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Inspired by the recent theoretical suggestion that the random-bond S = 1/2 antiferromagnetic Heisenberg
model on the triangular and the kagome lattices might exhibit a randomness-induced quantum spin liquid
(QSL) behavior when the strength of the randomness exceeds a critical value, and that this “random-
singlet state” might be relevant to the QSL behaviors experimentally observed in triangular organic salts
κ-(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2 and in kagome herbertsmithite ZnCu3(OH)6Cl2, we further
investigate the nature of the static and the dynamical spin correlations of these models. We compute the static
and the dynamical spin structure factors, S(q) and S(q,ω), by means of an exact diagonalization method. In both
triangular and kagome models, the computed S(q,ω) in the random-singlet state depends on the wave vector q
only weakly, robustly exhibiting gapless behaviors accompanied by the broad distribution extending to higher
energy ω. Especially in the strongly random kagome model, S(q,ω) hardly depends on q, and exhibits an almost
flat distribution for a wide range of ω, together with a ω = 0 peak. These features agree semiquantitatively with the
recent neutron-scattering data on a single-crystal herbertsmithite. Furthermore, the computed magnetization curve
agrees almost quantitatively with the experimental one recently measured on a single-crystal herbertsmithite.
These results suggest that the QSL state observed in herbertsmithite might indeed be the randomness-induced
QSL state, i.e., the random-singlet state.
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I. INTRODUCTION

Geometrically frustrated magnets have attracted a long-
standing and ongoing attention in the field of condensed
matter physics because they often give rise to a variety of
nontrivial thermodynamic states. In particular, the quantum
spin liquid (QSL) state having no magnetic long-range order
(LRO) has been extensively investigated both theoretically
and experimentally. Anderson proposed the resonating valence
bond (RVB) state as a possible ground state of the S =
1/2 Heisenberg antiferromagnet on the triangular lattice [1].
According to many subsequent theoretical studies, however,
it is now widely believed that the ground state of a simple
S = 1/2 antiferromagnetic (AF) Heisenberg model on the
triangular lattice with the nearest-neighbor bilinear interaction
exhibits a Néel LRO with the three-sublattice 120◦ structure
[2–4].

By contrast, the ground state of the S = 1/2 Heisenberg
model on the kagome lattice, which has stronger frustration
than the triangular lattice, is quite likely to be nonmagnetic.
Namely, the absence of the magnetic LRO in the S = 1/2
kagome AF Heisenberg model has now been established
from various numerical studies [5–21], although the precise
nature of its ground state still remains controversial. Various
candidates, including the gapped Z2 spin-liquid [17,18,22,23],
the gapless U(1) spin liquid [15,24–27], the chiral spin liquid
[28], and the valence bond crystal [11,29,30], etc., have been
proposed.

Along with these theoretical studies, experimental quest for
the QSL has also been persued. As a result, several promising
candidate materials were recently reported. In the triangu-
lar system, certain organic salts such as κ-(ET)2Cu2(CN)3
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[31–43] and EtMe3Sb[Pd(dmit)2]2 [44–49] were reported to
exhibit a QSL-like behavior, i.e., exhibit no magnetic LRO
down to a very low temperature. These organic materials show
gapless (or nearly gapless) behaviors at low temperatures. For
example, the specific heat [35,47] and the thermal conductivity
[36,46] exhibit a behavior linear in the absolute temperature T .
Obviously, in understanding the QSL-like properties of these
triangular organic salts, some extension beyond the simplest
nearest-neighbor Heisenberg model is needed [50–57].

In the kagome system, herbertsmithite ZnCu3(OH)6Cl2
was reported to be a candidate of QSL, again showing
gapless behaviors in various physical quantities [58–65]. The
true nature of these gapless QSL candidates experimentally
observed both in the triangular and kagome lattice AFs
has still remained obscure in spite of much theoretical and
experimental efforts devoted to the issue.

For years, major part of theories have tried to elucidate
the experimentally observed QSL behaviors as properties of
a clean and regular system. By contrast, it was proposed
recently in Refs. [66,67] that the quenched bond-randomness,
together with the geometrical frustration effect, might be
essential in stabilizing the experimentally observed gapless
QSL state both in the triangular organic salts and in the kagome
herbersmithite. Such a randomness-induced QSL state is called
the “random-singlet state” [68–71] or the “valence bond glass
state” [72,73], where the spin singlet is formed in a spatially
random manner. The possible importance of the quenched site
randomness in kagome herbertsmithite was also pointed out
in Ref. [73].

The origin or even the existence of the quenched random-
ness in triangular organic salts and kagome herbertsmithite
is a nontrivial matter, especially in view of the fact that the
theory requires a considerable amount of randomness, not an
infinitesimal one, to realize the QSL-like behavior [66,67].
In the case of the triangular organic salts, it was suggested
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that the randomness for the spin degrees of freedom was
self-generated at low temperatures via the random freezing
of the electric-polarization degrees of freedom inherent to
these organic salts consisting of molecular dimers [66]. In
fact, the measured ac dielectric constant of these organic salts
exhibited a glassy response even on a macroscopic time scale
of kilohertz in the temperature region where the QSL behavior
was observed in the spin degree of freedom [38].

In the case of kagome herbertsmithite, the quenched ran-
domness comes from the random substitution of nonmagnetic
Zn2+ by magnetic Cu2+, located on the triangular layer
adjacent to the kagome layer [63,67]. Note that the kagome
layers in herbertsmithite are separated by [Zn(OH)6]4− octa-
hedral units whose Zn2+ constitutes the triangular layer. It
was reported that about 15% of Zn2+ on the triangular layer
was randomly substituted by Cu2+, keeping the kagome layer
intact [63]. Since Cu2+ is a Jahn-Teller ion, such a random sub-
stitution would lead to a random Jahn-Teller distortion of the
[Cu(OH)6]4− octahedra, leading to the random modification
of the exchange path, and subsequently the exchange strength,
connecting the Cu2+ on the kagome layer [74].

