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Thermodynamic equilibrium as a symmetry of the Schwinger-Keldysh action
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Extended quantum systems can be theoretically described in terms of the Schwinger-Keldysh functional
integral formalism, whose action conveniently describes both dynamical and static properties. We show here
that in thermal equilibrium, defined by the validity of fluctuation-dissipation relations, the action of a quantum
system is invariant under a certain symmetry transformation, and thus it is distinguished from generic systems.
In turn, the fluctuation-dissipation relations can be derived as the Ward-Takahashi identities associated with this
symmetry. Accordingly, the latter provides an efficient test for the onset of thermodynamic equilibrium and it
makes checking the validity of fluctuation-dissipation relations unnecessary. In the classical limit, this symmetry
reduces to the well-known one that characterizes equilibrium in the stochastic dynamics of classical systems
coupled to thermal baths, described by Langevin equations.
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I. INTRODUCTION

In recent years, the question under which conditions and
how a quantum many-body system thermalizes has received
ever-growing attention. This interest has been primarily
triggered by the increasing ability to prepare and manipulate
such systems, which might be either isolated [1–3]—as it is
typically the case in experiments with cold atoms [4,5]—or in
contact with an environment (open), and therefore subject to
losses and driving.

After an abrupt perturbation, isolated systems are gener-
ically expected to thermalize in the sense that expectation
values of local quantities at long times can be determined on
the basis of suitable statistical ensembles [1,3]. However, this
might not be the case because of the presence of an extensive
amount of conserved quantities induced by integrability [6–10]
or because of a breaking of ergodicity due to the occurrence
of many-body localization [11–14]. Although it is possible
to define a variety of effective temperatures based on the
static [15,16] and dynamic properties [17,18] under such
circumstances, the lack of thermal behavior is witnessed by
the fact that these temperatures do not necessarily take all the
same thermodynamic value.

Examples of open systems include exciton-polaritons in
semiconductor heterostructures [19,20], arrays of microcav-
ities [21,22], trapped ions [23], as well as optomechanical
setups [24]. In general it is unclear, a priori, by which physical
mechanism an effective temperature is possibly established in
these systems and, in case, what determines its value. Recent
work, however, suggests possible mechanisms where an effec-
tive temperature can occur as a consequence of the competition
between driven-dissipative and coherent dynamics [25–33].
Irrespective of its cause, effective thermalization often affects
only the low-energy degrees of freedom [16,25–37].

All these examples show clearly that the presence of effec-
tive thermodynamic equilibrium (which might be established
only in a subsystem or within a specific range of frequencies)
in the steady state of a system is often by no means obvious.

Hence, before addressing the question of whether the time
evolution of a certain system leads to thermalization or not, it is
imperative to identify criteria that allow a clear-cut detection of
thermodynamic equilibrium conditions in the stationary state.
In this regard, it is important to consider not only the static
properties of the density matrix of the system, which describes
its stationary state, but also the dynamics of fluctuations: being
encoded, e.g., in two-time correlation and response functions,
it might or might not be compatible with equilibrium. As a
fundamental difference between static and dynamic properties,
the latter necessarily involves the generator of time evolution,
while the former does not.

In this work, we consider the following operative definition
of thermal equilibrium: a system is in thermal equilibrium
at a certain temperature T if the expectation values of
arbitrary products of operators, evaluated at different times,
are connected by quantum fluctuation-dissipation relations
(FDRs) involving the temperature T . These FDRs were shown
[38–40] to be equivalent to a combination of the quantum-
mechanical time-reversal transformation [41] and the Kubo-
Martin-Schwinger (KMS) condition [42,43]. Heuristically,
the latter condition expresses the fact that the Hamiltonian
ruling the time evolution of a system is the same as that one
determining the density matrix of the canonical ensemble,
which characterizes the system when it is weakly coupled to
a thermal bath. In both the generalized FDRs and the KMS
condition, the temperature appears as a parameter.

From the theoretical point of view, static and dynamical
properties of statistical systems (both classical and quan-
tum) are often conveniently studied in terms of dynamical
functionals, which are used in order to generate expectation
values of physical observables in the form of functional
integrals over a suitable set of fields. Then, it is natural
to address the issue of the possible equilibrium character
of the stationary state by investigating the properties of the
corresponding dynamical functional. In the case of classical
statistical systems evolving under the effect of an external
stochastic noise of thermal origin, this issue has been discussed
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to a certain level of detail in the past [44–49], and it was found
that the dynamical functional acquires a specific symmetry in
thermodynamic equilibrium. As in the case of the FDRs and
the KMS condition, the (inverse) temperature β = 1/T enters
as a parameter in this symmetry transformation. Remarkably,
classical FDRs can be derived as a consequence of this
symmetry. For quantum systems, instead, we are not aware
of any analogous derivation based on the symmetries of the
corresponding dynamical functional, which takes the form of
a Schwinger-Keldysh action (see, e.g., Refs. [50–57]).

The aim of the present work is to fill in this gap by showing
that also the Schwinger-Keldysh dynamical functional of
a quantum system in thermal equilibrium is characterized
by a specific symmetry, i.e., it is invariant under a certain
transformation Tβ . This symmetry may be considered as
the generalization of the classical one mentioned above,
to which it reduces in a suitable classical limit [58]. In
addition, Tβ can be written as a composition of the quantum-
mechanical time reversal expressed within the Schwinger-
Keldysh formalism—reflecting a property of the generator
of dynamics—and of the transformation that implements the
KMS conditions, associated with a property of the state in
question. The existence of this symmetry was already noticed
in Ref. [58] for mesoscopic quantum devices, where it was
used to derive fluctuation relations for particle transport across
them. However, to our knowledge, the connection between this
symmetry and the presence of equilibrium conditions has not
yet been established.

The rest of the presentation is organized as follows: the
key results of this work are anticipated and summarized in
Sec. II; in Sec. III, we specify the symmetry transformation
Tβ , provide its various representations, and list a number of
properties which are then detailed in Sec. IV. In particular, we
discuss the invariance of unitary time evolution in Sec. IV A,
while in Sec. IV B, we consider possible dissipative terms that
are invariant under Tβ . We discuss how the quantum symmetry
reduces in the limit � → 0 to the one known in classical
stochastic systems in Sec. IV C. As we discuss in Sec. V,
the symmetry can be interpreted as a practical implementation
of the KMS condition on the Schwinger-Keldysh functional
integral. Finally, Sec. VI presents applications of the equilib-
rium symmetry: in Sec. VI A, we derive the FDR for two-point
functions, while in Sec. VI B, we show that the steady states
of a quantum master equation explicitly violate the symmetry.
The case of a system driven out of equilibrium by a coupling
with two baths at different temperature and chemical potential
is considered in Sec. VI C, while Sec. VI D briefly touches
upon a number of other applications of the symmetry.

II. KEY RESULTS

a. The invariance under Tβ of the Schwinger-Keldysh
action is a sufficient and necessary condition for a system
to be in thermal equilibrium. As mentioned in Sec. I, we
consider a system to be in thermal equilibrium if all the
FDRs are satisfied with the same temperature T = β−1 or,
equivalently [38–40], if the KMS condition (combined with
time reversal) is satisfied. In Sec. V, we show that these
conditions imply the thermal symmetry Tβ of the Schwinger-
Keldysh action corresponding to the stationary state of the

system. Conversely, the fluctuation-dissipation relations can
be derived as consequences of the symmetry, proving their
equivalence.

b. A different perspective: thermal equilibrium as a sym-
metry. A key conceptual step forward we take in this work
is to provide a compact formulation of thermal equilibrium
conditions of a quantum system, i.e., the KMS condition
(or, alternatively, of the equivalent hierarchy of FDRs), in
terms of a single symmetry Tβ , which can be considered
as the fundamental property of quantum systems in thermal
equilibrium. This perspective is especially fruitful within the
field-theoretical formalism, where various tools have been
developed to work out the consequences of the symmetries
of the action of a given system. In this context, for example,
the hierarchy of generalized quantum FDRs can be derived
straightforwardly as the Ward-Takahashi identities associated
with the thermal symmetry (see Secs. V and VI A). In addition,
the Schwinger-Keldysh formalism provides a convenient
framework to take advantage of very powerful and efficient
renormalization-group techniques for studying the possible
emergence of collective behaviors and for monitoring how
the effective description of a statistical system depends on the
length and time scale at which it is analyzed. The possible scale
dependence of the restoration/violation of the equilibrium
symmetry could shed light on the mechanism underlying the
thermalization of extended systems.

As we mentioned above, the idea of viewing thermal
equilibrium as a symmetry is certainly not new. However,
while previous studies were primarily concerned with classical
statistical physics [44–49], here we generalize this idea to the
quantum case.

c. Unification of the quantum and classical description
of equilibrium systems. As pointed out in Ref. [58], the
equilibrium symmetry reduces, in the classical limit, to a
known symmetry that characterizes thermal equilibrium in
open classical systems [44–49]. In Sec. IV C, we review the
classical limit of the Schwinger-Keldysh action for a system
coupled to a thermal bath [55,56] and we discuss in detail how
the classical equilibrium symmetry is recovered. The compar-
ison with the classical symmetry highlights some remarkable
differences with the quantum case: in fact, in classical systems,
thermal equilibrium can be regarded as a consequence of
detailed balance, which, in turn, is related to the property of
microreversibility of the underlying microscopic dynamics. In
fact, the classical equilibrium symmetry is derived by requiring
the dynamical functional to satisfy these properties [46–48].
For quantum system, instead, an analogous satisfactory defi-
nition of detailed balance and microreversibility is seemingly
still missing, leaving open the important question about the
very nature of thermal equilibrium of quantum systems.

d. Efficient check for the presence of thermodynamic equi-
librium conditions. The symmetry is of great practical value, as
it reduces answering the question about the possible presence
of thermodynamic equilibrium to verifying a symmetry of
the Schwinger-Keldysh action instead of having to check
explicitly the validity of all FDRs. In particular, we show in
Sec. VI B that the Markovian quantum dynamics described
by a Lindblad master equation [59,60] explicitly violates
the symmetry. This reflects the driven nature of the system;
indeed, the Lindblad equation may be viewed as resulting from
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the coarse graining of the evolution of an underlying time-
dependent system-bath Hamiltonian, with a time dependence
dictated by coherent external driving fields.

Moreover, in Sec. VI C, we consider a bosonic mode
coupled to two baths at different temperatures and chemical
potentials: in this case, the resulting net fluxes of energy or
particles drive the system out of equilibrium with a consequent
violation of the symmetry.

e. A new perspective on the construction of the Schwinger-
Keldysh action. At the conceptual level, the existence of the
symmetry provides a new perspective on the construction
of Schwinger-Keldysh functional integrals. In particular, as
customary in quantum field theories, one may consider the
symmetry as the fundamental principle; indeed, it is explicitly
present for any time-independent (time-translation invariant)
Hamiltonian that generates the dynamics of a system at the
microscopic scale. Then, requiring the symmetry to hold
for the full effective Keldysh action at a different scale
fixes the admissible dissipative terms so as to satisfy FDRs
between response and correlation functions of arbitrary order;
translating back into the operator language, this provides a
concrete hint why stationary density matrices of the form
ρ ∼ e−βH are favored over arbitrary functions ρ(H ) for the
description of static correlation functions.

III. SYMMETRY TRANSFORMATION

As we anticipated above, a convenient framework for the
theoretical description of the time evolution of interacting
quantum many-body systems is provided by the Schwinger-
Keldysh functional integral formalism [55,56]. It offers full
flexibility in describing both nonequilibrium dynamics and
equilibrium as well as nonequilibrium stationary states, which
is out of reach of the finite-temperature Matsubara technique
[61]. In addition, it is amenable to the well-established
toolbox of quantum field theory. The simplest way to illustrate
the basic ingredients of the Schwinger-Keldysh formalism
is to consider the functional integral representation of the
so-called Schwinger-Keldysh partition function Z. For a
system with unitary dynamics generated by the Hamiltonian
H and initialized in a state described by a density matrix
ρ0, this function is given by Z = tr (e−iH tρ0e

iHt ). (Note
that, as it stands, Z = 1; however, it is instructive to focus
on its structure independently of its actual value.) In this
expression, time evolution can be interpreted as occurring
along a closed path: starting in the state described by ρ0,
the exponential e−iH t to the left of ρ0 corresponds to a
“forward” evolution up to the time t , while the exponential
eiHt to its right corresponds to an evolution going “backward”
in time. The trace tr (· · · ) connects, at time t , the forward
with the backward branch of the time path and therefore it
produces a closed-time-path integral. Along each of these
two branches, the temporal evolution can be represented in a
standard way as a functional integral of an exponential weight
eiS over suitably introduced (generally complex) integration
variables, i.e., fields, ψ+(t,x) and ψ−(t,x) on the forward and
backward branches, respectively. These fields are associated
with the two sets of coherent states introduced as resolutions
of the identity in-between two consecutive infinitesimal time
evolutions in the Trotter decomposition of the unitary temporal

evolution along the two branches [55,56]. The resulting
Schwinger-Keldysh action S is a functional of ψ±(t,x) and
it is generally obtained as a temporal integral along the close
path in time of a Lagrangian density. (Explicit forms of S will
be discussed further below, but they are not relevant for the
present discussion.) By introducing different (time-dependent)
sources J± for the fields ψ± on the two branches, the partition
function Z[J+,J−] is no longer identically equal to 1 and its
functional derivatives can be used in order to generate various
time-dependent correlation functions (see, e.g., Refs. [55–57]).

As we show further below in Sec. V, a system is in
thermodynamic equilibrium at a temperature T = 1/β, if the
corresponding Schwinger-Keldysh action is invariant under
a certain transformation Tβ that acts on the fields along the
closed time path. In order to specify the form of Tβ , we
focus on the dynamics of a single complex bosonic field,
which is sufficiently simple but general enough to illustrate
conveniently all the basic ideas. In this case, the transformation
Tβ turns out to be composed of a complex conjugation1 of the
field components ψσ with σ = ±, an inversion of the sign of
the time variable, and a translation of the time variable into the
complex plane by an amount iσβ/2, i.e.,

Tβψσ (t,x) = ψ∗
σ (−t + iσβ/2,x),

Tβψ∗
σ (t,x) = ψσ (−t + iσβ/2,x).

