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Localized itinerant electrons and unique magnetic properties of SrRu2O6
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SrRu2O6 has unique magnetic properties. It is characterized by a very high Néel temperature, despite its
quasi-two-dimensional structure, and has a magnetic moment more than twice reduced compared to the formal
ionic count. First-principles calculations show that only an ideal Néel ordering in the Ru plane is possible, with
no other metastable magnetic solutions, and, highly unusually, yield dielectric gaps for both antiferromagnetic
and nonmagnetic states. We demonstrate that this strange behavior is the result of the formation of very specific
electronic objects, recently suggested for a geometrically similar Na2IrO3 compound, whereby each electron is
well localized on a particular Ru6 hexagon, and completely delocalized over the corresponding six Ru sites, thus
making the compound both strongly localized and highly itinerant.
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The recently discovered [1] SrRu2O6 has attracted consid-
erable attention because, despite being a very two-dimensional
(2D) material, it shows an exceptionally high Néel temperature
of ∼560 K [2,3]. As we will argue in this paper, this is by far
not the only, and maybe not even the most intriguing, property
of this material. Ru5+ has a half-filled t2g electronic shell, and
exhibits insulating behavior. Naturally, it was interpreted as a
Slater insulator (maybe Mott-enhanced), with Ru in the high
spin state S = 3/2. However, the experimentally measured
ordered magnetic moment is only M = 1.3–1.4μB [2,3], 2.3
times smaller than expected for S = 3/2 (M = 3μB). This was
ascribed to hybridization with oxygen [2–4], but it should be
noted that such strong suppression of magnetic moment in a
good insulator is unheard of. Even in the metallic SrRuO3 the
hybridization suppresses the total magnetic moment of Ru4+

only from 2 to 1.7μB, and in Sr2YRuO6 Ru5+ has essentially
exactly 3μB, with basically the same Ru-O distances as in
SrRu2O6 [5]. Hiley et al. [2] mention the case of Li3RuO4 [6],
where a suppression down to M = 2.0μB was reported for
the same oxidation state, which is, however, still twice smaller
a reduction compared to SrRu2O6, and the material might
actually be a metal (no transport data have been published).

Electronic structure calculations [3,4] so far have not
resolved the mystery, but have only added to the confusion. It
was found that only the ideal Néel state can be stabilized in
the calculations, even though ions with S = 3/2 are usually
very stable, and while they disorder with temperature, never
lose their magnetic moment completely. At the same time the
moment found in the calculations matches the experimentally
measured one within 8%, suggesting that the role of Coulomb
correlations beyond the standard density functional theory
(DFT) is negligible [7]. The instability of the ferromagnetic
(FM) state was traced down to the presence of a dielectric gap
in nonmagnetic calculations [4], but that essentially translates
one mystery into another: why does a highly symmetric
Ru sublattice, with no dimerization or clusterization, with a
half-filled t2g band, show a sizable nonmagnetic gap? Singh
mentions [4] that the gap is allowed by symmetry, since the
unit cell includes two Ru atoms that can, in principle, form

a bonding and an antibonding bands, but does not elaborate
about how a structure with each Ru having three equivalent
bonds manages to develop a bonding-antibonding splitting.

Similarly, it was pointed out that, even though SrRu2O6

is extremely 2D magnetically, there is still some residual
interlayer coupling, J⊥M2 ≈ 1.5 meV, as well as a single-ion
magnetic anisotropy, estimated to be ≈1.4 meV/Ru [4]. It was
suggested that the anisotropy [4] or interlayer coupling [3] are
responsible for the large TN, implying that the (unknown)
mean field transition temperature is extremely high. Tian
et al. [3] attempted to describe this system by a three nearest-
neighbor Heisenberg model with parameters derived within the
perturbation theory in the limit of a Hubbard U much larger
than the hopping, U � t . However, the fact that ferromagnetic
arrangement is completely unstable (in fact, as we show below,
no parallel nearest-neighbor moments are stable), indicates
that the system is strongly non-Heisenberg, casting very strong
doubt on the relevance of such models. Additionally, the
fact that the system is very weakly correlated makes such
a perturbation theory unphysical. Similarly, Hiley et al. [2]
used a hybrid functional that overestimates the equilibrium
magnetic moment and thus the exchange parameters [8], as
well as yields a very large band gap of 2.15 eV, totally
inconsistent with the observed weak temperature dependence
of the resistivity.