Indeed, the numerical results on a simplified random S =
1/2 AF Heisenberg model on the triangular and the kagome
lattices appear to reproduce many of experimentally observed
features [66,67] of various thermodynamic quantities, includ-
ing the T -lienar low-temperature specific heat [35,47,59], the
gapless magnetic susceptibility occasionally accompanying a
Curie-like tail [62], and the gapless temperature dependence
of the NMR relaxation rate 1/T1 [33,45].

In view of this apparent success of the random model in
reproducing the experimentally observed QSL-like behaviors,
it would be desirable to further investigate the nature of the
static and the dynamical spin correlations of the randomness-
induced QSL state, the random singlet state. For this purpose,
in the present paper we compute by means of an exact
diagonalization technique the static and the dynamical spin
structure factors which are experimentally accessible via, e.g.,
the elastic and the inelastic neutron scattering measurements.
Such a comparison between theory and experiment might
give further information in examining the validity of the
randomness-induced QSL picture of the experimentally ob-
served QSL states. In order to clarify the effect of frustration,
we perform comparative calculations also on the random-bond
S = 1/2 AF Heisenberg model on the square lattice.

Our numerical results corroborates the previous observation
that both the triangular and the kagome models exhibit the
randomness-induced QSL-like behavior when the randomness
exceeds a critical value [66,67]. Meanwhile, the unfrustrated
square model persistently exhibits the AF LRO up to the max-
imal randomness without showing the QSL-like behavior. The
result highlights an important role of frustration, along with
the randomness and the quantum fluctuation, in stabilizing the
random-singlet state.

The random-singlet states in the triangular and kagome
models have some mutual similarities, but also some differ-
ences. In the triangular case, the random-singlet state keeps a
certain amount of AF short-range order even at the maximal
randomness. While the dynamical structure factor S(q,ω) of
the triangular model exhibits a signature of the AF LRO and the
magnon excitation in the regular and weakly random cases, in

the strongly random case corresponding to the random-singlet
state, it exhibits a gapless behavior accompanied by a broad
ω distribution extending to higher energy, which is dependent
on the wave vector q only weakly. In the kagome case, by
contrast, a signature of the AF LRO or the magnon excitation
is hardly discernible either in the regular or in the random
case. Peaky features of S(q,ω) still retained in the regular case
give way to gapless behaviors in the strongly random case
corresponding to the random singlet state. Such features of
S(q,ω) are accompanied by an almost flat distribution in a
wide range of ω and by an ω = 0 peak, which hardly depends
on the wave vector q. Indeed, these features of the computed
S(q,ω) of the strongly random kagome model are compared
quite favorably with the recent inelastic-neutron scattering data
on a single-crystal kagome herbersmithite [64].

This paper is organized as follows. In Sec. II, we present
our model and the details of our numerical calculation. In Secs.
III and IV, we show the results of our numerical calculations
in the case of the triangular and the kagome models, respec-
tively. Section V is devoted to summary and discussion. For
comparison, we also present the corresponding results for the
unfrustrated square-lattice model in Appendix A. The detailed
information about the shape of finite-size lattices employed in
our exact-diagonalization calculation is given in Appendix B.

II. THE MODEL AND THE METHOD

Our model is the AF random-bond S = 1/2 quantum
Heisenberg model on the triangular and the kagome lattices,
whose Hamiltonian is given by

H =
∑
i,j

Ji,j Si · Sj , (1)

where Si = (Sx
i ,S

y

i ,Sz
i ) is a spin-1/2 operator at the ith site on

the lattice, while Ji,j > 0 is the random nearest-neighbor AF
coupling obeying the bond-independent uniform distribution
between [(1 − �)J,(1 + �)J ] with the mean J . The param-
eter � represents the extent of the randomness: � = 0 and
� = 1 cases correspond to the regular and maximally random
cases, respectively.

According to Refs. [66,67], the random-singlet ground state
is realized when the randomness is stronger than a critical
value �c. In the triangular model, �c is estimated to be �0.6
where �c separates the AF phase and the random-singlet phase
[66], while in the kagome model it is estimated to be �c �
0.4 where �c separates the randomness-irrelevant QSL phase
(e.g., the Z2 spin-liquid phase) and the randomness-relevant
random-singlet phase [67].

In the present paper, we employ the exact diagonalization
(ED) method in computing various physical quantities. The
ED method is precise and is applicable even to systems with
frustration, while it has a disadvantage of being limited to
very small system sizes. In our computation, the total number
of spins N is N = 12,18,24,30 for T = 0 and N = 12,18 for
T > 0, periodic boundary conditions being employed. Sample
average is taken over 100 (N = 12,18,24) and 50 (N = 30)
independent bond realization in the T = 0 calculation, while
100 (N = 12) and 30 (N = 18) in the T > 0 calculation in
both cases of the triangular and the kagome models. The shape
of the lattice is illustrated in Figs. 14 and 15 in Appendix B for
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the triangular and the kagome lattices, respectively. In what fol-
lows, the energy and temperature are normalized in units of J .

III. RESULTS I: THE TRIANGULAR LATTICE

In this section, we study the ground-state and the finite-
temperature properties of the random-bond S = 1/2 AF
Heisenberg model on the triangular lattice. We begin with the
sublattice magnetization associated with the three-sublattice
120◦ structure. The sublattice magnetization per spin ms may
be defined by

m2
s = 1

3

∑
α

⎡
⎣〈

1

(N/6)(N/6 + 1)

(∑
i∈α

Si

)2〉⎤
⎦

= 12

N (N + 6)

∑
α

⎡
⎣∑

i,j∈α

〈Si · Sj 〉
⎤
⎦ , (2)

where α = 1,2,3 denotes three triangular sublattices of the
original triangular lattice, and the sum i ∈ α(i,j ∈ α) is taken
over all sites i (i and j ) belonging to the αth sublattice.
The symbol 〈· · · 〉 denotes the thermal average, and [· · · ] the
average over the bond disorder. Note that ms is normalized to
give unity for the classical, perfectly ordered 120◦ structure.

We also define the rescaled sublattice magnetization per
spin m̃s by subtracting the auto-correlated part as

m̃2
s = m2

s − 12N

N (N + 6)

3

4
. (3)

The subtraction of the autocorrelated part is made so that the
sublattice magnetization tends to zero at T → ∞ even for
finite N . In the thermodynamic limit N → ∞,m̃s approaches
ms at any temperature.