(1)

For convenience and future reference, we provide an al-
ternative compact representation of the action of Tβ both
in the time and real space domain (t,x) as well as in the
frequency-momentum domain (ω,q). The convention for the
Fourier transforms of the fields, conveniently collected into
two spinors �σ (t,x) = (ψσ (t,x),ψ∗

σ (t,x))T , is the following:

�σ (t,x) =
∫

ddq
(2π )d

∫ +∞

−∞

dω

2π
ei(q·x−ωt)�σ (ω,q). (2)

In this relation, d is the spatial dimensionality of the system,
and the field spinors in the frequency-momentum domain
are defined as �σ (ω,q) = (ψσ (ω,q),ψ∗

σ (−ω,−q))T . Accord-
ingly, we can write the symmetry transformation Tβ in the
form

Tβ�σ (t,x) = �∗
σ (−t + iσβ/2,x) = σx�σ (−t + iσβ/2,x),

Tβ�σ (ω,q) = e−σβω/2�∗
σ (ω, − q) = e−σβω/2σx�σ (−ω,q),

(3)

where we introduced the Pauli matrix σx = (0 1
1 0). The

transformation in real time requires evaluating the fields for
complex values of the time argument, which in principle is not
defined; however, the complementary representation in Fourier
space indicates how this can be done in practice; in frequency
space, the shift of time by an imaginary part iσβ/2 amounts
to a multiplication by a prefactor e−σβω/2.

As usual within the Schwinger-Keldysh formalism, it is
convenient to introduce what are known as classical and

1In Ref. [58], the symmetry is stated in terms of the real phase
variables of complex fields. Then, the complex conjugation in Eq. (1)
should be replaced by a change of sign.

134307-3



L. M. SIEBERER et al. PHYSICAL REVIEW B 92, 134307 (2015)

quantum fields. These are defined as the symmetric and
antisymmetric combinations, respectively, of fields on the
forward and backward branches:

φc = 1√
2

(ψ+ + ψ−), φq = 1√
2

(ψ+ − ψ−). (4)

Combining these fields into spinors 
ν(ω,q) =
(φν(ω,q),φ∗

ν (−ω,−q))T —where the index ν = c,q

distinguishes classical and quantum fields—the transformation
Tβ takes the following form, which we report here for future
reference:

Tβ
c(ω,q) = σx(cosh(βω/2)
c(−ω,q)

− sinh(βω/2)
q(−ω,q)),
(5)

Tβ
q(ω,q) = σx(− sinh(βω/2)
c(−ω,q)

+ cosh(βω/2)
q(−ω,q)).

We anticipate and summarize here a number of properties
of the equilibrium transformation Tβ , which are going to be
discussed in detail in Secs. IV and V.

(1) The transformation is linear, discrete and involutive,
i.e., T 2

β = 1. The last property follows straightforwardly from
Eqs. (1) or (3). Concerning linearity, note in particular that
the complex conjugation in Eq. (1) affects only the field
variables, i.e., Tβλψσ (t,x) = λψ∗

σ (−t + iσβ/2,x) for λ ∈ C
(see Sec. V B).

(2) Tβ can be written as a composition Tβ = T ◦ Kβ of
a time-reversal transformation T and an additional trans-
formation Kβ , which we will identify in Sec. V C as the
implementation of the KMS condition within the Schwinger-
Keldysh functional integral formalism.

(3) Tβ is not uniquely defined, due to a certain freedom
in implementing the time-reversal transformation within the
Schwinger-Keldysh functional integral formalism, as dis-
cussed in Sec. V B. However, without loss of generality, we
stick to the definition provided by Eq. (1) and we comment on
the alternative forms in Sec. V B.

(4) The transformation Tβ leaves the functional measure
invariant, i.e., the absolute value of the Jacobian determinant
associated with Tβ is equal to one, as discussed in Sec. V D
and shown in Appendix D.

(5) The various forms of the transformation Tβ presented
above apply to the case of a system of bosons with vanishing
chemical potential μ. In the presence of μ 	= 0, Eq. (1)
becomes

Tβ,μψσ (t,x) = eσβμ/2ψ∗
σ (−t + iσβ/2,x),

Tβ,μψ∗
σ (t,x) = e−σβμ/2ψσ (−t + iσβ/2,x),

(6)

with a consequent modification of Eq. (3), which can be easily
worked out. After a transformation to the basis of classical and
quantum fields according to Eq. (4), this modification amounts
to shifting the frequency ω in the arguments of the hyperbolic
functions in Eq. (5), i.e., to ω → ω − μ.

(6) In taking the Fourier transforms in Eqs. (3) and (5)
one implicitly assumes that the initial state of the system was
prepared at time t = −∞, while its evolution extends to t =
∞. In the following, we will work under this assumption,
commenting briefly on the role of an initial condition imposed
at a finite time in Sec. IV C.

IV. INVARIANCE OF THE SCHWINGER-KELDYSH
ACTION

As we demonstrate further below in Sec. V, a system is in
thermodynamic equilibrium if its Schwinger-Keldysh action
S is invariant under the transformation Tβ , i.e.,

S[�] = S̃[Tβ�], (7)

where, for convenience of notation, � = (ψ+,ψ∗
+,ψ−,ψ∗

−)T

collects all the fields introduced in the previous section into a
single vector. The tilde in S̃ indicates that all the parameters
in S that are related to external fields have to be replaced by
their corresponding time-reversed values (e.g., the signs of
magnetic fields have to be inverted), while in the absence of
these fields the tilde may be dropped.

According to the construction of the Schwinger-Keldysh
functional integral outlined at the beginning of the previous
section, the action corresponding to the unitary dynamics of a
closed system is completely determined by its Hamiltonian
H . The initial state ρ0 of the dynamics enters the func-
tional integral as a boundary condition: if the system was
prepared in the state ρ0 at the time t = 0, the matrix element
〈ψ+,0|ρ0|ψ−,0〉, where |ψ±,0〉 are coherent states, determines
the (complex) weight of field configurations at the initial time
with ψ±(0,x) = ψ±,0(x).

In Sec. IV A, we demonstrate the invariance of the
Schwinger-Keldysh action associated with a time-independent
Hamiltonian dynamics under the transformation Tβ . In partic-
ular, this invariance holds for for any value of β. Interestingly
enough, the Schwinger-Keldysh action associated with a
Hamiltonian of a simple noninteracting system—which can
be diagonalized in terms of single-particle states—turns out to
be invariant under an enhanced version of this transformation,
involving possibly different values of β for each of the
single-particle states (see Sec. IV A 3). A constraint on the
value of β, however, comes from the inclusion of the boundary
condition for the functional integral that specifies the initial
state ρ0.

Here, we are interested in the stationary state of the system,
which is generically reached a long time after its preparation in
the state ρ0. Hence, we assume that this was done in the distant
past, i.e., at t = −∞, and that the evolution of the system
extends to t = +∞ (cf. point (6) in Sec. III). In the con-
struction of the Schwinger-Keldysh functional integral for a
system in thermodynamic equilibrium [55,56], a convenient
alternative approach for specifying the appropriate boundary
conditions corresponding to the initial equilibrium state ρ0

of the system, consists in adding infinitesimal dissipative
contributions to the action. Usually [55,56], the form of these
contributions is determined by the requirement that the Green’s
functions of the system are thermal with a specific temperature
T = 1/β, i.e., that they obey a fluctuation-dissipation relation;
once these terms are included, any reference to ρ0 may be
omitted. We demonstrate in Sec. IV B 1, that these dissipative
contributions are invariant under Tβ with exactly the same β.
Hence the thermal symmetry provides a different perspective
on the construction of the Schwinger-Keldysh functional
integral for a system in thermal equilibrium: while the unitary
contributions are fixed by the Hamiltonian of the system, the
requirement of invariance under the symmetry transformation
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Tβ can be taken as the fundamental principle for specifying the
structure of the dissipative terms that can occur in the action
if the system is in thermodynamic equilibrium at temperature
T = 1/β. We emphasize that only the simultaneous presence
in the Schwinger-Keldysh action of both the Hamiltonian and
the dissipative contributions yields a well-defined functional
integral: the dissipative terms in the microscopic action are
taken to be infinitesimally small as for an isolated system,
where they merely act as a regularization, which renders the
functional integral finite and ensures that the bare response and
correlation functions satisfy an FDR; on the other hand, if the
isolated system is composed of a small subsystem of interest
and a remainder which can be considered as a bath, then finite
dissipative contributions emerge in the Schwinger-Keldysh
action of the subsystem after the bath has been integrated out.
This scenario is considered in Secs. IV C and VI B. Moreover,
the system can act as its own bath: in fact, one expects the
effective action for the low-frequency and long-wavelength
dynamics of the system to contain dissipative contributions
that are due to the coupling to high-frequency fluctuations. In
Sec. IV B, we explicitly construct dissipative terms that comply
with the thermal symmetry Tβ . In particular, we find that the
noise components associated with these dissipative terms must
necessarily have the form of the equilibrium Bose-Einstein
distribution function, as appropriate for the bosonic fields
which we are presently focusing on.

A. Invariance of Hamiltonian dynamics

The Schwinger-Keldysh action S associated with the
dynamics generated by a time-independent Hamiltonian H can
be written as the sum of a “dynamical” and a “Hamiltonian”
part, Sdyn and SH, respectively,

S = Sdyn + SH, (8)

Sdyn = 1

2

∫
t,x

(
�

†
+iσz∂t�+ − �

†
−iσz∂t�−

)
, (9)

SH = −
∫

t

(H+ − H−), (10)

where we used the shorthand
∫
t
≡ ∫ ∞

−∞ dt,
∫

x ≡ ∫
ddx, while

σz = (1 0
0 −1) is the Pauli matrix. This structure of the

Schwinger-Keldysh action results from the construction of
the functional integral outlined at the beginning of Sec. III.
In particular, the Hamiltonians H± are matrix elements of the
Hamiltonian operator H in the basis of coherent states |ψ±〉,
i.e., Hσ = 〈ψσ |H |ψσ 〉/〈ψσ |ψσ 〉, where the amplitudes ψ± of
the coherent states are just the integration variables in the
functional integral [55,56]. Henceforth we focus on the case
of a bosonic many-body system with contact interaction, i.e.,
with Hamiltonians in Eq. (10) given by

Hσ =
∫

x

(
1

2m
|∇ψσ |2 + τ |ψσ |2 + λ|ψσ |4

)
. (11)

Here, m is the mass of bosons, τ the chemical potential,
and λ parametrizes the strength of the s-wave two-body
interaction. We consider this case because it is sufficiently
general for the purpose of illustrating all basic concepts
associated with the thermal symmetry and, in addition, in

the classical limit it allows a direct comparison with classical
stochastic models [62,63], where φc = (ψ+ + ψ−)/

√
2 plays

the role of a bosonic order parameter field. This point is
elaborated in Sec. IV C.

Below we show that the invariance of the Schwinger-
Keldysh action S under Tβ is intimately related to the structure
of the action, i.e., to the fact that it can be written as the sum
of two terms containing, separately, only fields on the forward
and backward branches.

1. Dynamical term

To begin with, we show that the dynamical contribution
Sdyn to the Schwinger-Keldysh action S given in Eq. (9), is
invariant under Tβ , i.e., that Sdyn[Tβ
] = Sdyn[
]. To this
end, it is convenient to express the original fields {ψ±,ψ∗

±}
in the so-called Keldysh basis, which is formed by the
classical and quantum components {φc,q,φ

∗
c,q} introduced in

Eq. (4). For the sake of brevity, we arrange these fields
into the vector 
 = (φc,φ

∗
c ,φq,φ

∗
q )T . Rewriting Sdyn in these

terms and in frequency-momentum space, we obtain [
∫
ω,q ≡∫

dω ddq/(2π )d+1]

Sdyn[Tβ
] =
∫

ω,q
ω

[
cosh2(βω/2)
†

q(ω,q)σz
c(ω,q)

− sinh2(βω/2)
†
c(ω,q)σz
q(ω,q)

+ sinh(βω/2) cosh(βω/2)

×(
†
c(ω,q)σz


†
c(ω,q) − 
†

q(ω,q)
q(ω,q))
]
.

(12)

The combination 
†
ν(ω,q)σz
ν(ω,q) = φ∗

ν (ω,q)φν(ω,q) −
φν(−ω,−q)φ∗

ν (−ω,−q) with ν = c,q is an odd function
of (ω,q), whereas ω sinh(βω/2) cosh(βω/2) is even, and
therefore the integral over the product of these terms vanishes.
Then, with some simple algebraic manipulation, the first two
terms in Eq. (12) are recognised to be nothing but Sdyn[
],
from which the invariance of Sdyn follows straightforwardly.
Note that this property holds independently of the value of the
parameter β in the transformation Tβ .

2. Hamiltonian contribution

We consider now the transformation of the Hamiltonian
contribution SH in Eq. (10) under Tβ .

First, we argue that the strictly local terms (i.e., those which
do not involve spatial derivatives) in the Hamiltonian (11) are
invariant under Tβ ; then, we extend the argument to the case
of quasilocal terms such as the kinetic energy contribution
∝|∇ψ±|2 or nonlocal interactions. Consider a contribution to
SH of the form

V[�] =
∫

t,x
(v+(t,x) − v−(t,x)), (13)

where vσ (t,x) = (ψ∗
σ (t,x)ψσ (t,x))N is a generic local con-

tribution to the Hamiltonian Hσ and N is an integer. In
particular, for N = 1 we obtain the term proportional to the
chemical potential in Eq. (11), while for N = 2, V[�] is
just the contact interaction. Since vσ (t,x) is real, under the
transformationTβ [see Eq. (6)] only its time argument is shifted
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according to Tβvσ (t,x) = vσ (−t + iσβ/2,x) and, taking the
Fourier transform with respect to time of this relation, one
eventually finds

Tβvσ (ω,x) = e−σβω/2vσ (−ω,x). (14)

Accordingly, the vertex (13) is invariant under Tβ : in fact,
being local in time, its diagrammatic representation—where
the fields ψσ (t,x) and ψ∗

σ (t,x) are represented by ingoing and
outgoing lines, respectively—satisfies frequency conservation
for in- and outgoing lines, as can be seen by taking the
Fourier transform of each of the fields in vσ (t,x) individually.
In particular, the frequency ω in Eq. (14) corresponds to
the difference between the sums of the in- and outgoing
frequencies and only the ω = 0 component contributes to
Eq. (13). [As stated above, we assume that the time integrals in
Eqs. (9), (10), and therefore (14) extend over all possible real
values, i.e., we focus on the stationary state of the dynamics.]
This component, however, is invariant under Tβ as follows
directly from Eq. (14), and hence the same is true for the
vertex, for which V[Tβ�] = V[�].