An explanation of all these oddities can be consistently
found in the so-called molecular orbitals (MO) picture, which
was first brought up in connection to Na2IrO3 [9] and later
found also in RuCl3 [10]. Basically, this picture is based on
the idea that for ideal 90◦ Ru-O-Ru bond angles (the actual
angles are 101◦) the O-assisted Ru-Ru hopping is only allowed
for one particular pair of the t2g orbitals for each hexagonal
bond, denoted t ′1 in Ref. [9]. If all other hoppings are neglected,
it leads to a curious situation where every electronic state is
fully delocalized over a particular hexagon, but never leaves
this hexagon. One can say that the electrons are fully localized
(form nondispersive levels) and fully delocalized (each state
is an equal weight combination of six orbitals belonging to six
different sites). If a direct overlap of the t2g orbitals (which
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FIG. 1. (Color online) Density of states (DOS) projected on
molecular orbitals of different symmetries in nonmagnetic GGA
calculations (WIEN2k results). The Fermi energy is set to zero.

always exists in the common edge geometry) is included, as
well as deviations of the angle from 90◦, two more hoppings
emerge: one between the same orbitals on the neighboring
sites t1, and the other an O-assisted second neighbor hopping
between unlike orbitals t ′2. As long as t ′1 is dominant, the
MO model still applies, and can be readily solved. The
solution entails six bands, A1g , E2u, E1g , and B1u (the E

bands being double degenerate in each spin channel), whose
dispersion is controlled by t1, and whose centers are located at
2(t ′1 + t ′2), (t ′1 − t ′2),−(t ′1 + t ′2), and −2(t ′1 − t ′2), respectively.
In Na2IrO3 t ′1 ≈ −3t ′2, so that the A1g and E2u practically
merge. This accidental degeneracy also leads to much stronger
spin-orbit effects than would have been possible had the MO
bands remained well separated, and to considerable destruction
of the MO picture in the relativistic case. On the other hand, the
hopping parameters for SrRu2O6, as calculated in Ref. [11],
are similar to those in Na2IrO3, in the sense that again
t ′1 = 300 meV is by far the largest hopping, and the only other
sizable hoppings are t1 = 160 meV and −t ′2 ≈ 100–110 meV.
Note that here |t ′2| is again about 1/3 of t ′1. Thus, the A1g

and E2u bands merge, while E1g and B1u remain separated,
as one can see in Fig. 1. Projecting the density of states onto
MOs, we observe that the predicted characters are very well
reproduced. The distance between the centers of the E2u and
E1g bands is about 0.8 eV, and their width is about 0.6–0.7 eV,
thus providing for a small gap of ≈50 meV.

It is instructive to compare SrRu2O6 with Na2IrO3 and
with Li2RuO3. All these compounds share the same crystallo-
graphic motif, but feature a different number of d electrons: 5,
4, or 3. In the iridate, a single hole in the upper A1g singlet is
prone to both strong correlations and, due to near degeneracy
between A1g and E2u, to spin-orbit interaction. As a result,
as one increases the spin-orbit coupling, the A1g singlet is
gradually transformed into the jeff = 1/2 singlet [9]. Either
way, a half-filled singlet triggers Mott physics even if the
Hubbard U is small. This transformation controls most of
the interesting physics in this compound. Li2RuO3 has two
d holes, providing it with an opportunity to form strongly
bound covalent dimers. This is exactly what happens, and the
MO on the hexagons transforms to an MO on the Ru dimers
resulting in the spin singlet ground state [12]. Neither Mott
nor spin-orbit physics is relevant on the background of the
strong covalent bonding in dimers. Finally, SrRu2O6 has the six
MO bands half-filled, and the gap is formed between the

lower and the upper MO triads. Similar to Li2RuO3, both
Mott and spin-orbit effects are of minor importance, and the
gap structure inherent to the MO picture gives rise to unique
magnetic properties.

Let us now turn to the energetics of the material. First,
we have confirmed, using the WIEN2k package [13,14], the
numbers published by Singh [4] regarding the interplanar
coupling, single-site anisotropy, and Ru magnetic moment.
We also confirmed that the ferromagnetic structure cannot
be stabilized. Moreover, the so-called stripy and zigzag
magnetic patterns [9], where one or two out of three bonds
are ferromagnetic, and the net moment is zero, cannot be
stabilized. This indicates that besides the obvious influence
of the nonmagnetic gap there are other factors strongly
disfavoring ferromagnetic bonds. In fact, given that the gap
value is ten times smaller than Ru Stoner factor [5], and the
calculated magnetic moment in the Néel state is ∼1.3 μB , it is
surprising that the ferromagnetic bonds do not stabilize with a
finite moment.

In order to gain more insight into the problem, we turned to
the VASP code [14,15], which is faster and has the capability
to restrict magnetic moments to a certain direction, or to
both a direction and a magnitude (we confirmed that the
energies of collinear magnetic states agree with those found
in WIEN2k). First, we computed the total energy for a canted
antiferromagnet (AFM), restricting the angle with the z axis
to be ±φ for the two Ru’s in the cell. The results are shown
in Fig. 2. Note that for the largest canting angle we were able
to converge, 35◦, the energy of the magnetic state is already
higher than that of the nonmagnetic one. Also note how soft
the magnetic moments are: despite the sizable equilibrium
moment, the energy cost of total suppression of magnetism
is less than 80 meV, only 50% larger than the transition
temperature. This is, again, an indication of the great role of
itinerancy, and specifically, delocalization over Ru6 hexagons.