In Fig. 1, we show the temperature dependence of the
rescaled sublattice magnetization per spin, m̃s, for N = 12
and 18 for several values of the randomness �. In the regular
and weakly random cases, m̃s increases monotonically with
decreasing the temperature, and eventually saturates. This
increase of ms at finite temperature is associated with the
growth of the AF short-range order. When the randomness
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FIG. 1. (Color online) The temperature dependence of the
rescaled sublattice magnetization per spin m̃s of the triangular-lattice
Heisenberg antiferromagnet for the randomness � = 0, 0.7, and 1.0
and for the sizes N = 12 and 18. The definition of m̃s is given in the
text.

gets stronger, m̃s is suppressed as a result of the suppression
of the AF short-range order due to the randomness.

An interesting observation is that, for the strongest
randomness � = 1,m̃s tends to decrease weakly with
decreasing the temperature in the lower temperature range of
T � 0.2, exhibiting some sort of crossover. This suppression
is weak, but tends to be more eminent for larger sizes. Such
suppression of the AF short-range order is compatible with
the formation of the random-singlet-type state at T � 0.2.
Similar suppression was also reported in Ref. [66] in the
temperature dependence of 1/T1 in the similar temperature
and size range. There, Z2 vortex [75] was invoked to be
a possible candidate of this crossoverlike anomaly, since
the suppression was observed only for lattices larger than
N = 18. Further study is required to clarify the nature of this
crossover phenomenon, which is observed only for modestly
large systems with strong randomness.

In order to get further information about the static spin
correlations of the model, we investigate the static spin
structure factor S(q) defined by

S(q) = 1

N

⎡
⎣
˝∣∣∣∣∣∣

∑
j

Sj e
iq·Rj

∣∣∣∣∣∣
2 ˛⎤

⎦ , (4)

where 〈· · · 〉 means the ground-state expectation, q is the wave
vector, and Rj is the position vector at the site j . The computed
static spin structure factor at T = 0 is shown in Fig. 2 as
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FIG. 2. (Color online) Intensity plots of the static spin structure
factors S(q) of the triangular-lattice Heisenberg antiferromagnet in
the wave vector (qx,qy) plane for several values of the randomness
� = 0 (a), 0.3 (b), 0.6 (c), and 1.0 (d). The lattice constant a = 1
is the nearest-neighbor distance of the triangular lattice. The system
size is N = 30. The solid black line depicts the first Brillouin zone of
triangular lattice. Each small hexagon corresponds to the resolution
unit, and the center of each distorted hexagon is the wave-vector point
we can treat in N = 30 system. The black point in (a) represents the
K point, while the purple point the M point: see the text for details.
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FIG. 3. (Color online) The ω dependence of the dynamical struc-
ture factors of the triangular-lattice Heisenberg antiferromagnet taken
at the K point, q = (±2π/3,±2π/

√
3) and (±4π/3,0), for several

values of the randomness � = 0 (a), 0.3 (b), 0.6 (c), and 1.0 (d). The
critical randomness separating the AF state and the random-singlet
state is �c � 0.6. Note the difference in the ordinate scale between
(a) and (b)–(d). In the inset of (a) and (b), the ω value of the dominant
peak is plotted vs the inverse system size 1/N .

an intensity plot in the wave-vector (qx,qy) plane for several
values of the randomness, � = 0 (a), 0.3 (b), 0.6 (c), and
1.0 (d). The system size is N = 30.

Although the resolution is rather low due to the small system
size, several characteristic features are clearly discernible
from the figure. In the regular case � = 0, eminent peaks
corresponding to the AF LRO are observed at the so-called
K points, q = (qx,qy) = (±2π/3,±2π/

√
3) and (±4π/3,0),

where the length unit is taken as the nearest-neighbor distnace
of the triangular lattice. As the randomness gets stronger,
the peak at the K points is gradually suppressed. The AF
LRO is expected to vanish for � > �c � 0.6 [66]. Such a
phase-transition-like sharp change of behavior around �c ∼
0.6, however, is not necessarily clear here, presumably due to
the small system size of N = 30. In fact, a rounded peak
persists at the K point even at the maximal randomness
of � = 1, suggesting the persistence of the AF short-range
order in the random-singlet state. Thus, in the triangular case,
the random-singlet state coexists with the AF short-range
order.

In order to get further information about the dynamical spin
correlations of the model, we next investigate the dynamical
spin structure factor defined by

S(q,ω) =
∑

n

[∣∣〈ψn|Sz
q |ψ0〉

∣∣2
δ (ω − (En − E0))

]
, (5)

where Sz
q is the z component of the Fourier transform

of the spin operator, ψn is the eigenfunction of the
Hamiltonian (1) whose eigenvalue is En, and ψ0 is the
ground-state eigenfunction with the eigenvalue E0. By using
the continued fraction method [76], it may be rewritten

FIG. 4. (Color online) The ω dependence of the dynamical struc-
ture factors of the triangular-lattice Heisenberg antiferromagnet taken
at the M point, q = (0,±2π/

√
3) and (±π,±π/

√
3), for several

values of the randomness � = 0 (a), 0.3 (b), 0.6 (c), and 1.0 (d). The
critical randomness separating the AF state and the random-singlet
state is estimated to be �c � 0.6. Note the difference in the ordinate
scale between (a) and (b)–(d), and between this figure and Fig. 3.

as

S(q,ω) = − lim
η→0

1

π
Im

[
〈ψ0|

(
Sz

q

)† 1

ω + E0 − H + iη
Sz

q |ψ0〉
]

= − lim
η→0

1

π
Im

⎡
⎢⎢⎣ 〈ψ0|

(
Sz

q

)†
Sz

q |ψ0〉
ω + E0 + iη − a0 − b2

1

z−a1− b2
2

z−a2−···

⎤
⎥⎥⎦ ,

(6)

where ai and bi+1 are the diagonal and subdiagonal elements
of the tridiagonal Hamiltonian obtained by the Lanczos
method. In implementing the continued-fraction expansion,
we performed at least 1000 iterations. A small but finite
η,η = 0.02, is used.