Clearly, the invariance of the vertex and of the dynamical
term in Eq. (9) relies on the fact that vertices, which are
local in time, obey frequency conservation. (Note that, as in
Sec. IV A 1, this invariance holds independently of the value of
the parameter β in Tβ .) Accordingly, one concludes that any
contribution to the Hamiltonian, which is local in time and
does not explicitly depend on time, is invariant. In particular,
the proof of invariance presented here for the vertex in Eq. (13)
can be straightforwardly extended to expressions containing
spatial derivatives such as the kinetic energy ∝|∇ψ±|2 in
Eq. (11) and even to interactions that are not local in space,
as long as they are local in time, as anticipated above. Note,
however, that these considerations do not rule out the possible
emergence upon renormalization or coarse-graining of terms
that are nonlocal in time, as long as they are invariant under
Tβ . This case is discussed further below in Sec. IV B.

3. Enhanced symmetry for noninteracting systems

The equilibrium transformation Tβ presented in Sec. III
involves a single parameter β. While this form is appropriate
for the Gibbs ensemble describing the thermal equilibrium
state of the interacting many-body system with the Hamil-
tonian in Eq. (11), an enhanced version of the symmetry is
realized in noninteracting systems. Since these systems can be
diagonalized in terms of single-particle states, they are trivially
integrable. Statistically, integrable systems are described by
a generalized Gibbs ensemble [6,8,64–70], constructed from
the extensive number of conserved quantities (with possible
exceptions, see, e.g., Refs. [66–69]). In the case of noninter-
acting systems which we consider here (or, more generally,
for any system that can be mapped to a noninteracting one),
these integrals of motion are just the occupation numbers of
single-particle states. Below we provide an example, in which
the Lagrange multipliers associated with these conserved
occupations enter as parameters in a generalization of the
equilibrium transformation Eq. (3): more specifically, these
multipliers play the role of effective inverse temperatures of
the individual single-particle states. On the other hand, in
nonintegrable cases, the eigenstates of the Hamiltonian are

not single-particle states. Then one generically expects the
stationary state of the system to be in thermal equilibrium at
a temperature T = 1/β, which is determined by the initial
conditions of the dynamics of the system. Accordingly, the
enhanced symmetry that is present in the stationary state of
the noninteracting integrable system breaks down and the
corresponding Schwinger-Keldysh action is invariant under
a single Tβ , only for that specific value of β. This shows
that the transformation Tβ can be generalized in order to
account for the appearance of a generalized Gibbs ensemble
in the trivial case of a system that can be diagonalized in
terms of single-particle states. However, the question whether
the generalized Gibbs ensemble emerging in the stationary
states of generic integrable systems is characterized by a
symmetry involving the Lagrangian multipliers associated
with the respective integrals of motion as parameters, is beyond
the scope of the present work.

As an example, let us consider bosons on a d-dimensional
lattice with nearest-neighbour hopping and on-site interaction
(i.e., the Bose-Hubbard model [71]), with Hamiltonian

H = Hkin + Hint,

Hkin = −t
∑
〈l,l′〉

a
†
l al′ , (15)

Hint = U

2

∑
l

a
†
l al(a

†
l al − 1),

where al is the annihilation operator for bosons on the lattice
site l, t is the hopping matrix element between site l and
its nearest-neighbours l′, while U determines the strength
of on-site interactions. We first consider the case U = 0,
which is trivially integrable: the kinetic energy contribution
to the Hamiltonian is diagonal in momentum space and the
corresponding single-particle eigenstates are the Bloch states.
These are labelled by a quasimomentum q, and in terms of
creation and annihilation operators for particles in Bloch states,
a
†
q and aq, respectively, the kinetic energy can be written as

Hkin =
∑

q

εqa
†
qaq. (16)

Let us now consider a Schwinger-Keldysh functional integral
description of the stationary state of the system. Then,
the kinetic energy in Eq. (16) yields a contribution to the
corresponding action, which reads

SH,kin = −
∫

t

∑
q

εq(ψ∗
q,+ψq,+ − ψ∗

q,−ψq,−), (17)

where ψq,+ and ψq,− are the fields on the forward and
backward branches of the closed time path respectively,
expressed in the basis of Bloch states. SH,kin is invariant under
the transformation of the fields:

Tβq�q,σ (ω) = e−σβqω/2�∗
−q,σ (ω), (18)

where, as in Eq. (3), we arrange the fields in a spinor �q,σ (ω) =
(ψq,σ (ω),ψ∗

−q,σ (−ω))T . The crucial point is that βq can be
chosen to depend on the quasimomentum q, indicating that
to each eigenstate of the system we can assign an individual
“temperature” Tq = 1/βq such that the corresponding mean
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occupation number nq = 〈a†
qaq〉 is determined by a Bose

distribution with precisely this “temperature.”
Let us now consider the opposite limit in which the hopping

amplitude t vanishes while the interaction strength U is finite.
The interaction energy Hint in Eq. (15) is diagonal in the basis
of Wannier states localized at specific lattice sites and the
occupation numbers n̂l = a

†
l al of these sites are conserved,

rendering the system integrable. The generalized symmetry
transformation appropriate for this case can be obtained from
Eq. (18) by replacing the quasimomentum q by the lattice
site index l and by introducing a set of “local (inverse)
temperatures” Tl (βl) instead of Tq (βq).

In the generic case, when both the hopping t and the
interaction U are nonzero, the system is not integrable. Then,
neither the generalized transformation Eq. (18) nor its variant
with local “temperatures” are symmetries of the corresponding
Schwinger-Keldysh action, showing that this case eventually
admits only one single global temperature, which determines
the statistical weight of individual many-body eigenstates of
the system.

B. Dissipative contributions in equilibrium

The functional integral with the action S in Eq. (8), as it
stands, is not convergent but it can be made so by adding
to S an infinitesimally small imaginary (i.e., dissipative)
contribution [55,56]. Within a renormalization-group picture,
this infinitesimal dissipation may be seen as the “initial value,”
at a microscopic scale, of finite dissipative contributions, which
are eventually obtained upon coarse graining the original
action S and which result in, e.g., finite lifetimes of excitations
of the effective low-energy degrees of freedom. The precise
form of the corresponding effective low-energy action and, in
particular, of the dissipative contributions that appear therein,
is strongly constrained by the requirement of invariance under
Tβ of the starting action at the microscopic scale: in fact,
terms that violate this symmetry will not be generated upon
coarse-graining. In the discussion below, we identify those
dissipative contributions to the Schwinger-Keldysh action
which are invariant under Tβ . This allows us to anticipate
the structure of any low-energy effective action possessing
this a symmetry. Note, however, that finite dissipative terms
may appear even at the microscopic scale because of, e.g.,
the coupling of the system to an external bath. Below, we
consider two instances of this case: in Sec. VI B we show that
Tβ cannot be a symmetry of the action if the system is coupled
to Markovian baths and driven—a situation described by a
quantum master equation. Another specific example, in which
the equilibrium symmetry is realized, is the particle number
nonconserving coupling of the Schwinger-Keldysh action
Eq. (8) to an ohmic bath. This situation, which we discuss
in Sec. IV C, is of particular interest, because its classical limit
renders what is known as the dynamical model A [62] with
reversible mode couplings (termed model A∗ in Ref. [63]);
this correspondence allows us to establish a connection with
the known equilibrium symmetry of the generating functional
associated with this classical stochastic dynamics.

Below we discuss dissipative terms of the action invariant
under Tβ , which involve first single particles (being quadratic

in the fields of the Schwinger-Keldysh action) in Sec. IV B 1,
and then their interactions in Sec. IV B 2.

1. Single-particle sector

Dissipative contributions to the single-particle sector of the
Schwinger-Keldysh action, which are invariant under Tβ take
the form

Sd = i

∫
ω,q

h(ω,q)
(
φ∗

q (ω,q)φc(ω,q) − φq(ω,q)φ∗
c (ω,q)

+ 2 coth(βω/2)φ∗
q (ω,q)φq(ω,q)

)
, (19)

with an arbitrary real function h(ω,q), which transforms under
time reversal as h̃(ω,q) = h(ω,−q). When such dissipative
terms are introduced in order to regularize the Schwinger-
Keldysh functional integral, a typical choice for h(ω,q) is
h(ω,q) = ε [55,56] with ε → 0. This ensures that the Green’s
functions in the absence of interactions satisfy a fluctuation-
dissipation relation (we postpone the detailed discussion of
such relations to Sec. VI A). The FDR for noninteracting
Green’s functions, together with the invariance of interactions
under the transformation Tβ shown in Sec. IV A 2, guarantees
that the FDR is satisfied to all orders in perturbation theory
[40].

While there are no restrictions on the form of the function
h(ω,q), the hyperbolic cotangent coth(βω/2) appearing in
the last term of Sd is uniquely fixed by the requirement of
invariance under Tβ , as can be verified by following the line
of argument presented in Appendix A. In particular, Sd with a
certain value of β in the argument of coth(βω/2) is invariant
under Tβ ′ if and only if β ′ = β. This shows that, remarkably,
the appearance of the thermodynamic equilibrium Bose distri-
bution function n(ω) = 1/(eβω − 1) at a temperature T = 1/β

in coth(βω/2) = 2n(ω) + 1, can be traced back to the fact that
Tβ is a symmetry of the action.

Note that for simplicity we considered here only the case
of vanishing chemical potential, μ = 0. For finite μ, the
frequency ω in the argument of the hyperbolic cotangent in
Eq. (19) should be shifted according to ω → ω − μ, as we
discussed in point (5) in Sec. III.

2. Dissipative vertices

The dissipative contributions discussed in the previous
section are quadratic in the field operators and they naturally
occur, e.g., when the system is coupled to a thermal bath
by means of an interaction that is linear in those fields.
However, this type of coupling necessarily breaks particle
number conservation. The number of particles is conserved
if instead the system-bath interaction term commutes with the
total number of particles of the system, N = ∫

x n(x), where
n(x) = ψ†(x)ψ(x) is the local density. In other words, to
ensure particle number conservation, it is necessary that the
coupling terms are at least quadratic in the system operators.
Accordingly, dissipative vertices appear in the Schwinger-
Keldysh action after integrating out the bath degrees of
freedom. Then, the requirement of invariance of these terms
under Tβ allows us to infer a priori their possible structure.
In particular, we find that a frequency-independent number-
conserving quartic vertex [i.e., the dissipative counterpart to
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the two-body interaction ∝|ψσ |4 in the Hamiltonian (11)] is
forbidden by the thermal symmetry.

A generic quartic vertex, which conserves the number of
particles and which is local in time, can be parameterized as

Sd = −i

∫
ω1,...,ω4

δ(ω1 − ω2 + ω3 − ω4)

× [f1(ω1,ω2,ω3,ω4)ψ∗
+(ω1)ψ+(ω2)ψ∗

+(ω3)ψ+(ω4)

+ f2(ω1,ω2,ω3,ω4)ψ∗
−(ω1)ψ−(ω2)ψ∗

−(ω3)ψ−(ω4)

+ f3(ω1,ω2,ω3,ω4)ψ∗
+(ω1)ψ+(ω2)ψ∗

−(ω3)ψ−(ω4)],

(20)

where f1,2,3 are real functions; in order to simplify the notation,
we do not indicate the (local) spatial dependence of the
fields, which is understood together with the corresponding
integration in space. Conservation of particle number is
ensured by the U(1) invariance ψ± �→ eiα±ψ± on each contour
separately, with generic phases α±, while the overall δ function
on the frequencies guarantees locality in time. Restrictions on
the functions f1,2,3 in the generic dissipative vertex in Eq. (20)
follow from the requirements of causality [55], according to
which Sd must vanish for ψ+ = ψ−, and invariance of the
dissipative vertex under the equilibrium transformation. These
conditions are studied in detail in Appendix B. In particular,
we find that they cannot be satisfied if f1,2,3 are constant, i.e.,
do not depend on the frequencies. One particular choice of
these functions that is compatible with the constraints is given
by

f1(ω1,ω2,ω3,ω4) = f2(ω1,ω2,ω3,ω4)

= (ω1 − ω2) coth (β(ω1 − ω2)/2),

f3(ω1,ω2,ω3,ω4) = −4(ω1 − ω2)(n(ω1 − ω2) + 1),

(21)

with the Bose distribution function n(ω). It is interest-
ing to note that, in the basis of classical and quantum
fields, this corresponds to a generalization of Eq. (19) with
h(ω,q) = ω, in which the fields are replaced by the respective
densities defined as ρc = (ψ∗

+ψ+ + ψ∗
−ψ−)/

√
2 and ρq =

(ψ∗
+ψ+ − ψ∗

−ψ−)/
√

2. Another notable property of this so-
lution is that for ω1,2 → 0, we have f1,2(ω1,ω2,ω3,ω4) → 2T

and f3(ω1,ω2,ω3,ω4) → −4T , i.e., these limits of vanishing
frequencies are finite. This implies that the form of Sd with
f1,2,3 given by Eq. (21) is to some extent universal: indeed, it
should be expected to give the leading dissipative contribution
to the Schwinger-Keldysh action of any number-conserving
system in the low-frequency limit. At higher frequencies, other
less universal solutions might also be important and one cannot
make a general statement.

C. Classical limit, detailed balance and microreversibility

A transformation analogous to Tβ—which becomes a
symmetry in equilibrium—was previously derived for the
stochastic evolution of classical statistical systems in contact
with an environment, within the response functional formalism
[44–47,72–75]. This formalism allows one to determine
expectation values of relevant quantities as a functional integral
with a certain action known as response functional, which
can also be derived from a suitable classical limit of the

Schwinger-Keldysh action for quantum systems [55,56]. In
these classical systems, the environment acts effectively as a
source of stochastic noise over which the expectation values
are taken.

Here, we show that the classical limit of Tβ [58] yields
exactly the transformation that becomes a symmetry when the
classical system is at equilibrium [48]. In order to consider this
limit within the Schwinger-Keldysh formalism, it is convenient
to express the Schwinger-Keldysh action in Eq. (8) in terms
of the classical and quantum fields φc and φq , respectively,
defined in Eq. (4), and to reinstate Planck’s constant according
to [55,56]

S → S/�, coth(βω/2) → coth(β�ω/2), φq → �φq.