Interestingly, suppression of magnetism with canting can-
not be described by a naive combination of a local Hamiltonian
for itinerant magnets [16], E = ∑

i�0 aiM
2i , where M is

the magnetization, with a Heisenberg term. While the total
energies at a fixed canting angle φ � 35◦ can be very
well described by this Hamiltonian with just three terms,
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FIG. 2. Magnetic energy (squares) and magnetic moments (cir-
cles) as a function of the canting angle of spins, starting from the Néel
antiferromagnetic structure. Results are from VASP calculations.
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E(M) − E(0) = a1M
2 + a2M

4 + a3M
6, not only does the

first coefficient show appreciable angular dependence (as in
the Heisenberg model), but also the second, and, to a lesser
degree, the third. Instead, a good fit could be obtained with the
following formula:

E = −81.3M2 + 16.9M4 + 2.0M6 + 359.2M2 sin2(φ)

− 165.8M4 sin2(φ) + 27.6M6 sin2(φ), (1)

in meV/Ru. Note that the angle between the moments is θ =
π − 2φ, and that there are 1.5 times more bonds than sites.
Thus, the proposed Hamiltonian looks as follows:

H =
∑

sites

{98.3M2 − 66.0M4 + 15.8M6}

+
∑

n.n.
bonds

{179.6(M · M′) − 82.9|M||M′|(M · M′)

+ 13.8|M|2|M′|2(M · M′)}. (2)

The Heisenberg term is extremely strong [JM2 =
∂H/∂ cos (θ ) ≈ 1600 K], and, without it, local magnetic
moments fail to form.

To this Hamiltonian one needs to add a small interlayer term∑
J⊥Mi ·Mi ′ , where i and i ′ belong to the neighboring planes,

and the magnetic anisotropy
∑

DM2
z , where J⊥ ≈ 0.9 meV,

and D ≈ 0.8 meV.
In principle, at this point one would need to perform a Monte

Carlo simulation using this Hamiltonian and determine the
transition temperature. However, it is notoriously difficult to
distinguish a Kosterlitz-Thouless phase in a quasi-2D system
from the true long range order, so that one should be very skep-
tical of any Monte Carlo simulation that claims to establish a
Néel temperature TN without first showing that in the isotropic
2D limit TN truly vanishes. The softness of the moment,
expressed via Eq. (2), additionally complicates the simulation.
We leave this daunting task to more experienced Monte
Carlo simulators, but mention that the numbers that we have
deduced are in the right ballpark. For instance, Costa and Pires
showed [17] that for the square lattice TN/TMF ≈ 0.8(D/J )0.2.

For three neighbors, the mean field transition temperature
TMF ≈ JM2 ≈ 1600 K, which together with DM2 ≈ 1.4 meV
results in TN ∼ 500 K. On the other hand, for the cubic
quasi-2D model with J⊥ �= 0, D = 0, Yasuda et al. [18]
found that TN ≈ 4.27JM2/[3.12 + log(J/J⊥)], which for our
parameters translates into 900 K. Thus, we conclude that (a) the
Mermin-Wagner theorem is mainly lifted via the interplanar
coupling [3], and not via the single site anisotropy [4], and
(b) the softness of the magnetic moment, i.e., longitudinal
fluctuations, plays an important role, suppressing TN by up to
a factor of 2.

Let us now discuss how and why MOs support a Néel
antiferromagnetism in SrRu2O6. In the nonmagnetic state,
the three lower MO bands, B1u and E1g, are fully occupied.
Imposing uniform spin polarization does not change the occu-
pancy of these states, unless the induced exchange splitting
is larger than the gap, and this is why the ferromagnetic
order is unstable. On the contrary, imposing the staggered
magnetic field of ±� does not break the MO band structure,
but rather increases the gap between E1g and E2u (in the lowest
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FIG. 3. (Color online) Total density of states (DOS) calculated
for several values of Ru moments M in the fixed-spin-moment
procedure for the Néel AFM. The black lines illustrate the fact that
the band gap is approximately quadratic in M . Results of the VASP
calculations.

order in �, by �2/t ′1). In the same order we can calculate
the change of the occupancies and find that the spin-up sites
acquire magnetization of 5�/2t ′1 μB , and the spin-down sites
−5�/2t ′1 μB. The signs are consistent with the assumed
signs of �, which tells us that with sufficiently large Hund’s
rule coupling the system will become unstable against such
a staggered magnetization (but will resist any ferromagnetic
component); of course, quantitative analysis is impossible on
this level of simplification. Obviously, the equilibrium moment
can be anything between 0 and 3μB. It is not “suppressed” from
the putative S = 3/2 state, but is set by the interplay between
the Hund’s rule coupling on Ru and the details of the density of
states of MOs. A corollary from the above arguments is that the
dielectric gap depends quadratically on the Ru moment; Fig. 3
illustrates that this is indeed the case, to a reasonable accuracy.