The ω dependence of S(q,ω) computed at the K point
is shown in Fig. 3, while the one at the M point, which
is located at the midpoints of the first Brillouin zone (BZ)
edges, i.e., q = (0,±2π/

√
3) and (±π,±π/

√
3), is in Fig. 4.

The randomness � is taken to be � = 0 (a), 0.3 (b), 0.6 (c),
and 1.0 (d). Note the difference in the ordinate scale between
Figs. 3 and 4, and between (a) and (b)–(d) panels.

Reflecting the AF short-range order of the triangular model,
the S(q,ω) intensity tends to be larger at the K point (Fig. 3)
than at the M point (Fig. 4) irrespective of the � value. The
contrast between the K and the M points, however, tends to
be milder for larger �.

In the regular case � = 0, the dominant peak observed
in S(q,ω) at the K point [Fig. 3(a)] is a single magnon
excitation. Indeed, the peak location in ω tends to zero when N

is increased toward the thermodynamic limit. Similar behavior
is observed also in the weakly random case of � = 0.3: see
the insets of Figs. 3(a) and 3(b). As shown in Fig. 4(a), several
peaks are observed at the M point. According to the recent
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spin-wave analysis for the regular model, S(q,ω) at the M

point exhibits a leading peak at ω � 0.8 [77]. Indeed, if one
looks at our data of � = 0 for N = 24 and 30, the dominant
peak appears at a nearby position ω � 1.

As the randomness becomes stronger getting into the
random-singlet phase, S(q,ω) exhibit less peaky behavior both
at the K and the M points. As can be seen from Figs. 4(c)
and 4(d), it exhibits a broad distribution extending to higher
ω, with a finite intensity gradually growing at ω = 0. This
demonstrates that the random-singlet state of the triangular
model is indeed magnetically gapless both at the K and
M points. The observed gapless feature of S(q,ω) is fully
consistent with the gapless behavior observed in several other
observables in Ref. [66]. While the intensity tends to be larger
at the K point than at the M point, the difference tends to be
smaller for larger � as in the case of the static spin structure
factor.

In the random-singlet state, S(q,ω) exhibits a tail in ω in
the higher-ω range. The asymptotic ω dependence of this tail
is found to be exponential ≈ exp[−ω/ω0] with a characteristic
energy scale ω0. Estimates of ω0 yields a value around 2 ∼ 2.5.

IV. RESULTS II: THE KAGOME LATTICE

Next, we deal with the random-bond S = 1/2 AF Heisen-
berg model on the kagome lattice whose Hamiltonian is given
by Eq. (1). We first examine the temperature dependence
of the two representative types of the rescaled sublattice
magnetization per spin, m̃s, each associated with the q = 0
and the

√
3 × √

3 structures. As in the triangular case, it is
normalized to give unity for the classical, perfectly ordered
q = 0 or

√
3 × √

3 structure, while the autocorrelated part
is subtracted. The temperature dependence of the computed
m̃s is shown in Fig. 5 for N = 18 for several values of the
randomness �.

FIG. 5. (Color online) The temperature dependence of the
rescaled sublattice magnetization per spin, m̃s, associated with
the q = 0 and

√
3 × √

3 orders of the kagome-lattice Heisenberg
antiferromagnet for several values of the randomness � = 0 (a),
0.4 (b), 0.7 (c), and 1.0 (d).

Numerically, it has been established that the regular model
exhibits neither the q = 0 nor the

√
3 × √

3 LRO even at T =
0 [8]. These AF orders are not realized in the random model,
either [67]. Yet, the temperature and the size dependence of
m̃s is expected to provide us useful information about the
associated AF short-range order.

For the regular model, while the spin-wave-type 1/S

expansion suggested the possible dominance of the
√

3 ×√
3 order [78,79], the recent numerical results from the

exact-diagonalization [13] and the DMRG [12] calculations
suggested the dominance of the q = 0 state. Though our
present data for N = 30 apparently suggest the dominance
of the

√
3 × √

3 short-range order, our maximum size N = 30
is smaller than the ones of Refs. [13] and [12], i.e., N = 36 and
108, respectively, and might be subject to stronger finite-site
effect. In any case, as the randomness gets stronger, the
difference between the q = 0 order and the

√
3 × √

3 order
tends to be negligible.

To get further information about the spin correlations of the
model, we compute the T = 0 static spin structure factor, and
the results for N = 30 are shown in Fig. 6 as an intensity plot
in the (qx,qy) plane for the randomness of � = 0 (a), 0.4 (b),
0.7 (c), and 1.0 (d). The length unit here is taken to be the
nearest-neighbor distance of the original kagome lattice.

In the regular case shown in Fig. 6(a), the intensity appears
primarily along the zone boundary of the extended BZ,
consistently with the behavior reported in Refs. [12,13]. We
note that the recent numerical studies for larger system of
N = 36 reveal additional small peaks at the wave vectors
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FIG. 6. (Color online) Intensity plots of the static spin structure
factors S(q) of the kagome-lattice Heisenberg antiferromagnet in
the wave-vector (qx,qy) plane for several values of the randomness
� = 0 (a), 0.4 (b), 0.7 (c), and 1.0 (d). The lattice constant a = 1
is the nearest-neighbor distance of the kagome lattice. The system
size is N = 30. The solid black line depicts the zone boundary of the
extended BZ. The black square in (a) represents the 
 point, while
the blue triangle represents the M point.
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FIG. 7. (Color online) The ω dependence of the dynamical spin
structure factor S(q,ω) of the kagome-lattice Heisenberg antiferro-
magnet taken at the 
 point, q = (0,±2π/

√
3) and (±π,±π/

√
3),

for several values of the randomness � = 0 (a), 0.3 (b), 0.6 (c), and
1.0 (d). The critical randomness separating the randomness-irrelevant
QSL state and the random-singlet state is estimated to be �c � 0.4.
The insets are magnified views of the low-ω region in units of meV,
where J = 17 meV is assumed with herbertsmithite in mind. Note
the difference in the ordinate scale between (a) and (b)–(d).

corresponding to the q = 0 state, q = (0,±2π/
√

3) and
(±π,±π/

√
3), which are located along the zone boundary

of the extended BZ [12,13], although this peak is not clearly
discernible in our present data of N = 30. As can be seen
from Figs. 6(a)–6(d), qualitative features of S(q) do not change
much even when the randomness is introduced up to � = 1,
except that the ridgelike intensity along the extended BZ
boundary is somewhat broadend.