(22)

Then, the action can be formally expanded in powers of � in
order to take the classical limit � → 0, and the classical part of
the Schwinger-Keldysh action is given by the contribution that
remains for � = 0. Note that the limit � → 0 considered here
is formally equivalent to approaching criticality in equilibrium
at finite temperature T = β−1, for which β� → 0, where � is
the energy gap, which can be read off from the retarded Green’s
function (see, e.g., Ref. [76]). This equivalence conforms
with the expectation that quantum fluctuations generically
play only a subdominant role in determining the critical
behavior of quantum systems at finite temperature. In order
to see the emergence of a stochastic dynamics driven by
incoherent (thermal) noise from a quantum coherent dynamics,
we supplement the Schwinger-Keldysh action in Eq. (8)
(describing the latter) with dissipative terms arising from its
coupling to a bath. For simplicity, we assume this bath to be
characterized by an ohmic spectral density, while the system
is assumed to have the Hamiltonian in Eq. (11). Deferring to
Sec. VI B the discussion of the theoretical description of such
a system-bath coupling, we anticipate here that the resulting
contribution to the Schwinger-Keldysh action can be written as
in Eq. (64), under the assumption that γ (ω)ν(ω) is linear in the
frequency, i.e., γ (ω)ν(ω) = 2κω and by choosing Lσ (ω) →
ψσ (ω,q), with the thermal bath acting independently on each
momentum mode [56]. Then, in the classical limit � → 0, we
find

S =
∫

t,x

†

q

{[
(σz + iκ1)i∂t + ∇2

2m

]

c + i2κT 
q

}

− λ

∫
t,x

(
φ∗2

c φcφq + c.c.
)
. (23)

This action has the form of the response functional of the equi-
librium dynamical models considered in Ref. [62]: it includes
both a linear and a quadratic contribution in the quantum field
φq , but no higher-order terms. After having transformed the
quadratic term into a linear one via the introduction of an
auxiliary field (which is eventually interpreted as a Gaussian
additive noise), this quantum field can be integrated out and
one is left with an effective constraint on the dynamics of the
classical field φc, which takes the form of a Langevin equation;
here:

(i − κ)∂tφc =
(

− ∇2

2m
+ λ|φc|2

)
φc + η, (24)
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where η = η(t,x) is a (complex) Gaussian stochastic noise
with zero mean 〈η(t,x)〉 = 0 and correlations

〈η(t,x)η∗(t ′,x′)〉 = κT δ(t − t ′)δ(d)(x − x′), (25)

〈η(t,x)η(t ′,x′)〉 = 0. (26)

Equation (24) describes the dynamics of the nonconserved
(complex scalar) field φc without additional conserved densi-
ties, which is known in the literature as model A [62]. However,
as can be seen from the complex prefactor i − κ of the time
derivative on the left-hand side of Eq. (24), the dynamics is not
purely relaxational as in model A, but it has additional coherent
contributions, also known as reversible mode couplings [75].
The fact that the simultaneous appearance of dissipative and
coherent dynamics can be described by a complex prefactor of
the time derivative is specific to thermal equilibrium: in fact,
dividing Eq. (24) by i − κ , the reversible and irreversible parts
of the resulting Langevin dynamics are not independent of each
other and in fact their coupling constants share a common ratio
[46,47,77]. Under more general nonequilibrium conditions,
however, these reversible and irreversible generators of the
dynamics have different microscopic origins and no common
ratio generically exists. In the present equilibrium context,
however, the action Eq. (23) corresponds to model A∗ in the
notion of Ref. [63], and the form of the classical transformation
appropriate for this case, which becomes a symmetry in
equilibrium, was given in Ref. [76]. This transformation
emerges as the classical limit of Tβ discussed in the previous
sections [58]. In fact, for β = T −1 → 0 and neglecting the
contribution of the quantum fields in the transformation of
the classical fields (i.e., at the leading order in �), Eq. (5)
becomes

Tβ
c(t,x) = σx
c(−t,x),
(27)

Tβ
q(t,x) = σx

(

q(−t,x) + i

2T
∂t
c(−t,x)

)
,

after a transformation back to the time and space domains.
Upon identifying the classical field 
c with the physical field
and 
q with the response field 
̃, according to 
q = i
̃,
Eq. (27) takes the form of the classical symmetry introduced in
Ref. [48]. Note, however, that the transformation (27) is not the
only form in which the equilibrium symmetry in the classical
context can be expressed. In fact, the transformation of the
response field 
̃ can also be expressed [46,47] in terms of a
functional derivative of the equilibrium distribution rather than
of the time derivative of the classical field ∂t
c as in Eq. (27).
The existence of these different but equivalent transformations
might be related to the freedom in the definition of the response
field, which is introduced in the theory as an auxiliary variable
in order to enforce the dynamical constraint represented by the
Langevin equation [46,47,75,78] such as Eq. (24). This implies
[78] that the related action acquires the so-called Slavnov-
Taylor symmetry. As far as we know, the consequences
of this symmetry have not been thoroughly investigated in
the classical case and its role for quantum dynamics surely
represents an intriguing issue for future studies.

We emphasize the fact that the derivation of the symmetry in
the classical case involves explicitly the equilibrium probabil-

ity density [46,47]. Indeed, the response functional contains
an additional contribution from the probability distribution
of the value of the fields at the initial time, after which the
dynamics is considered. This term generically breaks the time-
translational invariance of the theory [46,47], unless the initial
probability distribution is the equilibrium one. Accordingly,
when the classical equilibrium symmetry Tβ is derived under
the assumption of time-translational invariance, its expression
involves also the equilibrium distribution. In the quantum case
discussed in the previous sections, instead, time-translational
symmetry was implicitly imposed by extending the time
integration in the action from −∞ to +∞, which is equivalent
to the explicit inclusion of the initial condition (in the form
of an initial density matrix) and makes the analysis simpler,
though with a less transparent interpretation from the physical
standpoint.

Although in classical systems this equilibrium symmetry
takes (at least) two different but equivalent forms due to
the arbitrariness in the definition of the response functional
mentioned above, it can always be traced back to the condition
of detailed balance [46–48]. Within this context, detailed
balance is defined by the requirement that the probability of
observing a certain (stochastic) realization of the dynamics
of the system equals the probability of observing the time-
reversed realization, and therefore it encodes the notion of
microreversibility. This condition guarantees the existence
and validity of fluctuation-dissipation relations, which can be
proved on the basis of this symmetry. In addition, detailed
balance constrains the form that the response functional
can take as well as the one of the equilibrium probability
distribution for this stochastic process.

The situation in the quantum case appears to be significantly
less clear. In fact, a precise and shared notion of quantum
detailed balance and quantum microreversibility is seemingly
lacking. The first attempt to introduce a principle of quantum
detailed balance dates back to Ref. [79], where it was derived
from a condition of microreversibility in the context of
Markovian quantum dynamics described by a Lindblad master
equation. The mathematical properties of these conditions
were subsequently studied in detail (see, e.g., Refs. [80–84])
and were shown to constrain the form of the Lindblad super-
operator in order for it to admit a Gibbs-like stationary density
matrix. However, even when this occurs, these operators are
not able to reproduce the KMS condition and the fluctuation-
dissipation relations because of the underlying Markovian
approximation, as we discuss in Sec. VI B.

The notion of microreversibility in quantum systems
appears to have received even less attention, as well as
its connection with some sort of reversibility expressed in
terms of the probability of observing certain “trajectories”
and their time-reversed ones. The definition proposed in
Ref. [79] (also discussed in Ref. [85]) appears to be a natural
generalization of the notion in the classical case, as it relates the
correlation of two operators evaluated at two different times
with the correlation of the time-reversed ones. However, to
our knowledge, the relationship between this condition and
thermodynamic equilibrium has never been fully elucidated.
Although addressing these issues goes well beyond the scope
of the present paper, they surely represent an interesting subject
for future investigations.
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V. EQUIVALENCE BETWEEN THE SYMMETRY
AND THE KMS CONDITION

In this section we show that the invariance of the Schwinger-
Keldysh action of a certain system under Tβ (as specified in
Sec. IV) is equivalent to having multitime correlation functions
of the relevant fields which satisfy the KMS condition [42,43].
As the latter can be considered as the defining property of
thermodynamic equilibrium, this shows that the same applies
to the invariance under the equilibrium symmetry.

The KMS condition involves both the Hamiltonian gener-
ator of dynamics and the thermal nature of the density matrix
describing the stationary state of the system: heuristically
this condition amounts to requiring that the many-body
Hamiltonian that determines the (canonical) population of
the various energy levels is the same as that one ruling the
dynamics of the system. The equivalence proved here allows us
to think of the problem from a different perspective: taking the
invariance under Tβ as the fundamental property and observing
that any time-independent Hamiltonian respects it, we may
require it to hold at any scale, beyond the microscopic one
governed by reversible Hamiltonian dynamics alone. In par-
ticular, upon coarse graining within a renormalization-group
framework, only irreversible dissipative terms that comply
with the symmetry (such as those discussed in Sec. IV B)
can be generated in stationary state and the hierarchy of
correlation functions respect thermal fluctuation-dissipation
relations. The validity of KMS conditions (and therefore of
the symmetry Tβ) hinges on the whole system being prepared
in a canonical density matrix ρ. Accordingly, if the system is
described by a microcanonical ensemble, the KMS condition
holds only in a subsystem of it, which is expected to be
described by a canonical reduced density matrix. Equivalently,
this means that, in a microcanonical ensemble, only suitable
local observables satisfy this condition. In the case of quantum
many-body systems evolving from a pure state, an additional
restriction on the class of observables emerges due to the fact
that, if thermalization occurs as conjectured by the eigenstate
thermalization hypothesis (ETH) [8,86,87], the microcanon-
ical ensemble is appropriate only if the observable involves
the creation and annihilation of a small number of particles
(low-order correlation functions). This was shown to be also
the case for FDRs [88,89]: however, as pointed out above, the
thermal symmetry implies the validity of FDRs involving an
arbitrary number of particles, which leads to the conclusion
that it does not apply to an isolated system thermalizing via the
ETH. In other words, the thermal symmetry implies that the
whole density matrix takes the form of a Gibbs ensemble,
while in thermalization according to the ETH, only finite
subsystems are thermalized by the coupling to the remainder of
the system, which acts as a bath. Thus we see how Hamiltonian
dynamics favors thermal stationary states (with density matrix
ρ proportional to e−βH ) over arbitrary functionals ρ = ρ(H ).
One explicit technical advantage of this perspective based on
symmetry is that it allows us to utilize the toolbox of quantum
field theory straightforwardly and to study the implications of
Tβ being a symmetry; this is exemplified here by considering
the associated Ward-Takahashi identities and by showing the
absence of this symmetry in dynamics described by Markovian
quantum master equations in Sec. VI B. We also note that the

presence of this symmetry provides a criterion for assessing
the equilibrium nature of a certain dynamics by inspecting only
the dynamic action functional, instead of the whole hierarchy
of fluctuation-dissipation relations. In addition, this symmetry
may be present in the actions of open systems with both
reversible and dissipative terms.

In the following, we consider a quantum system with
unitary dynamics generated by the (time-independent) Hamil-
tonian H , which is in thermal equilibrium at temperature T =
β−1 and therefore has a density matrix ρ = e−βH / tr e−βH . The
KMS condition relies on the observation that for an operator
in the Heisenberg representation A(t) = eiHtAe−iH t , one has

A(t)ρ = ρA(t − iβ) (28)

(for simplicity, we do not include here a chemical potential,
but at the end of the discussion we indicate how to account for
it). This identity effectively corresponds, up to a translation
of the time by an imaginary amount, to exchanging the order
of the density matrix and of the operator A and therefore,
when Eq. (28) is applied to a multitime correlation function,
it inverts the time order of the involved times, which can be
subsequently restored by means of the quantum-mechanical
time-reversal operation. Hence, the quantum-mechanical time
reversal naturally appears as an element of the equilibrium
symmetry Tβ , while external fields have to be transformed
accordingly, as indicated in Eq. (7). The application of time
reversal yields a representation of the KMS condition which
can be readily translated into the Schwinger-Keldysh formal-
ism, as was noted in Refs. [38–40]. In particular, it results
in an infinite hierarchy of generalized multitime quantum
fluctuations-dissipation relations that include the usual FDR
for two-time correlation and response functions of the bosonic
fields as a special case (see Ref. [40] and Sec. VI A). One
of the main points of this work is that these FDRs can also
be regarded as the Ward-Takahashi identities associated with
the invariance of the Schwinger-Keldysh action S under the
discrete symmetry2 Tβ and that, conversely, the full hierarchy
of FDRs implies the invariance of S under Tβ .

The argument outlined below, which shows the equivalence
between the KMS condition and the thermal symmetry,
involves several steps: as a preliminary we review in Secs. V A
and V B how time-ordered and antitime-ordered correlation
functions can be expressed using the Schwinger-Keldysh
technique and we specify how these correlation functions
transform under quantum mechanical time reversal. We apply
these results to the KMS condition in Sec. V C: first we
discuss its generalization to multitime correlation functions
and then we translate such a generalization into the Schwinger-
Keldysh formalism. This part proceeds mainly along the lines
of Ref. [40], with some technical differences. Finally, we
establish the equivalence between the resulting hierarchy of
FDRs and the thermal symmetry at the end of Sec. V C.

2Here we used the notion of “Ward-Takahashi identity” in the
slightly generalized sense that encompasses the case of identities
between correlation functions resulting from discrete symmetries
[such as Eq. (3) in Sec. V D, which leads to, cf. Eqs. (47) and (48)]
beyond the usual case of continuous symmetries [78].