Let us emphasize that the molecular orbitals are not
just another way to describe the electronic structure of
SrRu2O6, but have profound physical meaning. It is instructive
to compare it with another recently investigated high-TN

material, SrTcO3, where the transition metal also has a 4d3

configuration and S = 3/2. It was argued [19] that TN is so
high because SrTcO3 is in an intermediate regime between
itinerancy and localization, which is optimal for magnetic
interactions. Indeed, LDA + DMFT calculations, well suited
to this regime, have been performed by Mravlje et al. [19],
who found TN ≈ 2200 K. The experimental number is about
1100 K. To compare this result with SrRu2O6, we have also
performed LDA + DMFT calculations with the AMULET
code [20], using an effective Hamiltonian constructed for
Ru t2g orbitals and interaction parameters U = 2.7 and J =
0.3 eV as calculated in Ref. [3] (parameters for T c are very
similar). The corresponding temperature dependence of the
magnetic moment is shown in Fig. 4. Not surprisingly, we
found about the same Néel temperature (2000 K) as Mravlje
et al. [19], and an even larger magnetic moment (M ≈ 2.7
vs 2.5μB). The difference, however, is that experimentally
in SrRu2O6 both TN and M are about twice smaller than in
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FIG. 4. Magnetic moment as calculated in the LDA + DMFT
approach. The continues-time quantum Monte Carlo (CT-QMC)
solver [22] was used in these calculations.

SrTcO3. Mravlje et al. ascribed their overestimation of TN

to nonlocal fluctuations, missing in the DMFT, but observed
no reduction in the ordered moment at all, while in our
case the reduction in both TN and M2 is of the same order,
about a factor of 4. This clearly indicates that there is a
fundamental difference between the two compounds, going
much beyond just the difference in dimensionality, which is
related to the presence of MOs in one and their absence in the
other compound. A proper account of the molecular orbitals
within DMFT can only be done in the cluster extension of this
method [21], which could shed more light on this compound.

Another interesting question that arises in connection with
this material is what would happen if it were doped with, for
instance, a rare earth element. To address this scenario, we
simulated doping by adding electrons to the system (with a
compensating constant background). The energy difference
between the FM and Néel AFM states decreases upon electron
doping, as seen from Fig. 5. The FM configuration immediately
becomes metastable, whereby all doped electrons go into
one spin subband, rendering the material is half-metallic.
The ground state remains antiferromagnetic, but its energy
advantage is gradually decreasing. Thus, one expects that the
critical angle φ (which was ∼35◦ in undoped case) will grow
with doping, and the Hamiltonian (2) will be correspondingly
modified; this may result in a rapid change of magnetic
properties with doping, which deserves further theoretical and
experimental investigation.

To summarize, we have found that:
(i) The electronic structure of SrRu2O6 is dominated by

molecular orbitals. Each electron is, to a good approximation,
localized on a particular Ru6 hexagon, and completely delo-
calized over the corresponding six Ru sites.

(ii) This structure sports an excitation gap that prevents for-
mation of ferromagnetic bonds, but is consistent with nearest-
neighbor antiferromagnetism. The corresponding magnetic
interactions cannot be mapped onto a localized spin model,
be it Heisenberg or biquadratic Hamiltonian with arbitrary
long range. Neither can it be described as purely itinerant
magnetism, but features interesting elements of both. This
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FIG. 5. (Color online) Electron doping dependence of magnetic
moments (per Ru and total) and total energy difference between FM
and Néel AFM states on the electron doping.

duality reflects the dual character of the electronic structure,
where electrons are simultaneously completely delocalized
and strongly localized on the Ru hexagons. A corollary is
that any deviation from the collinear Néel order is severely
punished by kinetic energy, which, in turn, provides for the
anomalously large transition temperature.

(iii) The gaps in the nonmagnetic and antiferromagnetic
states have the same nature, and one is continuously trans-
formed into the other as the magnetization increases. On
the contrary, the ionic picture assigning the moment of
3μB to each Ru and associating the gap in magnetic states
with spin-up/spin-down splitting is qualitatively incorrect.
The observed and calculated magnetic moment of 1.3μB is
a manifestation of the molecular orbital nature of electronic
states, and should not be viewed as a spin S = 3/2 reduced by
hybridization.

(iv) The magnetic properties of doped SrRu2O6 (e.g., by Na
or La) are expected to be very different from the stoichiometric
case. One may anticipate interesting and very different physics
emerging, which can be a subject of forthcoming research.
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