We also compute the dynamical spin structure factor S(q,ω)
at the two representative wave vectors, i.e., the so-called

 point, q = (0,±2π/

√
3) and (±π,±π/

√
3), and the M

point, q = (0,±π/
√

3) and (±π/2,±π/2
√

3). The computed
ω dependence of S(q,ω) is shown for several values of the
randomness � in Fig. 7 for the 
 point, and in Fig. 8 for the M

point. The ω dependence of the dynamical spin structure factor
shows some differences between in the randomness-irrelevant
QSL state at � < �c and in the randomness-relevant QSL
state at � > �c. In contrast to the case of the triangular model,
S(q,ω) exhibits a rather broad distribution even in the regular
case, yet with some pronounced peaks remaining both at the

 and the M points as shown in Figs. 7(a) and 8(a). Although
our data of N � 30 are still subject to considerable finite-size
effects, Läuchli et al. reported that S(q,ω) for N = 24 and for
larger N = 36 came close, suggesting that S(q,ω) for N = 30
were not far from that of the bulk system. The issue of a small
nonzero gap exists or not in the regular systems is beyond the
capability of our present calculation.

For larger � > �c � 0.4 corresponding to the random-
singlet state, by contrast, S(q,ω) exhibits both at the 
 and M

points a nearly flat distribution in the wide ω range of, say, ω �
1.5 and extends to higher ω, with a nonzero intensity growing

FIG. 8. (Color online) The ω dependence of the dynamical spin
structure factor S(q,ω) of the kagome-lattice Heisenberg antiferro-
magnet taken at the M point, q = (0,±π/

√
3) and (±π/2,±π/2

√
3),

for several values of the randomness � = 0 (a), 0.3 (b), 0.6 (c), and
1.0 (d). The critical randomness separating the randomness-irrelevant
QSL state and the random-singlet state is estimated to be �c � 0.4.
The insets are magnified views of the low-ω region in units of meV,
where J = 17 meV is assumed with herbertsmithite in mind. Note
the difference in the ordinate scale between (a) and (b)–(d).

at ω = 0. This demonstrates the gapless nature of excitations
in the random-singlet state both for the 
 and M points. In the
case of the strongest randomness � = 1.0, even an ω = 0 peak
appears at both 
 and M points. As can be seen from Figs. 7(d)
and 8(d), the overall behavior of S(q,ω) are very much similar
at the 
 and the M points in the random-singlet state.

In the random-singlet state, S(q,ω) exhibits a tail in ω

in the higher-ω range both at the 
 and M points. The
asymptotic ω dependence of this tail is found to be exponential,
≈9 exp[−ω/ω0], with a characteristic energy scale ω0. In the
kagome model, such an exponential tail is also realized even
in the regular system. Estimates of ω0 yields a value around
1.5 ∼ 2, slightly increasing with increasing the randomness �.

The behavior of S(q,ω) in the random-singlet state of the
kagome model is rather similar to the one of the triangular
model shown in Figs. 3 and 4. One difference might be that
S(q,ω) in the low-energy region is even more flatter in the
kagome model, and the ω = 0 peak is more eminent.

Anyway, the gapless behavior with an almost flat distribu-
tion extending to higher ω irrespective of the q value is a com-
mon feature of the observed dynamical structure factor of both
the triangular and the kagome models for larger �, and might
be regarded as a characteristic of the random-singlet state.

In order to make comparison with the recent inelastic
neutron-scattering data on a single-crystal of herbertsmithite
[64], we provide in the insets of Figs. 7 and 8 their low-
energy part of the experimental data, which corresponds
to the range indicated by the arrow in the main panel.
Since the experimental data now available are limited to the
low-energy region of ω � 10 meV, we show in the inset
exactly this range, i.e., ω < 10 meV, by using an experimental
estimate of J � 17 meV. This estimate of the exchange
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FIG. 9. (Color online) The T = 0 magnetization curve for the
randomness of � = 0.7 for N = 18 and 24, in the wider field range
(inset) and in the lower field range (main panel) corresponding to
the region indicated by the arrow in the inset. With herbertsmithite
in mind, the magnetization M is normalized per formula unit of
herbertsmithite, i.e., the saturation value taken to be 3, while an
applied field is given in units of tesla with assuming the experimental
g factor (g � 2.2) and J value (J � 200 K) of herbertsmithite [65].

coupling J of herbertsmithite is made via neutron-scattering
measurements on powder samples [59]. On comparison with
the corresponding experimental data (Fig. 2 of Ref. [64]), one
finds a nice agreement especially for the strong randomness
� = 1 shown in panel (d), including the features of (1) a
plateaulike behavior observed for 2 � ω � 10 meV, (2) an
ω = 0 peak observed at ω � 1.5 meV without any gap, and
(3) the insensitivity of the overall behavior of S(q,ω) on the
wave vector q. We emphasize that the data of the random model
shown in panel (d) appears to resemble the experimental one
much more than that of the nonrandom system of panel (a).
This observation certainly lends support to the view that the
randomness is playing a significant role in the QSL state of
herbertsmithite.

Very good agreement with experiment is also found for
the magnetization curve. In Fig. 9, we show the ground-state
magnetization curve for the randomness � = 0.7 for N = 18
and 24, where the magnetization M is normalized per formula
unit of herbertsmithite, i.e., the saturation value taken to
be 3, while an applied field is given in units of tesla with
assuming the experimental g factor (g � 2.2) and J value
(J � 200 K) of herbertsmithite [65]. Then, the computed
magnetization curve of Fig. 9 indeed exhibits an almost
quantitative agreement with the recent experimental data given
in Fig. 2 of Ref. [65] in the same units.