134307-10



THERMODYNAMIC EQUILIBRIUM AS A SYMMETRY OF . . . PHYSICAL REVIEW B 92, 134307 (2015)

A. Multitime correlation functions
in the Schwinger-Keldysh formalism

a. Two-time correlation functions. Let us first consider a
two-time correlation function

〈A(tA)B(tB)〉 ≡ tr (A(tA)B(tB)ρ) (29)

between two generic operators A and B (in the following, we
are particularly interested in considering the case in which
A and B are the field operators ψ(x) or ψ†(x) at positions
x = xA and x = xB) evaluated at different times tA and tB ,
respectively, in a quantum state described by the density matrix
ρ. We assume that the dynamics of the system is unitary
and generated by the Hamiltonian H . Then, the Heisenberg
operator A at time tA is related to the Schrödinger operator at
a certain initial time ti < tA via

A(tA) = eiH (tA−ti )Ae−iH (tA−ti ), (30)

with an analogous relation for B.
The two-time correlation function can be represented within

the Schwinger-Keldysh formalism as (see Appendix C)

〈A(tA)B(tB)〉 = 〈A−(tA)B+(tB)〉

≡
∫

D[�]A−(tA)B+(tB)eiS[�],
(31)

irrespective of the relative order of the times tA and tB .
Here, the functional integral is taken over the fields � =
(ψ+,ψ∗

+,ψ−,ψ∗
−)T , and the exponential weight with which

a specific field configuration contributes to the integral is
determined by the Schwinger-Keldysh action S[�]. In the
following, by O+/− we indicate that a certain operator
O has been evaluated in terms of the fields ψ± defined
on the forward/backward branch of the temporal contour
associated with the Schwinger-Keldysh formalism (see, e.g.,
Refs. [55,56]).

b. Multitime correlation functions. We define multitime
correlation functions in terms of time-ordered and antitime-
ordered products of operators

A(tA,1, . . . ,tA,N ) = a1(tA,1)a2(tA,2) · · · aN (tA,N ),

B(tB,1, . . . ,tB,M ) = bM (tB,M )bM−1(tB,M−1) · · · b1(tB,1),
(32)

for ti < tA,1 < · · · < tA,N < tf and ti < tB,1 < · · · < tB,M <

tf , where tf is an arbitrarily chosen largest time. Here,
{an,bm}n,m are bosonic field operators. The specific sequence
of time arguments in A and B (increasing and decreasing
from left to right, respectively) leads to a time-ordering
on the Schwinger-Keldysh contour: indeed, as we show
in Appendix C, the multitime correlation function can be
expressed as a Schwinger-Keldysh functional integral in the
form

〈A(tA,1, . . . ,tA,N )B(tB,1, . . . ,tB,M )〉
= 〈B+(tB,1, . . . ,tB,M )A−(tA,1, . . . ,tA,N )〉. (33)

c. Antitime-ordered correlation functions. Not only time-
ordered correlation functions such as Eq. (33) can be ex-
pressed in terms of functional integrals, but also correlation
functions that are antitime-ordered and which, e.g., are
obtained by exchanging the positions of A(tA,1, . . . ,tA,N ) and

B(tB,1, . . . ,tB,M ) on the left-hand side (l.h.s.) of Eq. (33). The
construction of the corresponding functional integral can be
accomplished with a few straightforward modifications to the
procedure summarized in Appendix C (and presented, e.g., in
Refs. [55,56]). In a stationary state, one has [ρ,H ] = 0 and
all the Heisenberg operators on the l.h.s. of Eq. (33) can be
related to the Schrödinger operators at a later time tf . Then
one finds

〈B(tB,1, . . . ,tB,M )A(tA,1, . . . ,tA,N )〉
= 〈A+(tA,1, . . . ,tA,N )B−(tB,1, . . . ,tB,M )〉Sb

, (34)

where the action Sb describes the backward evolution and it is
related to the action S, which enters the forward evolution in
Eq. (33) simply by a global change of sign Sb = −S.

B. Quantum-mechanical time reversal

In this section, we first recall some properties of the
quantum-mechanical time reversal operation T [41] and then
discuss its implementation within the Schwinger-Keldysh
formalism. T is an antiunitary operator, i.e., it is antilinear (such
that Tλ|ψ〉 = λ∗T|ψ〉 for λ ∈ C) and unitary (T† = T−1).
Scalar products transform under antiunitary transformations
into their complex conjugates, i.e., 〈ψ |A|φ〉 = 〈ψ̃ |Ã|φ̃〉∗,
where we denote by |ψ̃〉 = T|ψ〉 and Ã = TAT† the state
and the Schrödinger operator obtained from the state |ψ〉 and
the operator A, respectively, after time reversal. Accordingly,
expressing the trace of an operator in a certain basis {|ψn〉}n,
one finds

tr A =
∑

n

〈ψn|A|ψn〉 =
∑

n

〈ψ̃n|Ã|ψ̃n〉∗ = (tr Ã)∗. (35)

In the last equality, we used the fact that, due to the unitarity of
T, also the time-reversed set {|ψ̃n〉}n forms a basis. For future
convenience, we shall define the Heisenberg representation
of time-reversed operators such that it coincides with the
Schrödinger one at time −tf , i.e., we set

Ã(tA) = eiH̃ (tA+tf )Ãe−iH̃ (tA+tf ). (36)

Note that this is distinct from the Heisenberg representation
defined in Eq. (30), which coincides with the Schrödinger
one only at time ti . In order to simplify the notation, we shall
not distinguish these two different Heisenberg representations,
assuming implicitly that the latter and the former are used,
respectively, for operators and their time-reversed ones, such
that A(ti) = A while Ã(−tf ) = Ã.

Let us now study the effect of time reversal on the generic
multitime correlation function in Eq. (33). Due to translational
invariance in time, the time arguments of the operators A and
B can be shifted by ti − tf without affecting the correlation
function. Then, by using Eqs. (35) and (36), one has

〈A(tA,1, . . . ,tA,N )B(tB,1, . . . ,tB,M )〉
= 〈Ã(−tA,1, . . . , − tA,N )B̃(−tB,1, . . . , − tB,M )〉∗ρ̃
= 〈B̃†(−tB,1, . . . , − tB,M )Ã†(−tA,1, . . . , − tA,N )〉ρ̃ ,

(37)

where the subscript in 〈· · · 〉ρ̃ indicates that the expectation
value is taken with respect to the time-reversed density
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operator ρ̃ ≡ TρT†, which is time-independent. The expecta-
tion value on the right-hand side (r.h.s.) of Eq. (37) is antitime
ordered and therefore it can be rewritten as a Schwinger-
Keldysh functional integral by using Eq. (34). The l.h.s.,
instead, is time-ordered and therefore it can be expressed as in
Eq. (33), such that Eq. (37) becomes

〈B+(tB,1, . . . ,tB,M )A−(tA,1, . . . ,tA,N )〉
= 〈Ã∗

+(−tA,1, . . . , − tA,N )B̃∗
−(−tB,1, . . . , − tB,M )〉S̃b

,

(38)

where the subscript b in S̃b indicates that the sign of the action
that describes the Hamiltonian evolution on the r.h.s. of this
relation has been reversed, as explained below Eq. (34). The
time-reversed action S̃ differs from the action S associated with
H , which enters [implicitly, cf. Eq. (31)] Eq. (33) because in
S̃ the time evolution is generated by H̃ , the initial state is
the time-reversed density matrix ρ̃, and the integration over
time extends from −tf to −ti . This latter difference becomes
inconsequential as ti → −∞ and tf → ∞.

Let us now consider the case in which A and B are
products of the bosonic field operators ψ and ψ†, such that
A± and B± involve the corresponding products of ψ± and
their complex conjugates. As there are no further restrictions
on A and B, the l.h.s. of Eq. (38) can be generically indicated
as 〈O[�]〉, where O[�] is the product of various fields on the
Schwinger-Keldysh contour corresponding to B+(. . .)A−(. . .),
which according to the notation introduced in Sec. III, are
collectively indicated by � = (ψ+,ψ∗

+,ψ−,ψ∗
−)T . With this

shorthand notation, Eq. (38) can be cast in the form

〈O[�]〉 = 〈O[T�]〉S̃b
, (39)

where the transformation

T�σ (t,x) = �∗
−σ (−t,x) (40)

implements the quantum-mechanical time reversal within
the Schwinger-Keldysh formalism. [With a slight abuse of
notation, the same symbol T is used to indicate here both the
quantum-mechanical time-reversal operator introduced above
and the transformation of fields on the Schwinger-Keldysh
contour in Eqs. (39) and (40).] In Eq. (40), we took into account
that the bosonic field operators in the Schrödinger picture and
in the real-space representation are time-reversal invariant, i.e.,
ψ̃(x) = Tψ(x)T† = ψ(x), which allows us to drop the tilde
on the transformed field on the r.h.s. of Eq. (40). However,
we note that in the last line of Eq. (37) the Hermitean adjoint
operators of those on the l.h.s. appear and this is the reason why
both the r.h.s. of Eq. (38) and the transformation prescription
Eq. (40) involve complex conjugation of the fields. Note that
the time-reversal transformation in Eq. (40) is actually linear,
i.e., the complex conjugation affects only the field variables
and not possible complex prefactors. This follows again from
the last line of Eq. (37): the combination of two antilinear
transformations (time reversal and Hermitean conjugation)
results into a linear one.

Let us mention that while Eq. (38) follows from the second
line of Eq. (37), one could have equivalently taken its first
line as the starting point for deriving a Schwinger-Keldysh
time-reversal transformation. Then one would have been lead

to a different implementation T′ of time reversal:

T′�σ (t,x) = �σ (−t,x), (41)

with an additional overall complex conjugation of the corre-
lation function. In some sense, the transformation T′ is closer
to the common way of representing the quantum-mechanical
time reversal than T is, as it amounts to a mapping t �→ −t

and i �→ −i [41]. For our purposes, however, T is of main
interest, since it is part of the equilibrium transformation as
we describe below.

We finally note that an alternative implementation of the
time-reversal transformation is based on the observation that
the forward and backward branches of the closed-time path
integral are actually equivalent if the dynamics of a system
is time-reversal invariant (TRI) [55]. More specifically, this
means that the Schwinger-Keldysh action is invariant—up to
a global change of sign—upon exchanging the corresponding
fields, i.e., S[ψ+,ψ−] = −S[ψ−,ψ+].

This transformation is partly recovered in Eqs. (39) and
(40): in fact, T in Eq. (40) involves an exchange of the contour
indices, while the corresponding global change of sign in the
action is indicated on the r.h.s. of Eq. (39) by the subscript
S̃b [cf. the definition of Sb below Eq. (34)]. However, the
time reversal transformation T in Eq. (40)—derived from the
quantum-mechanical time-reversal operation—additionally
involves both complex conjugation and the time inversion
t �→ −t .

C. KMS condition and generalized
fluctuation-dissipation relations

The discussion of the previous sections about multitime
correlation functions and the time-reversal transformation
provides the basis for the formulation of the KMS condition
for multitime correlation functions and of its representation
in terms of Schwinger-Keldysh functional integrals. For the
specific case of a four-time correlation function, the KMS
condition is pictorially illustrated in Fig. 1. As described
in the caption, panel (a) summarizes the convention as far
as the forward/backward contours are concerned. Panel (b),
instead, refers to the KMS condition, which, as anticipated
after Eq. (28), involves a contour exchange of the multitime
operators A and B. This exchange is the reason why the arrows
in the second equality in Fig. 1(b) are reversed, since both
A and B turn out to be anti-time ordered when moved to
the opposite contour. The appropriate time-ordering can be
restored by means of the quantum-mechanical time-reversal
transformation introduced in Sec. V B, as indicated by the
third equality in the figure. This is a crucial step, because only
time-ordered correlation functions can be directly translated
into the functional integral by means of the usual Trotter
decomposition, which makes the time-reversal transformation
indispensable in the construction. However, this does not
mean that properties related to equilibrium conditions such as
fluctuation-dissipation relations are fulfilled only if the Hamil-
tonian is invariant under the time-reversal transformation.
Indeed, it turns out that multitime FDRs always involve both
the Hamiltonian and its time-reversed counterpart [40], while
as we show in Sec. VI A the FDR for two-time functions can
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Z = tr( )ρe−iHt eiHt

a1(ta1)a2(ta2)b2(tb2)b1(tb1)

= tr(

= tr(

)

)

(a)

(b)

a1(ta1) a2(ta2)b2(tb2) b1(tb1)

b1(tb1 − iβ/2)b2(tb2 − iβ/2)

e−βH/2

)= tr(

ã†
1(−ta1 − iβ/2)ã†

2(−ta2 − iβ/2)b̃†2(−tb2 + iβ/2)b̃†1(−tb1 + iβ/2)

ρ̃
eiH̃te−iH̃t

ρ

ρ

a1(ta1 + iβ/2) a2(ta2 + iβ/2)

= ã†
2(−ta2 − iβ/2)ã†

1(−ta1 − iβ/2)b̃†1(−tb1 + iβ/2)b̃†2(−tb2 + iβ/2)

FIG. 1. (Color online) (a) Schematic representation of the Schwinger-Keldysh partition function [55,56]. The time evolution of the density
matrix ρ(t) = e−iH tρeiHt can be represented by introducing two time lines to the left and right of ρ. These time lines correspond to the + and −
parts of the Schwinger-Keldysh contour, respectively. (b) Schematic representation of the KMS condition for a four-time correlation function
〈a1(ta,1)a2(ta,2)b2(tb,2)b1(tb,1)〉 with ta,1 < ta,2 and tb,1 < tb,2, where a1,2 and b1,2 are bosonic field operators. As illustrated by the first equality
(light blue box), this correlation function is properly time-ordered and therefore it can be directly represented within the Schwinger-Keldysh
formalism with the operators a1,2 and b1,2 evaluated along the − and + contours, respectively. The thermal density matrix ρ = e−βH / tr e−βH

can be first split into the products of e−βH/2 × e−βH/2 and then these two factors can be moved in opposite directions along the two time lines,
with the effect of adding +iβ/2 and −iβ/2 to the time arguments of a1,2 and b1,2, respectively. After these two factors have been moved to the
end of the timelines, due to the cyclic property of the trace, they combine as represented by the second equality (orange box), where the time
lines now take detours into the complex plane and the overall time order is effectively reversed as indicated by the arrows, which converge
towards ρ instead of departing from it as in the case of sketch (a) or of the first equality of sketch (b). The original time ordering can be
then restored by means of the time-reversal operation T, upon application of which operators are replaced by time-reversal transformed ones,
ρ̃ = TρT†, etc., and the signs of time variables are reversed. In addition, due to the antiunitarity of T, one has to take the Hermitian adjoint
of the expression inside the trace. As a result, the order of operators is inverted and one obtains the third equality (green box), which is again
properly time ordered. This construction can be generalized to arbitrary correlation functions, leading to Eq. (47).

be stated without reference to the time-reversed Hamiltonian,
even if the Hamiltonian is not TRI.

The KMS condition for a two-time function reads3

〈A(tA)B(tB)〉 = 〈B(tB − iβ/2)A(tA + iβ/2)〉. (42)

3We note that this condition is usually expressed in the form

〈A(tA)B(tB )〉 = 〈B(tB )A(tA + iβ)〉.
However, an equilibrium state is also stationary and therefore both
time arguments on the r.h.s. can be translated by −iβ/2, which leads
immediately to Eq. (42). Here, we are assuming that the analytic
continuation of real-time correlation functions into the complex plane
is possible and unambiguous.

