence of an interaction between the moments, we define the vectors x = (u,w) that span the tangent space of the
four-dimensional manifold S = Sa ⊗ Sb. The metric gμν can be written in matrix form as

||gμν || =
(||ḡij (a)|| 0

0 ||ḡij (b)||
)

, (A19)

where ||ḡij (a)|| and ||ḡij (b)|| denote the matrix forms for the metrics in the manifolds Sa and Sb for the single grains a and b.
The LLG equation for the case of interacting spins may then be written in covariant form as

dxμ

dt
= −γB

m
T μν(x)

∂E(x,t)

∂xν
, (A20)
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where m = ma + mb and the tensor T μν(x) expressed in matrix form as

||T μν || =

⎛
⎜⎜⎝

m

ma

(
α0

1 + α2
0

||ḡij (a)|| − ||εij ||√
g(a)

)
0

0
m

mb

(
α0

1 + α2
0

||ḡij (b)|| − ||εij ||√
g(b)

)
⎞
⎟⎟⎠. (A21)

This yields the following expression for the probability current density in terms of the crossover function c(x,t):

Jμ(x,t) = − kBT
(γB

m

)
exp

(
−E(x,t)

kBT

)
T μν(x)∇νc(x,t) + divergenceless terms. (A22)

This gives

∇μJμ(x,t) = −kBT
γB

m
exp

(
− E

kBT

)(
α0

1 + α2
0

∇μGμν − 1

kBT

∂E

∂xμ

T μν

)
∇νc(x,t), (A23)

where Gμν may be written in matrix form as

||Gμν || =

⎛
⎜⎝

m

ma

||ḡij (a)|| 0

0
m

mb

||ḡij (b)||

⎞
⎟⎠. (A24)

As discussed in Secs. II A and II B, we are interested in stationary solutions that satisfy ∇μJμ(x) = 0 for which the crossover
function is essentially homogeneous except in a narrow region in the neighborhood of the boundaries �αβ where it goes
from cα → cβ on crossing the boundary from �α → �β . These solutions correspond to a state of “local” equilibrium with
thermodynamic equilibrium corresponding to the special case cα = const for all α. In addition, as discussed in Sec. II, for the
energy scales we are interested in, the probability current density is concentrated in a narrow region surrounding the saddle
point sαβ on the boundary �αβ . The crossover function is thus required only in region surrounding sαβ . This allows for two
approximations that simplify Eq. (A22). The first is to assume that the coordinate system is chosen such that the metric gμν does
not have any singularities close to the saddle point and it can be approximated as a constant. The second assumes a quadratic
approximation for the energy

E(x) ≈ E(xs) + 1

2

∑ ∂2E(x)

∂xμ∂xν

∣∣∣∣
x=xs

(x − xs)
μ(x − xs)

ν + . . . . (A25)

Defining the eigenvectors and eigenvalues of the Hessian matrix ∂2E(x)/∂xμ∂xν |x=xs
as

∂2E(x)

∂xμ∂xν
aν

n = λna
μ
n , (A26)

we define the new coordinates yn as

yn = ān
μ(x − xs)

μ, (A27)

with ām
ν aν

n = δmn. The quadratic form of the energy may then be written as

E(x) ≈ E(xs) + 1

2

4∑
n=1

λn(yn)2 + . . . . (A28)

Note that λ1 > λ2 > 0, λ3 = 0 (by symmetry), and λ4 < 0. From Eq. (A24), we then obtain in the static limit [∇μJμ(x) = 0]
the following equation for the crossover function:∑′

m,n

(
α0

1 + α2
0

∂

∂ym
G̃mn − 1

kBT
ymλmT̃ mn

)
∂c(y)

dyn
= 0, (A29)

where G̃mn = am
μ Gμνan

ν , T̃ mn = am
μ T μνan

ν , and
∑′

omits the terms m = 3 and n = 3. As discussed by Langer [22], this equation
may be solved using the method of characteristics, whereby we look for solutions of the form c(y) = c(t) where the variable t

defines a trajectory t = ∑
n�=3 Uny

n, with the direction cosines Un given by the solutions of the eigenvalue equation∑′

n

λmT̃ mnUn = ξUm. (A30)

The solution of interest is given by

dc(t)

dt
= C0 exp

(
−|κ|t2

2

)
(A31)
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with κ = ξ (1 + α2
0)/α0GUkBT , where ξ denotes the negative eigenvalue obtained form Eq. (A30) with GU = GmnUmUn.