Two features might be noticed. One is the absence of any
plateaulike anomaly in the magnetization curve. As shown in
the inset, it exhibits a near linear behavior in an entire region of
H up to the near saturation, except for some “wavy” behavior
occurring at intermediate fields (which becomes less visible
for the stronger randomness of � = 1 [67]). As reported Ref.
[67], we have found that the plateaulike anomaly tends to
go away for � > �c, yielding a near linear behavior. The
other notable feature of the magnetization curve might be an

upper-convex gapless behavior observed at weaker fields near
H = 0. This enhanced behavior of the low-field magnetization
is consistent with the Curie-like behavior of the susceptibility
observed for stronger randomness [67], and is likely to be
borne by the “free” or “almost free” spins inevitably generated
in the random-single state.

V. SUMMARY AND DISCUSSION

We studied by means of an ED method the nature of
spin correlations of the random-bond S = 1/2 AF Heisenberg
models on the triangular and the kagome lattices via the static
and the dynamical spin structure factors. To highlight the
possible importance of frustration, we also made a comparative
calculation for the unfrustrated random-bond S = 1/2 AF
Heisenberg model on the square lattice.

Both the triangular and the kagome models exhibit the
randomness-induced QSL behavior when the randomness
exceeds a critical value as observed in previous studies, while
the unfrustrated square model persistently exhibits the AF
LRO up to the maximal randomness without showing the QSL
behavior. This demonstrates that the frustration is certainly
playing a role in stabilizing the random-singlet state.

The random-singlet states in the triangular and the kagome
models have some similarities, but also some differences.
The random singlet state of the both models exhibit gapless
behaviors, dependent on the wave vector q only weakly, while
the dynamical spin structure factor S(q,ω) exhibit a broad
distribution in ω extending to higher ω with an exponential
tail. Especially in the strongly random kagome model, S(q,ω)
hardly depends on q and exhibits an almost flat distribution
for a wide range of ω with a ω = 0 peak.

As discussed in Sec. IV, our results for the dynamical
spin structure factor for the strongly random kagome model
compares quite favorably with the recent inelastic neutron-
scattering data on the kagome herbertsmithite, including (1) a
plateaulike behavior observed for 2 � ω � 10 meV, (2) an
ω = 0 peak observed ω � 1.5 meV without any gap, and
(3) the insensitivity on the wave vector q. Since the present
experimental data are limited to the low-energy range ω �
10 meV, it would be interesting to perform further experiments
in the higher-energy range of ω � 10 meV to make further
comparison. In addition, the computed magnetization curve is
found to exhibit a good, almost quantitative agreement with
the recent experimental data on herbertsmithite.

In making a truly quantitative comparison with the experi-
mental data on herbertsmithite, ones needs to examine several
effects not considered in the present model, i.e., the effect
of the Dzyaloshinskii-Moriya interaction and the triangular
layer between the kagome layers, etc. How the results depend
or do not depend on the particular form of the randomness
needs further clarification. In particular, the possible effect of
the dilution-type randomness pointed out experimentally in
Refs. [60,61,63] and studied theoretically in Ref. [73] might
be incorporated.

An important open theoretical question in the kagome
model might be the distinction and the true relation between the
observed two types of QSL-like states, i.e., the randomness-
irrelevant QSL state realized at � < �c and the randomness-
relevant QSL state (random-singlet state) realized at � > �c.
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One intuitive view of this transition (or crossover) occurring
at � � �c might be that singlet states tend to exhibit an
Anderson localization there. The enhanced flat feature of
S(q,ω) observed in the random singlet state at � > �c is
certainly consistent with such a picture. In this view, the
randomness-irrelevant QSL state is an extended RVB-like
state, while the randomness-relevant QSL state is an Anderson-
localized state of singlets. Whether this naive picture captures
correct physics behind the two types of QSL-like states needs
further clarification.

In contrast to the kagome case, the neutron-scattering data
are not presently availabe for triangular organic salts due to the
organic nature of the material. Another route to the random-
singlet state of S = 1/2 triangular AFs might be an insulating
mixed crystal Cs2Cu(Br1−xClx)4. Experiments suggest that
this compound might exhibit a nonmagnetic ground state
in the range x > 0.17 [80], at which the system possesses
a considerable amount of randomness associated with the
random arrangement of Cl− and Br−. Interestingly, in this
QSL-like regime, the gapless behavior including the T -linear
low-temperature specific heat is observed [81]. It might be
interesting to perform neutron-scattering measurements on this
compound in its QSL regime to make a comparison with our
present data.

The naive picture of the random singlet state, which is ob-
served in common with the triangular and the kagome models,
might be that tightly bound spin singlets are preferentially
formed at stronger Jij bonds, leaving loosely bound spin
singlets or nearly free spins at weaker Jij bonds. Of course,
such simple assignment of singlets to randomly distributed
Jij bonds immediately meets contradiction or ‘frustration’,
revealing that the singlet formation in the spatially random
environment is not a trivial matter at all. A subtle balance
between the potential energy due to the local energy gain
arising from the nonuniform Jij and the kinetic energy arising
from the resonance of the local singlet states should determine
the true ground state. In fact, in both cases of the triangular
and the kagome models, we have observed that, although there
generally exists a tendency that the strong singlet with larger
negative Si · Sj value tends to be formed at strong bonds with
large Jij value, this tendency is quite often violated in the sense
that strong local singlet is sometimes formed at weaker bonds,
or the singlet formation remains weak even at stronger bonds.

In summary, we investigated the nature of spin correlations
in the randomness-induced QSL-like state, the random-singlet
state, of the random-bond S = 1/2 AF Heisneberg model on
the triangular and the kagome lattices by computing their static
and dynamical spin structure factors by means of the exact
diagonalization method. Gapless behaviors accompanied by
the broad distribution extending to higher energy, dependent
on the wave vector only weakly, is observed in the dynamical
spin structure factor S(q,ω) in the random-singlet states of the
both models in common. Especially in the kagome case with
strong randomness, S(q,ω) hardly depends on the wave vector
q and exhibits an almost flat distribution in a wide range of
ω, accompanied by the ω = 0 peak. These features agree with
the recent inelastic-neutron scattering data on a single-crystal
herbertsmithite semiquantitatively, suggesting that the QSL
state observed in herbertsmithite is indeed the random-induced
QSL state, i.e., the random-singlet state.
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APPENDIX A

In this Appendix, as a typical model of unfrustrated S = 1/2
random systems, we deal with the random-bond S = 1/2 AF
Heisenberg model on the square lattice. The Hamiltonian
is given by Eq. (1), the random interaction Jij obeying
the uniform distribution characterized by the randomness
parameter �, commonly with the triangular and the kagome
cases. The ED study on the bond-randomness effect in the
unfrustrated square model have already been made in Ref. [82].
It was shown there that, in the square-lattice case, the sublattice
magnetization survived against the bond randomness. In this
appendix, we show not only the ground-state sublattice magne-
tization but also the temperature dependence of the sublattice
magnetization, together with the static and the dynamical
ground-state spin structure factors, in order to make full com-
parison with the corresponding data for the frustrated systems.