This relation can be proven by writing down explicitly the
expectation value on the l.h.s. with ρ = e−βH / tr e−βH and by
inserting the definition of the Heisenberg operators reported
in Eq. (30). The generalization of this procedure to the case of
multitime correlation functions is straightforward and yields

〈A(tA,1, . . . ,tA,N )B(tB,1, . . . ,tB,M )〉
= 〈B(tB,1 − iβ/2, . . . ,tB,M − iβ/2)

×A(tA,1 + iβ/2, . . . ,tA,N + iβ/2)〉. (43)

The real parts of the time variables on the r.h.s. of this
equation are such that the corresponding product of operators
is antitime-ordered (see Fig. 1). According to their definition
in Eq. (32), A and B correspond to products of operators with,
respectively, decreasing and increasing time arguments from
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right to left. Consequently, Eq. (43) can be expressed as a
functional integral by using Eqs. (33) and (34) on the l.h.s. and
r.h.s., respectively. The presence of an imaginary part in the
time arguments of Eq. (43) does not constitute a problem: in
fact, the functional integral along the vertical parts of the time
path in Fig. 1 can be constructed by the same method as the
horizontal parts, which is summarized in Sec. V A. Hence we
find

〈B+(tB,1, . . . ,tB,M )A−(tA,1, . . . ,tA,N )〉
= 〈A+(tA,1 + iβ/2, . . . ,tA,N + iβ/2)

×B−(tB,1 − iβ/2, . . . ,tB,M − iβ/2)〉Sb
. (44)

As we did in Eq. (39) for the case of quantum-mechanical time
reversal, we may rewrite this equation in the form

〈O[�]〉 = 〈O[Kβ�]〉Sb
, (45)

where we define

Kβ�σ (t) = �−σ (t − iσβ/2). (46)

This transformation Kβ can be combined with the quantum
mechanical time reversal T defined in Eq. (40) in order to
express the equilibrium transformation Tβ as Tβ = T ◦ Kβ .4

By using Eq. (39) on the r.h.s. of Eq. (45), one concludes that
the KMS condition implies

〈O[�]〉 = 〈O[Tβ�]〉S̃ , (47)

which indeed provides a generalized FDR for the correlation
function 〈O[�]〉 [40]. For various choices of the observable
O[�], we obtain the full hierarchy of multitime FDRs, which
contains as a special case the usual FDR for two-time functions
(see Sec. VI A). Before demonstrating that this hierarchy is
actually equivalent to the invariance of the Schwinger-Keldysh
action as expressed by Eq. (7), several remarks are in order.

(1) Although by means of the time-reversal transformation
T we were able to restore the time ordering in Eq. (44), Eq. (47)
still involves the time-reversed action S̃ and not the original
action S. However, in practice it will typically be clear how
S̃ can be obtained from S, e.g., by reversing the signs of
external magnetic fields. In the absence of fields, which break
time-reversal invariance the tilde in Eq. (47) may be dropped,
i.e., S̃ = S.

(2) Equation (47) provides a generalized FDR expressed in
terms of products O[�] of fields on the forward and backward
branches, which we collected in the four-component vector
� = (ψ+,ψ∗

+,ψ−,ψ∗
−)T . A more familiar formulation of FDRs

is provided in terms of classical and quantum fields [
c and

q , see Eq. (4)], which allow one to identify correlation
functions (i.e., expectation values involving only classical
fields) and response functions or susceptibilities (expectation
values involving both classical and quantum fields). FDRs
provide relations between correlation and response functions.
In order to express the KMS condition in Eq. (47) in terms of
the classical and quantum fields 
c and 
q [or, alternatively,
of 
 = (φc,φ

∗
c ,φq,φ

∗
q )T ], we note that they are linearly related

4It is straightforward to verify that the transformation T is not
modified in the presence of complex time arguments.

to �+ and �− and therefore a generic product O[
] of such
fields can be expressed as a linear combination (with real
coefficients) of products Oi[�]. According to Eq. (47), the
expectation value of such a combination and therefore 〈O[
]〉
can be expressed as on its r.h.s. in terms of the same linear
combination of 〈Oi[Tβ�]〉S̃ ; since the transformation Tβ is
linear, it immediately follows that this linear combination
is nothing but 〈O[Tβ
]〉S̃ , where the explicit form of the
transformation of the components of the field 
 under Tβ

is reported in Eq. (5). The KMS condition then becomes

〈O[
]〉 = 〈O[Tβ
]〉S̃ . (48)

In Sec. VI A, on the basis of Eq. (48), we derive the typical form
of the FDR, which involves the correlation function of two
classical fields and the susceptibility expressed as a correlation
between one quantum and one classical field.

(3) In the grand canonical ensemble with density matrix
ρ = e−β(H−μN)/ tr e−β(H−μN), where N = ∫

x ψ†(x)ψ(x) is the
particle number operator, the KMS condition (43) has to be
generalized. In order to derive it, we split again the density
matrix into a product e−β(H−μN)/2 × e−β(H−μN)/2 (cf. the
caption of Fig. 1). Then, moving one of the two factors through
each of the blocks of operators A and B as in the second
(orange) box in panel (b) of Fig. 1 has not only the effect of
adding +iβ/2 and −iβ/2 to the time arguments of the field
operators in A and B respectively, as in the case μ = 0; taking
into account the canonical commutation relations, additional
factors appear due to the fact that

eσβμN/2ψ(x)e−σβμN/2 = e−σβμ/2ψ(x),

eσβμN/2ψ†(x)e−σβμN/2 = eσβμ/2ψ†(x),
(49)

where σ = +1 and −1 for operators that are part of the
time-ordered and antitime-ordered blocks of operators A and
B, respectively. The factors e±σβμ/2 can be taken out of the
expectation value in Eq. (43) [corresponding to the trace in
Fig. 1(b)] and do not affect the restoration of time order by
means of the time-reversal transformation, which is illustrated
in the last (green) box in panel (b) of Fig. 1. Therefore, on the
r.h.s. of Eq. (47) they would appear as prefactors, which are
absorbed in the modified transformation given in Eq. (6).

D. From the KMS condition to a symmetry
of the Schwinger-Keldysh action

In the previous section, we showed that the KMS condition
within the Schwinger-Keldysh functional integral formalism
takes the form of Eq. (47) (with Tβ given by either Eqs. (3) or
(6)). Here, we argue further that the latter relation is equivalent
to requiring the invariance of the Schwinger-Keldysh action
under the equilibrium symmetryTβ . To this end, we express the
expectation values on the left and right hand sides of Eq. (47)
as the functional integrals

〈O[�]〉 =
∫

D[�]O[�]eiS[�] (50)

and

〈O[Tβ�]〉S̃ =
∫

D[�]O[Tβ�]eiS̃[�], (51)
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respectively. Performing a change of integration variables
� → Tβ� in the last expression, the argument of O sim-
plifies because Tβ� → T 2

β � = �, since Tβ is involutive (see
Sec. III). In addition, we show in Appendix D that the absolute
value of the determinant of the Jacobian J = δ(Tβ�)/δ�
associated with Tβ equals one, i.e., | DetJ | = 1, and therefore
the integration measure is not affected by the change of
variable. Accordingly, one has

〈O[Tβ�]〉S̃ =
∫

D[�]O[�]eiS̃[Tβ�], (52)

and by comparing this expression to Eq. (50) a sufficient
condition for their equality is indeed Eq. (7), which expresses
the invariance of the Schwinger-Keldysh action under the
equilibrium transformation. Since the observable O[�] in
Eqs. (47), (50), and (52) is arbitrary, the condition is also nec-
essary, which proves that Eqs. (7) and (47) (and, consequently,
the KMS condition) are equivalent.

VI. EXAMPLES

In this section, we discuss some concrete examples of how
the invariance of a certain Schwinger-Keldysh action under
the equilibrium transformation Tβ can be used in practice.
First, we show that Eq. (47) [or, equivalently, Eq. (48)]
contains as a special case the quantum FDR, which establishes
a relationship between the two-time correlation function of
the field φc [see Eq. (4)] and its response to an external
perturbation, which couples linearly to it. This was also noted
in Ref. [40]; however, the conceptual advance done here
consists in realizing that the FDR can be regarded as a Ward-
Takahashi identity associated with the equilibrium symmetry.
In Sec. VI B, instead, we elaborate on the nonequilibrium
nature of Markovian dynamics described by a quantum master
equation (of the Lindblad form), which is seen to violate
explicitly the equilibrium symmetry.

The case of a system that is driven out of equilibrium by
a coupling to different baths is considered in Sec. VI C. In
particular, we discuss a single bosonic mode coupled to two
baths at different temperatures and chemical potentials.

Finally, in Sec. VI D, we briefly list a number of additional
applications of the symmetry. Some of those have been put
into practice in the context of classical dynamical systems,
and could be generalized to the quantum case with the aid of
the symmetry transformation discussed in the present paper.

A. Fluctuation-dissipation relation for two-time functions

Considering the invariance of the Schwinger-Keldysh
action under Tβ in Eq. (5) as the defining property of thermo-
dynamic equilibrium, the generalized FDR in Eq. (48) (which,
as discussed above, is nothing but the Ward-Takahashi identity
associated with the symmetry), emerges as a consequence of
equilibrium conditions. Then, from the generalized FDR in
Eq. (48), the FDR for two-time functions [55,56] can indeed
be derived as a special case. The latter reads

GK (ω,q) = (
GR(ω,q) − GA(ω,q)

)
coth(βω/2)

= i 2 Im GR(ω,q) coth(βω/2), (53)

where the Keldysh, retarded, and advanced Green’s functions
GK , GR , and GA, respectively, are related to expectation values
of classical and quantum fields via

iGK (ω,q)(2π )d+1δ(ω−ω′)δ(d)(q − q′) = 〈φc(ω,q)φ∗
c (ω′,q′)〉,

iGR(ω,q)(2π )d+1δ(ω−ω′)δ(d)(q − q′) = 〈φc(ω,q)φ∗
q (ω′,q′)〉,

iGA(ω,q)(2π )d+1δ(ω−ω′)δ(d)(q − q′) = 〈φq(ω,q)φ∗
c (ω′,q′)〉.

(54)

Here, we are assuming translational invariance in both time
and space, which is reflected in the appearance of frequency-
and momentum-conserving δ functions in the previous ex-
pressions. The FDR valid in classical systems [48,49] can be
recovered from the quantum FDR, Eq. (53), by taking the
classical limit as described in Sec. IV C. Contrary to what
one might suspect at a first glance from the appearance of the
time-reversed action S̃ in the generalized FDR in Eq. (48), the
derivation of the FDR for two-time functions we present below
is valid irrespective of whether the action contains external
fields that break TRI or not.

Let us consider the identity Eq. (48) for specific choices
of the functional O[
]. In particular, by taking O to be equal
to φqφ

∗
q , the expectation value on the l.h.s. of Eq. (48) has to

vanish due to causality [55] and therefore

0 = 〈φq(ω,q)φ∗
q (ω′,q′)〉 = 〈Tβφq(ω,−q)Tβφ∗

q (ω′,−q′)〉S̃ .
(55)

Upon inserting the expression of the fields transformed
according to Eq. (5), one readily finds the FDR

GK
S̃

(ω,q) = (
GR

S̃
(ω,q) − GA

S̃
(ω,q)

)
coth(βω/2) (56)

with the time-reversed action S̃. By setting, instead, O equal to
the product of two classical fields, the l.h.s. of Eq. (48) renders
the Keldysh Green’s function GK in Eq. (54); by using the
explicit form of Tβ in Eq. (5) and the FDR derived above, the
r.h.s. of that equation coincides with GK

S̃
and therefore one

concludes that

GK
S̃

(ω,q) = GK (ω,−q), (57)

which expresses the transformation behavior of the Keldysh
Green’s function under time reversal of the Hamiltonian.
Finally, by replacing O[
] in Eq. (48) with the product
φc(ω,q)φ∗

q (ω′,q) of one classical and one quantum field, the
l.h.s. renders by definition the retarded Green’s function GR

while the r.h.s. can be worked out as explained above. Taking
into account Eq. (56), one can eliminate the Keldysh Green’s
function GK appearing on the r.h.s. in favor of the retarded
and advanced Green’s functions GR and GA, respectively, and
eventually finds

GR
S̃

(ω,q) = GR(ω,−q). (58)

This relation, together with its complex conjugate (which
relates the advanced Green’s functions calculated from the
original and time-reversed Hamiltonians, respectively) and
Eqs. (57) and (56), yields the FDR (53).
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B. Nonequilibrium nature of steady states
of quantum master equations

In classical statistical physics, the coupling of a system to
a thermal bath and the resulting relaxation to thermodynamic
equilibrium are commonly modelled in terms of Markovian
stochastic processes, which can be described, e.g., by suitable
Langevin equations with Gaussian white noise [75]. The
Markovian dynamics of a quantum system, on the other hand,
is described by a quantum master equation in the Lindblad
form [59,60] (or by an equivalent Schwinger-Keldysh func-
tional integral). Under specific conditions on the structure
of the Lindblad operator [84,90], the stationary state of this
dynamics is described by a thermal Gibbs distribution, such
that all static properties (equal-time correlation functions)
are indistinguishable from those in thermodynamic equilib-
rium. In spite of this fact, however, dynamical signatures
of thermodynamic equilibrium such as the KMS condition
(see Sec. V C) and the FDR (see Sec. VI A) are violated
[91,92]. This violation can be traced back to the fact that the
Markovian and rotating wave approximations, which are done
in deriving this quantum master equation cause an explicit
breaking of the equilibrium symmetry as we show in this
section—i.e., although the system is coupled to a bath in
thermodynamic equilibrium, the system itself does not reach
equilibrium. Physically, this can be understood by noting
that the microscopic dynamics underlying an approximate
Markovian behavior in this case is indeed driven. A typical
example in the context of quantum optics is an atom with two
relevant energy levels separated by a level spacing ω0 and
subject to an external driving laser with frequency ν detuned
from resonance by an amount � = ν − ω0 � ω0. Transitions
between the ground and the excited state are made possible
only by the driving laser, and the energy scale that controls the
validity of the Markov approximation in the dynamics of the
two-level system is set by ω0. The excited state is assumed to
be unstable and it can undergo spontaneous decay by emitting
a photon to the radiation field, which acts as a reservoir. This
illustrates the combined driven and dissipative nature of such
quantum optical systems.