Integrating this equation using the boundary conditions limt→−∞ c(t) = pα/Zα and limt→∞ c(t) = pβ/Zβ gives

dc(t)

dt
=
√

|κ|
2π

(
pβ

Zβ

− pα

Zα

)
exp

(
−|κ|t2

2

)
. (A32)

Writing t in terms of the direction cosines Un gives ∂c(y)/∂yn = Undc/dt leading to the following expression for the
probability current density in the region around the critical point:

J̃ m(y) = α0

1 + α2
0

GU

√
|κ|3
2π

(kBT )2

(
pβ

Zβ

− pα

Zα

)
exp

(
− Es

kBT

)
Um

λm

exp

(
−1

2

∑
nk

′
(

λk

kBT
δnk + |κ|UnUk

)
ynyk

)
(A33)

for m �= 3 (J 3 = 0).
To calculate the net probability current Iα↔β flowing between the basins of attraction �α and �β , we simply integrate the T̃ 4

component of probability current density over the hypersurface defined by y4 = 0 to give [34]

Iα↔β =
∫

�αβ

√
g̃s(y)J 4(y)

∣∣∣
y4=0

dy1dy2dy3, (A34)

where g̃s(y) is defined in terms of the metric associated with the subspace formed by the vectors {y1,y2,y3}:

g̃s(y) = det

⎡
⎢⎣

g̃11(y) g̃12(y) g̃13(y)

g̃21(y) g̃22(y) g̃23(y)

g̃31(y) g̃32(y) g̃33(y)

⎤
⎥⎦. (A35)

Because of the exponential factor in the expression for the probability current density [Eq. (A33)], only the region in the
immediate vicinity of y1 = y2 = 0 will contribute to the integral and we can therefore use the quadratic form of the energy
given by Eq. (A25). Also, it is convenient to choose y3 so that it corresponds to the azimuthal angle � = (φa + φb)/2 as
the integration with respect to y3 simply yields a factor of 2π . The net probability current Iα↔β may then be evaluated to
give

Iα↔β =
√

g̃(s)
γB

m
GU

α0

1 + α2
0

|κ|
√

(2πkBT )3

(
pβ

Zβ

− pα

Zα

)√
(2πkBT )3

|λ1λ2λ4| exp

(
− Es

kBT

)
. (A36)

Writing the net probability current as Iα↔β = Iβ→α − Iα→β yields

Iα→β = −
√

g̃(s)
γB

m
GU

α0

1 + α2
0

|κ|
(

pα

Zα

)√
(2πkBT )3

|λ1λ2λ4| exp

(
− Es

kBT

)
, (A37)

and hence the following expression for the rate constants rαβ :

rαβ =
√

g̃(s)
γB

m
GU

α0

1 + α2
0

|κ|
(

exp (−Es/kBT )

Zα

)√
(2πkBT )3

|λ1λ2λ4| . (A38)

In order to compute Zα , again assume that the probability density is strongly localized at σα and, since Zα is a scalar quantity,
transforms from the coordinates xμ to some new coordinates x̄μ so that the metric ḡμν has no zeros or singularities in the region
of interest. Thus,

Zα =
√

ḡ(α)(2πkBT )2 det

[
∂2E(x̄)

∂x̄μ∂x̄ν

]− 1
2

exp

(
− Eα

kBT

)
(A39)

=
√

ḡ(α)(2πkBT )4

η1η2η3η4

∣∣∣∣∣∣
x̄=x̄(α)

exp

(
− Eα

kBT

)
, (A40)

where ηi denotes the eigenvalues of the Hessian matrix ∂2E(x̄)/∂x̄μ∂x̄ν |x̄=x̄(α). Substituting Eq. (A40) into (A38) gives the result
in Eq. (7):

rαβ = α0

1 + α2
0

√
g̃(s)

ḡ(α)

γB

m
GU |κ|

√
1

2πkBT

η1η2η3η4

|λ1λ2λ4| exp

(
− (Es − Eα)

kBT

)
. (A41)
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