The lattice size is N = 8,10,16,18,20,24, and 32 with
periodic boundary conditions in all directions. The sample
average is performed for 300 (N = 8,10), 200 (N = 16,18),
100 (N = 20,24), and 5 (N = 32) independent bond realiza-
tions in calculating the sublattice magnetization, and for 100
(N < 32) and 20 (N = 32) independent bond realizations in
calculating the static and the dynamical spin structure factors.

The size dependence of the T = 0 squared sublattice
magnetization per spin, m2

s , is shown in Fig. 10 for various
randomness �. The sublattice magnetization here is the one
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FIG. 10. (Color online) The rescaled T = 0 squared sublattice
magnetization per spin, m2

s , of the square-lattice Heisenberg antifer-
romagnet plotted vs 1/

√
N (N the lattice size) for several values of

the randomness �.
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FIG. 11. (Color online) The temperature dependence of the
rescaled sublattice magnetization per spin, m̃s, of the square-lattice
Heisenberg antiferromagnet for the size N = 36, and for the random-
ness � = 0 and 1.0.

associated with the two-sublattice AF order. As can clearly
be seen from the figure, ms remains nonzero even in the
thermodynamic limit for all values of �, indicating that the
AF LRO persists up to the maximal randomness of � = 1
as reported in Ref. [82]. This is in sharp contrast to the
cases of the triangular and the kagome models where the AF
LRO gives way to the random-singlet state for sufficiently
strong randomness. Hence, not only the randomness but
also the frustration plays a significant role in stabilizing the
random-singlet state. In other words, all three elements, i.e., the
strong quantum fluctuation, the frustration, and the quenched
randomness, conspire to realize the present QSL state, the
random-singlet state.

In Fig. 11, we show the temperature dependence of the
rescaled sublattice magnetization per spin, m̃s, for the regular
� = 0 and for the maximally random � = 1 cases. The lattice
size is N = 36. The calculation here is made by use of the
quantum Monte Carlo method [83], which is possible due to
the absence of frustration in the square-lattice model. In both
the regular and the maximally random cases, m̃s increases
monotonically with decreasing the temperature down to the
lowest temperature studied, as can be seen from Fig. 11. In
particular, in contrast to the maximally random � = 1 case of
the triangular model and the general case of the kagome model,
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FIG. 12. (Color online) Intensity plots of the T = 0 static spin
structure factor S(q) of the square-lattice Heisenberg antiferromagnet
in the wave-vector (qx,qy) plane for the randomness � = 0 (a), and
1 (b). The solid black line represents the zone boundary of the first
BZ of the square lattice.
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FIG. 13. (Color online) The ω dependence of the T = 0 dynam-
ical spin structure factor S(q,ω) of the square-lattice antiferromagnet
taken at the wave vector q = (π,π ) for the randomness � = 0 (a)
and 1 (b).

the crossover behavior associated with a decrease of m̃s in the
lower-temperature regime is not observed in the square model
even in the maximally random case. This suggests that the
crossover behavior observed in the triangular and the kagome
models might be a characteristic of the formation of the QSL-
like state including the random-singlet state.

The T = 0 static spin structure factor S(q) is shown in
Fig. 12 as an intensity plot in the wave-vector plane. The
lattice size is N = 24. The computed S(q) exhibit rather sharp
peaks at q = (±π,±π ) corresponding to the AF LRO of the
model both for � = 0 and � = 1. In fact, overall S(q) looks
quite similar between the regular case of � = 0 (a) and the
maximal random case of � = 1 (b).

N=18(type1)

N=12

N=18(type2)

N=24(type1)

N=24(type2)

N=30

FIG. 14. The lattice shapes used in the exact diagonalization
calculation of the triangular-lattice model for various N . Periodic
boundary conditions are applied in all directions.

134407-9



TOKURO SHIMOKAWA, KEN WATANABE, AND HIKARU KAWAMURA PHYSICAL REVIEW B 92, 134407 (2015)

N=18(type1)

N=12 N=18(type2)

N=24

N=30

FIG. 15. The lattice shapes used in the exact diagonalization
calculation of the kagome-lattice model for various N . Periodic
boundary conditions are applied in all directions.

The ω dependence of the dynamical spin structure factor
S(q,ω) at a wave vector q = (π,π ) corresponding to the AF
order is shown in Fig. 13 for the randomness � = 0 (a) and
for 1 (b). The dominant peak is a single magnon excitation,
the peak location tending to zero toward the thermodynamic
limit as shown in the insets. As in the static case, S(q,ω) looks
qualitatively similar between the regular and the maximally
random cases, while the magnon peak becomes broader in the
random case.

N=16

N=18

N=24

N=32

N=8

N=20

N=10

FIG. 16. The lattice shapes used in the exact diagonalization
calculation of the square-lattice model for various N . Periodic
boundary conditions are applied in all directions.

APPENDIX B

In this Appendix, we show the lattice shapes used in
our ED calculation for various lattice sizes N . The cases
of the triangular, kagome, and square lattices are given in
Figs. 14–16, respectively. In all cases, periodic boundary
conditions are applied in all directions.
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[13] A. M. Läuchli and C. Lhuillier, arXiv:0901.1065.
[14] P. Sindzingre and C. Lhuillier, Europhys. Lett. 88, 27009

(2009).
[15] H. Nakano and T. Sakai, J. Phys. Soc. Jpn. 80, 053704 (2011).