In order to investigate in more detail the effect of the
Markovian approximation typically done in the driven context
on the validity of the equilibrium symmetry Tβ , we consider a
system with a certain action S, whose degrees of freedom are
linearly coupled to those of a thermal bath. By integrating out
the latter degrees of freedom, a dissipative contribution to the
original action is generated. In order to simplify the discussion,
we assume that the bath consists of noninteracting harmonic
oscillators bμ,σ (t), labeled by an index μ (with σ referring to
the branch of the Schwinger-Keldysh contour), with proper
frequency ωμ, which are in thermodynamic equilibrium at a
temperature T = 1/β. The Schwinger-Keldysh action of the
bath is then given by

Sb =
∑

μ

∫
t,t ′

(b∗
μ,+(t),b∗

μ,−(t))

×
(

G++
μ (t,t ′) G+−

μ (t,t ′)

G−+
μ (t,t ′) G−−

μ (t,t ′)

)−1(
bμ,+(t ′)

bμ,−(t ′)

)
, (59)

where the Green’s functions iGσσ ′
μ (t,t ′) = 〈bμ,σ (t)b∗

μ,σ ′(t ′)〉
for the oscillators of the bath are fixed by requiring it to be in
equilibrium and therefore they read [55,56]

G+−
μ (t,t ′) = −in(ωμ)e−iωμ(t−t ′),

G−+
μ (t,t ′) = −i(n(ωμ) + 1)e−iωμ(t−t ′),

(60)
G++

μ (t,t ′) = θ (t − t ′)G−+
μ (t,t ′) + θ (t ′ − t)G+−

μ (t,t ′),

G−−
μ (t,t ′) = θ (t ′ − t)G−+

μ (t,t ′) + θ (t − t ′)G+−
μ (t,t ′).

Here, n(ω) = 1/(eβω − 1) is the Bose distribution function
and θ (t) denotes the Heaviside step function, which is
defined as

θ (t) =
{

1, t � 0,

0, t < 0.
(61)

The coupling Ssb between the system and the bath is assumed
to be linear in the bath variables and have a strength√

γμ,

Ssb =
∑

μ

√
γμ

∫
t

(L∗
+(t)bμ,+(t) + L+(t)b∗

μ,+(t)

−L∗
−(t)bμ,−(t) − L−(t)b∗

μ,−(t)). (62)

Here, L±(t) are associated with the quantum jump or Lindblad
operators, which we assume to be quasilocal polynomials of
the system’s bosonic fields {ψ±,ψ∗

±} resulting from normally
ordered operators in a second quantized description [e.g.,
the simplest choice would be L±(t) = ψ±(t,x)]. In order to
simplify the notation, we do not indicate here the spatial
dependence of the fields (both of the system and of the
bath), which is understood together with the corresponding
integration over space. We assume the harmonic oscillators that
constitute the bath to be spatially uncorrelated. The Schwinger-
Keldysh functional integral with total action S + Sb + Ssb

involving both system and bath degrees of freedom is quadratic
in the latter and, therefore, the bath can be integrated out. The
resulting contribution is

S ′ = −
∫ ω0+ϑ

ω0−ϑ

dω γ (ω)ν(ω)
∫

t,t ′
(L∗

+(t),−L∗
−(t))

×
(

G++
ω (t,t ′) G+−

ω (t,t ′)

G−+
ω (t,t ′) G−−

ω (t,t ′)

)(
L+(t ′)

−L−(t ′)

)
, (63)

which eventually sums to S. In deriving this action, we made
the additional assumption that the bath modes {ωμ}μ form a
dense continuum with a spectral density ν(ω) = ∑

μ δ(ω −
ωμ), centered around a frequency ω0, with a bandwidth ϑ (see
further below for its interpretation). Then, sums of the form∑

μ γμ · · · can be approximated as integrals over frequencies∫ ω0+ϑ

ω0−ϑ
dω γ (ω)ν(ω) · · · , where γ (ω) describes the frequency

distribution of the oscillator strengths. Inserting the explicit
expressions (60) for the bath Green’s functions into Eq. (63),
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we obtain

S ′ = −i

∫ ω0+ϑ

ω0−ϑ

dω

2π
γ (ω)ν(ω)

(
n(ω)L∗

+(ω)L−(ω) + (n(ω) + 1)L∗
−(ω)L+(ω) −

∫ ∞

−∞

dω′

2π

{
[θ (ω′ − ω)(n(ω) + 1)

+ θ (−ω′ + ω)n(ω)]L∗
+(ω′)L+(ω′) + [θ (−ω′ + ω)(n(ω) + 1) + θ (ω′ − ω)n(ω)]L∗

−(ω′)L−(ω′)
})

, (64)

where Lσ (ω) describe the quantum jump operators in the
frequency space, and θ (ω) = iP 1

ω
+ πδ(ω) (where P denotes

the Cauchy principal value) is the Fourier transform of θ (t) in
Eq. (61). The terms involving the principal value contribute
to the Hamiltonian part of the total Schwinger-Keldysh action
of the system S + S ′. Assuming that the jump operators are
quasilocal polynomials of the bosonic field operators of the
system, Lσ (ω) transform under Tβ ′ as the field operators, i.e.,

Tβ ′Lσ (ω) = e−σβ ′ω/2L∗
σ (ω) and Tβ ′L∗

σ (ω) = eσβ ′ω/2Lσ (ω);

(65)

inserting these expressions in Eq. (64) one finds that
the contour-diagonal terms (i.e., those proportional to
L∗

σ (ω)Lσ (ω) with σ = ±1, which include, in particular, the
above-mentioned principal value terms) are invariant due to
frequency conservation (cf. the discussion in Sec. IV A 2). On
the other hand, for the contribution that is off-diagonal in the
Schwinger-Keldysh contour one finds

S ′
off-diag[Tβ ′�]

= −i

∫ ω0+ϑ

ω0−ϑ

dω

2π
γ (ω)ν(ω)

[
n(ω)eβ ′ωL+(ω)L∗

−(ω)

+ (n(ω) + 1)e−β ′ωL−(ω)L∗
+(ω)

]
. (66)

If the value of β ′ matches the inverse temperature β = 1/T

of the bath modes, encoded in n(ω), it is easy to see that these
terms are invariant under Tβ because n(ω)eβω = n(ω) + 1. In
summary, one concludes that S ′[Tβ�] = S ′[�] and being also
the action S of the system in isolation invariant under Tβ , the
same holds for the total effective action S + S ′ of the system
in contact with the thermal bath.

In order to understand the effect of the Markovian approxi-
mation in the driven context on the invariance under Tβ , let us
now consider Eq. (64) after this approximation has been done.
In particular, in order for it to be valid, we assume that one
can choose a “rotating” frame in which the evolution of the
system is slow compared to the energy scales ω0 and ϑ that
characterize the bath. This is possible if the system is driven by
an external classical field such as a laser, so that the frequency
of the drive bridges the gap between the natural time scales of
the system and those of the bath. Then, all jump operators in
Eq. (63) may be evaluated at the same time t , since the integral
kernel in Eq. (63) [i.e., the product of bath Green’s functions
Gσσ ′

ω , density of states ν(ω) and oscillator strength distribution
γ (ω), integrated over the bath bandwidth] differs from zero
only within a correlation time τc ≈ 1/ϑ , which is assumed to
be much shorter than the time scale over which Lσ (t) evolves
in the rotating frame. Additionally, we assume that the spectral
density ν(ω) of the states of the bath and the corresponding
coupling strength

√
γ (ω) to the system do not vary appreciably

within the relevant window ω0 − ϑ < ω < ω0 + ϑ , such that

one can set γ (ω)ν(ω) ≈ γ (ω0)ν(ω0). As before, the terms
in Eq. (64), which are diagonal in the contour indices, are
invariant under Tβ [see Eq. (65)] also after the Markovian
approximation; accordingly, we focus on the off-diagonal
terms in Eq. (66), which become

S ′
off-diag[�] = −iγ (ω0)ν(ω0)

∫ ∞

−∞

dω

2π
[n̄L∗

+(ω)L−(ω)

+ (n̄ + 1)L∗
−(ω)L+(ω)], (67)

where n̄ = n(ω0) is the occupation number of the bath
modes at frequency ω0. This makes it clear that ϑ acts as a
high-frequency cutoff, whose precise value, under Markovian
conditions, does not affect the physics. Applying the transfor-
mation Tβ to the fields one has

S ′
off-diag[Tβ�] = −iγ (ω0)ν(ω0)

∫ ∞

−∞

dω

2π
[n̄eβωL+(ω)L∗

−(ω)

+ (n̄ + 1)e−βωL−(ω)L∗
+(ω)]. (68)

In order for S ′
off-diag to be invariant under Tβ , this expression

should be equal to S ′
off-diag[�] in Eq. (67), which requires

n̄eβω = n̄ + 1 for all values of the frequencies ω within the
relevant region ω0 − ϑ < ω < ω0 + ϑ . Clearly, this is not
possible and therefore the equilibrium symmetry is explicitly
broken by the Markovian approximation in the driven context.

C. System coupled to different baths

A simple way to drive a system out of equilibrium is to
bring it in contact with baths at different temperatures and
chemical potentials. In this case, a net flux of energy and
particles is established across the system, preventing it from
thermalizing and, consequently, causing a violation of the
symmetry Tβ . This scenario occurs, e.g., in the context of
quantum electronics in a quantum dot connected by tunnel
electrodes to two leads, between which a finite voltage
difference is maintained. Here, for simplicity, we consider
a minimal bosonic counterpart of this system, constituted
by a single bosonic mode—described by the fields {ψ±,ψ∗

±}
coupled to two baths of noninteracting harmonic oscillators
kept at different temperatures and chemical potentials. We
show explicitly that the nonequilibrium nature of this setup is
accompanied by a violation of the equilibrium symmetry. The
generalization of this argument to a multimode system or to a
larger number of baths is straightforward.

We consider two baths of noninteracting harmonic os-
cillators bi,ν , where the label i = 1,2 denotes the bath to
which the operator belongs, while ν denotes the corresponding
mode with frequency ωi,ν . Each bath is assumed to be in
thermodynamic equilibrium with different inverse tempera-
tures β1, β2 and different chemical potentials μ1, μ2. The
Schwinger-Keldysh action Sb,i of each bath takes the same
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form as in Eq. (59). However, in the present case, the distri-
bution functions ni(ω) entering the bath Green’s functions de-
pend on the chemical potentials μi as ni(ω) = 1/(eβi (ω−μi ) −
1). As in the previous section, the bath is assumed to
be coupled linearly to the system variables L±(t), which
are quasilocal polynomials of the bosonic fields {ψ±,ψ∗

±}.
The dynamics of the system and the baths is then controlled by
a functional integral with the total Schwinger-Keldysh action

S + Sb,1 + Sb,2 + Ssb, where S is to the action of the system,
i.e., the single bosonic mode, and Ssb is the system-bath
coupling. As in the previous section, an effective dynamics
for the system’s variables can be obtained by integrating out
those of the bath. This yields an effective action

S ′ = −i

∫ +∞

−∞

dω

2π
J̃ (ω)

(
ñ(ω)L∗

+(ω)L−(ω) + (ñ(ω) + 1)L∗
−(ω)L+(ω) −

∫ ∞

−∞

dω′

2π

{
[θ (ω′ − ω)(ñ(ω) + 1)

+ θ (−ω′ + ω)ñ(ω)]L∗
+(ω′)L+(ω′) + [θ (−ω′ + ω)(ñ(ω) + 1) + θ (ω′ − ω)ñ(ω)]L∗

−(ω′)L−(ω′)
})

. (69)

The action S ′ is formally similar to the one in Eq. (64), with the
spectral density γ (ω)ν(ω) replaced by the sum of the spectral
densities of the baths J̃ (ω) = J1(ω) + J2(ω), where Ji(ω) =
γi(ω)νi(ω) [with νi(ω) and γi(ω) defined as in Sec. VI B, see
after Eq. (63)]. Analogously, the distribution function n(ω) of
the single bath we considered in Sec. VI B is replaced by the
average of the distribution functions of the two baths i = 1,2
weighted by the relative spectral densities, i.e.,

ñ(ω) = J1(ω)

J1(ω) + J2(ω)
n1(ω) + J2(ω)

J1(ω) + J2(ω)
n2(ω). (70)

Now, we consider how the effective action (69) transforms
under the thermal symmetry Tβ . Since here we are explicitly
considering the presence of chemical potentials, we will use the
generalization of the symmetry Tβ,μ in Eq. (6). As discussed
in Sec. VI B, since L±,L∗

± are quasilocal polynomials of the
bosonic fields of the system, they transform under Tβ,μ as

Tβ,μLσ (ω) = e−σβ(ω−μ)/2L∗
σ (ω),

(71)
Tβ,μL∗

σ (ω) = eσβ(ω−μ)/2Lσ (ω).

Accordingly, the products Lσ (ω)L∗
σ (ω) are invariant under the

symmetry and therefore the contour-diagonal part of S ′, which
contains such terms, is invariant. On the other hand, the part
S ′

off-diag of S ′, which is off-diagonal in the Schwinger-Keldysh
contour [i.e., the first two terms on the r.h.s. of Eq. (69)] is
modified as

S ′
off-diag[Tβ,μ�] =−i

∫ +∞

−∞

dω

2π
J̃ (ω)[ñ(ω)eβ(ω−μ)L+(ω)L∗

−(ω)

+ (ñ(ω) + 1)e−β(ω−μ)L−(ω)L∗
+(ω)]. (72)

Comparing this expression with Eq. (69), one readily sees that
the invariance of this term under Tβ,μ requires ñ(ω)eβ(ω−μ) =
ñ(ω) + 1, and therefore S ′

off-diag is not invariant under Tβ,μ,
unless the two baths have the same temperature and chemical
potential, i.e., β1 = β2 = β and μ1 = μ2 = μ. In this case,
one can easily verify from Eq. (70) that the average distri-
bution function ñ(ω) is just the Bose-Einstein distribution
ñ(ω) = 1/(eβ(ω−μ) − 1) and, as a consequence, ñ(ω)eβ(ω−μ) =
ñ(ω)+1.

In conclusion, when the system is driven out of equilibrium
by a net flux of energy or particles, induced by a difference

between the temperatures or the chemical potentials of the
baths, the total action of the system is no longer invariant
under Tβ,μ, as S ′[Tβ,μ�] 	= S ′[�].

D. Further applications

Among the various possible applications of the symmetry
Tβ , we mention here the following.

a. Symmetry-preserving approximations. Properties of in-
teracting many-body systems can usually be obtained only
by resorting to certain approximations. Then, while FDRs for
correlation and response functions can be established exactly
in the absence of interactions, in an approximate inclusion of
the latter one has to make sure that the FDRs are not broken. In
other words, the approximation should conserve the thermal
symmetry. This requirement for classical statistical systems
has been implemented in the mode-coupling theory of the
glass transition in Ref. [93].

The field-theoretic formalism provides the natural frame-
work for studying the behavior of systems at long wavelengths
and low energies by employing renormalization-group meth-
ods. In any of these methods, an effective description which
is obtained by integrating out fast fluctuations must have the
same symmetries as those present at microscopic scales. For
example, in the case of the functional renormalization group
(for reviews see Refs. [94–98]), this is achieved by choosing an
ansatz to approximate the scale-dependent effective action that
incorporates these symmetries. In this context, the classical
limit of the thermal symmetry discussed here has been used
in functional renormalization group studies of model A [99]
and model C [100]. The quantum thermal symmetry, instead,
is analogously preserved by the ansatz for the effective action
chosen in Ref. [101] (in the form of an FDR), where the scale-
dependent crossover from quantum to classical dynamics is
studied. Alternatively, one can devise approximation schemes
that are compatible with the equivalent KMS conditions, as
discussed in detail in Ref. [40]. Note, however, that in this
work the KMS condition in the form of Eq. (47) is imposed
on the scale-dependent Green’s functions (supplemented by
the corresponding condition on the vertex functions). On the
other hand, the symmetry constraint can directly be applied to
the effective action itself, which is the generating functional
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of vertex functions and contains information on all correlation
functions.

b. Fluctuation relations. Another concrete example of
the usefulness of the thermal symmetry is provided by the
derivation of transient fluctuation relations [102,103] for
time-dependent particle transport in Ref. [58]. There, the
symmetry is generalized in order to account for the presence
of a time-dependent counting field which probes the current
flowing through the system. This generalized symmetry yields
a relation analogous to Eq. (47) (however, formulated in
terms of the generating functional for correlation and response
functions), from which, e.g., a fluctuation relation for the
probability distribution of work done on the system and the
transmitted charge can be derived.

VII. CONCLUSIONS

We demonstrated here that the Schwinger-Keldysh action
describing the dynamics of a generic quantum many-body
system acquires a certain symmetry Tβ if the evolution
occurs in thermal equilibrium. To a certain extent, this
symmetry was discussed in Ref. [58] in the specific context
of fluctuation relations for particle transport. We traced the
origin of this symmetry back to the Kubo-Martin-Schwinger
(KMS) condition, which establishes a relationship between
multitime correlation functions in real and imaginary times
of a system in canonical equilibrium at a certain temperature.
Fluctuation-dissipation relations are then derived as the Ward-
Takahashi identities associated with Tβ . Remarkably, in the
classical limit, this equilibrium symmetry reduces to the one
known in classical stochastic systems, where it was derived
from the assumption of detailed balance. By comparing with
this classical case, important questions on the nature of
equilibrium in quantum systems arise. In particular, while
microreversibility and the detailed balance of the dynamics
are deeply connected to the notion of equilibrium in classical
stochastic systems, an analogous relationship for quantum
systems does not clearly emerge and surely deserves further
investigation.

The equilibrium symmetry Tβ is expected to play a crucial
role in the study of thermalization in quantum systems,
in particular when combined with a renormalization-group
analysis. In fact, on the one hand, it provides a simple but
powerful theoretical tool to assess whether a certain system

is able to reproduce thermal equilibrium. This can indeed
be accomplished by a direct inspection of the microscopic
Schwinger-Keldysh action (or of the effective one generated
after integrating out some degrees of freedom, e.g., along a
renormalization-group flow), which describes the dynamics of
the system, rather than checking, for instance, the validity of
the fluctuation-dissipation relations among various correlation
functions. On the other hand, the equilibrium symmetry might
be useful also in order to investigate or characterize possible
departures from equilibrium and, in this respect, it would be
interesting to consider a case in which the system evolves
in a generalized Gibbs ensemble [6,8,64–70]. Finally, while
we focused here on the case of bosons, the extension of our
analysis to different statistics, for instance, fermionic and spin
systems, represents an interesting issue.
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APPENDIX A: INVARIANCE OF QUADRATIC
DISSIPATIVE CONTRIBUTIONS

In order to show explicitly the invariance of Sd in Eq. (19)
under the transformation Tβ in Eq. (5), it is convenient to
assume that h(ω,q) as a function of the frequency ω has definite
parity and to consider separately the cases of odd and even
functions, ho(−ω,q) = −ho(ω,q) and he(−ω,q) = he(ω,q),
respectively. The generic case follows straightforwardly by
linear combination. We then consider how the actions

Sd = iε

∫
ω,q


†
q(ω,q)

{
ho(ω,q)

he(ω,q)σz

}
× (
c(ω,q) + coth(βω/2)
q(ω,q)), (A1)

where 
 is introduced in Sec. IV A 1, see Eq. (12), with a
certain β transform under a transformation Tβ ′ [see Eq. (5)] of
the fields, with a generic parameter β ′. One finds

Sd [Tβ ′
] = iε

∫
ω,q

(sinh(β ′ω/2)
†
c(−ω,q) + cosh(β ′ω/2)
†

q(−ω,q))σx

{
ho(ω,q)

he(ω,q)σz

}
σx

[
cosh(β ′ω/2)
c(−ω,q)

− sinh(β ′ω/2)
q(−ω,q) coth(βω/2)(− sinh(β ′ω/2)
c(−ω,q) + cosh(β ′ω/2)
q(−ω,q))
]
. (A2)

Note that the terms involving solely the classical field spinor 
c cancel each other only if β ′ = β. Otherwise, terms ∝

†
c
c

remain, which lead to a violation of causality [55]. For β ′ = β instead, we obtain

Sd [Tβ
] = −iε

∫
ω,q

(− sinh(βω/2)
†
c(ω,q) + cosh(βω/2)
†

q(ω,q))

{
ho(ω,q)

he(ω,q)σz

}
× (sinh(βω/2) − coth(βω/2) cosh(βω/2))
q(ω,q). (A3)

By means of the identity

sinh x − coth x cosh x = −1/ sinh x, (A4)

and after some straightforward algebraic manipulations one
eventually finds that Sd [Tβ
] = Sd [
], i.e., that Sd (with a
certain β) is invariant under Tβ .
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APPENDIX B: INVARIANCE OF DISSIPATIVE VERTICES

As pointed out in the main text, a first constraint that has to
be imposed on the functions f1,2,3 appearing in the dissipative
vertex in Eq. (20) follows from the requirement of causality
of the Schwinger-Keldysh action. The latter must vanish when
ψ+ = ψ− [55], which implies the condition∫

ω1,...,ω4

δ(ω1 − ω2 + ω3 − ω4)ψ∗
+(ω1)ψ+(ω2)

×ψ∗
+(ω3)ψ+(ω4)[f1(ω1,ω2,ω3,ω4)

+ f2(ω1,ω2,ω3,ω4) + f3(ω1,ω2,ω3,ω4)] = 0. (B1)

Now let us consider Eq. (20) with the transformed fields Tβ�σ ,
i.e., Sd [Tβ�]. Requiring it to be equal to Sd [�], we find that
the following conditions should be fulfilled:

f1(ω1,ω2,ω3,ω4) − f1(ω2,ω1,ω4,ω3) = 0,

f2(ω1,ω2,ω3,ω4) − f2(ω2,ω1,ω4,ω3) = 0, (B2)

f3(ω1,ω2,ω3,ω4) − eβ(ω1−ω2)f3(ω2,ω1,ω4,ω3) = 0,

where we used the conservation of frequencies implied by
the δ function in Eq. (20) to simplify the exponent in the
last line. Specifically, the necessary conditions are that the
expressions on the l.h.s. of these relations should vanish when
integrated over frequencies after having been multiplied by
the corresponding combinations of fields in Eq. (20) and by
the δ-function on frequencies. The relations in Eq. (B2) are,
however, sufficient conditions for the equality of Sd [Tβ�] and
Sd [�].

To begin with, we investigate the possible existence of
a frequency-independent solution of Eqs. (B1) and (B2) for
f1,2,3; these two equations then imply

f1 = −f2 = constant and f3 = 0. (B3)

However, this solution can be seen to lack physical relevance
for the following reason: any physically sensible dissipative
contribution to the Schwinger-Keldysh action compatible with
the thermal symmetry can be considered as originating from
integrating out a thermal bath which is appropriately coupled
to the system. Anticipating the discussion of Sec. VI B, we note
that such dissipative contributions always involve terms that
are not diagonal in the contour indices [cf. Eq. (63)]. Sd with
f1,2,3 given by Eq. (B3), however, is not of this form. In fact,
inserting Eq. (B3) in Eq. (20) yields a vertex that is equal to the
two-body interaction in Eq. (11) apart from an overall factor of
i, i.e., such a vertex would originate from an imaginary two-
body coupling in a Hamiltonian. Clearly, this would violate
hermiticity, rendering the Hamiltonian unphysical.

While this demonstrates that—as anticipated in the main
text—a frequency-independent number-conserving quartic
vertex is not compatible with equilibrium conditions, solutions
of Eqs. (B1) and (B2) do exist with fi depending on frequency.
One particular solution is given by Eq. (21) of the main text.

APPENDIX C: REPRESENTATION OF CORRELATION
FUNCTIONS IN THE SCHWINGER-KELDYSH

FORMALISM

c. Two-time correlation functions. In order to derive the
representation of a two-time correlation function in the

Schwinger-Keldysh formalism reported in Eq. (31), we insert
the explicit expressions (30) for the Heisenberg operators
A(tA) and B(tB) in the trace that defines the l.h.s. of Eq. (31)
according to Eq. (29). Then, by introducing an additional and
arbitrary time tf such that ti < tA,B < tf , and by using the
cyclic property of the trace, one can write

〈A(tA)B(tB)〉 = tr(e−iH (tf −tB )Be−iH (tB−ti )

× ρeiH (tA−ti )AeiH (tf −tA)). (C1)

The evolution of the density matrix is adjoint to the evolution
of Heisenberg operators, i.e., ρ(t) = e−iH tρeiHt . Thus the
operator e−iH (t−t ′) (eiH (t−t ′)) acting from the left (right) on
the density matrix ρ corresponds to the evolution in time from
t ′ to t . In the correlation function (C1), the time evolution from
ti to tf on the left (right) of ρ is intercepted by the operator
B at time tB (A at time tA). In order to convert the r.h.s. of
Eq. (C1) into a path integral, the standard procedure (see, e.g.,
Refs. [55,56]) to be followed consists in writing the ex-
ponentials of the evolution operators as infinite products
of infinitesimal and subsequent temporal evolutions (Trotter
decomposition), in-between of which one can introduce
completeness relations in terms of coherent states carrying the
additional label “+” on the left of the density matrix, and a “−”
on its right. These coherent states are eventually labeled by a
temporal index on the forward (+) and backward (−) branches
of the close-time path that characterizes the resulting action.
Correspondingly, the operators on the left and on the right of
the density matrix [B and A, respectively, in Eq. (C1)] turn
out to be evaluated on the fields (i.e., coherent states) that are
defined, respectively, on the forward and backward branches of
the closed time path and this yields immediately the equality in
Eq. (31), where the ordering of the matrix elements A− and B+
on its r.h.s. is inconsequential. For the sake of completeness,
we note that the expression as a Schwinger-Keldysh functional
integral of a two-time function is not unique: in fact, it is
straightforward to check that, by rearranging operators in Eq.
(C1), one can equivalently arrive at

〈A(tA)B(tB)〉 =
{〈A+(tA)B+(tB)〉 for tA > tB,

〈A−(tA)B−(tB)〉 for tA < tB.
(C2)

However, as discussed below, the choice of Eq. (31) naturally
lends itself to a generalization to multitime correlation func-
tions.

d. Multitime correlation functions. The functional integral
on the r.h.s. of Eq. (33) relation can be constructed from a
straightforward generalization of Eq. (C1): after a reshuffling
of the operators such that A and B appear respectively
on the left and right of the density matrix—as explained
above—the temporal evolution can be artificially extended
from ti to tf and it is intercepted on the l.h.s. of the density
matrix by operators b1, . . . ,bM at times tB,1, . . . ,tB,M and
on the r.h.s. by operators a1, . . . ,aN at times tA,1, . . . ,tA,N .
Again, the resulting expression for the correlation function
can be converted directly into a path integral by a Trotter
decomposition of the subsequent evolutions and by inserting
completeness relations in terms of coherent states carrying the
label “+” corresponding to the forward contour on the l.h.s. of
the density matrix and the label “−” for the backward contour
on the r.h.s., which eventually leads to Eq. (33).
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APPENDIX D: JACOBIAN OF THE EQUILIBRIUM
TRANSFORMATION

In order to prove that | DetJ | = 1 it is convenient to
calculate the Jacobian J associated with Eq. (3) in frequency
and momentum space, which reads

J (ω,q,ω′,q′) = (2π )dδ(d)(q + q′)J (ω,ω′), (D1)

where

J (ω,ω′) = 2πδ(ω − ω′)

⎛
⎜⎜⎝

0 eβω/2 0 0
e−βω/2 0 0 0

0 0 0 eβω/2

0 0 e−βω/2 0

⎞
⎟⎟⎠.

(D2)

The eigenvectors vi and eigenvalues λi of the frequency-
dependent part, i.e., the solutions of the equation∫

dω′

2π
J (ω,ω′)vi(ω

′) = λivi(ω), (D3)

are

v1(ω) = (0,0,−eβω/2,1)T , v2(ω) = (−eβω/2,1,0,0)T ,
(D4)

v3(ω) = (0,0,eβω/2,1)T , v4(ω) = (e−βω/2,1,0,0)T ,

with λ1 = λ2 = −1, and λ3 = λ4 = 1, so that Det J =
λ1λ2λ3λ4 = 1. As for the momentum-dependent part of the
Jacobian matrix Eq. (D1), we note that its eigenvectors can be
constructed with any function f (q) by taking the even and odd
combinations f (q) ± f (−q):

∫
q′

(2π )dδ(d)(q + q′)(f (q′) ± f (−q′)) = ±(f (q) ± f (−q)).

(D5)

Thus the eigenvalues of this part are ±1, and hence the absolute
value of the Jacobian matrix is | DetJ | = 1.
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