134407-10

http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1103/PhysRevB.50.10048
http://dx.doi.org/10.1103/PhysRevB.50.10048
http://dx.doi.org/10.1103/PhysRevB.50.10048
http://dx.doi.org/10.1103/PhysRevB.50.10048
http://dx.doi.org/10.1103/PhysRevLett.82.3899
http://dx.doi.org/10.1103/PhysRevLett.82.3899
http://dx.doi.org/10.1103/PhysRevLett.82.3899
http://dx.doi.org/10.1103/PhysRevLett.82.3899
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.62.2405
http://dx.doi.org/10.1103/PhysRevLett.62.2405
http://dx.doi.org/10.1103/PhysRevLett.62.2405
http://dx.doi.org/10.1103/PhysRevLett.62.2405
http://dx.doi.org/10.1103/PhysRevLett.68.1766
http://dx.doi.org/10.1103/PhysRevLett.68.1766
http://dx.doi.org/10.1103/PhysRevLett.68.1766
http://dx.doi.org/10.1103/PhysRevLett.68.1766
http://dx.doi.org/10.1103/PhysRevB.47.5459
http://dx.doi.org/10.1103/PhysRevB.47.5459
http://dx.doi.org/10.1103/PhysRevB.47.5459
http://dx.doi.org/10.1103/PhysRevB.47.5459
http://dx.doi.org/10.1103/PhysRevB.56.2521
http://dx.doi.org/10.1103/PhysRevB.56.2521
http://dx.doi.org/10.1103/PhysRevB.56.2521
http://dx.doi.org/10.1103/PhysRevB.56.2521
http://dx.doi.org/10.1007/s100510050274
http://dx.doi.org/10.1007/s100510050274
http://dx.doi.org/10.1007/s100510050274
http://dx.doi.org/10.1007/s100510050274
http://dx.doi.org/10.1103/PhysRevB.71.014417
http://dx.doi.org/10.1103/PhysRevB.71.014417
http://dx.doi.org/10.1103/PhysRevB.71.014417
http://dx.doi.org/10.1103/PhysRevB.71.014417
http://dx.doi.org/10.1103/PhysRevB.76.180407
http://dx.doi.org/10.1103/PhysRevB.76.180407
http://dx.doi.org/10.1103/PhysRevB.76.180407
http://dx.doi.org/10.1103/PhysRevB.76.180407
http://dx.doi.org/10.1103/PhysRevB.77.144415
http://dx.doi.org/10.1103/PhysRevB.77.144415
http://dx.doi.org/10.1103/PhysRevB.77.144415
http://dx.doi.org/10.1103/PhysRevLett.101.117203
http://dx.doi.org/10.1103/PhysRevLett.101.117203
http://dx.doi.org/10.1103/PhysRevLett.101.117203
http://dx.doi.org/10.1103/PhysRevLett.101.117203
http://arxiv.org/abs/arXiv:0901.1065
http://dx.doi.org/10.1209/0295-5075/88/27009
http://dx.doi.org/10.1209/0295-5075/88/27009
http://dx.doi.org/10.1209/0295-5075/88/27009
http://dx.doi.org/10.1209/0295-5075/88/27009
http://dx.doi.org/10.1143/JPSJ.80.053704
http://dx.doi.org/10.1143/JPSJ.80.053704
http://dx.doi.org/10.1143/JPSJ.80.053704
http://dx.doi.org/10.1143/JPSJ.80.053704


STATIC AND DYNAMICAL SPIN CORRELATIONS OF THE . . . PHYSICAL REVIEW B 92, 134407 (2015)

[16] A. M. Lauchli, J. Sudan, and E. S. Sorensen, Phys. Rev. B 83,
212401 (2011).

[17] S. Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011).
[18] S. Depenbrock, I. P. McCulloch, and U. Schollwock, Phys. Rev.

Lett. 109, 067201 (2012).
[19] S. Sugiura and A. Shimizu, Phys. Rev. Lett. 111, 010401 (2013).
[20] S. Nishimoto, N. Shibata, and C. Hotta, Nat. Commun. 4, 2287

(2013).
[21] H. Nakano and T. Sakai, J. Phys. Soc. Jpn. 83, 104710 (2014).
[22] S. Sachdev, Phys. Rev. B 45, 12377 (1992).
[23] Y.-M. Lu, Y. Ran, and P. A. Lee, Phys. Rev. B 83, 224413 (2011).
[24] M. B. Hastings, Phys. Rev. B 63, 014413 (2000).
[25] Y. Ran, M. Hermele, P. A. Lee, and X.-G. Wen, Phys. Rev. Lett.

98, 117205 (2007).
[26] Y. Iqbal, F. Becca, and D. Poilblanc, Phys. Rev. B 84, 020407(R)

(2011).
[27] Y. Iqbal, F. Becca, S. Sorella, and D. Poilblanc, Phys. Rev. B 87,

060405(R) (2013).
[28] L. Messio, B. Bernu, and C. Lhuillier, Phys. Rev. Lett. 108,

207204 (2012).
[29] J. B. Marston and C. Zeng, J. Appl. Phys. 69, 5962 (1991).
[30] G. Evenbly and G. Vidal, Phys. Rev. Lett. 104, 187203 (2010).
[31] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito,

Phys. Rev. Lett. 91, 107001 (2003).
[32] Y. Kurosaki, Y. Shimizu, K. Miyagawa, K. Kanoda, and G. Saito,

Phys. Rev. Lett. 95, 177001 (2005).
[33] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito,

Phys. Rev. B 73, 140407(R) (2006).
[34] S. Ohira, Y. Shimizu, K. Kanoda, and G. Saito, J. Low Temp.

Phys. 142, 153 (2006).
[35] S. Yamashita, Y. Nakazawa, M. Oguni, Y. Oshima, H. Nojiri,

Y. Shimizu, K. Miyagawa, and K. Kanoda, Nat. Phys. 4, 459
(2008).

[36] M. Yamashita, N. Nakata, Y. Kasahara, T. Sasaki, N. Yoneyama,
N. Kobayashi, S. Fujimoto, T. Shibauchi, and Y. Matsuda,
Nat. Phys. 5, 44 (2009).

[37] R. S. Manna, M. de Souza, A. Brühl, J. A. Schlueter, and
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