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Understanding the metal-insulator transition in disordered many-fermion systems, both with and without
interactions, is one of the most challenging and consequential problems in condensed matter physics. In this paper,
we address this issue from the perspective of the modern theory of the insulating state (MTIS), which has already
proven to be effective for band and Mott insulators in clean systems. First, we consider noninteracting systems
with different types of aperiodic external potentials: uncorrelated disorder (one-dimensional Anderson model),
deterministic disorder (Aubry-André Hamiltonian and its modification including next-nearest-neighbor hopping),
and disorder with long-range correlations (self-affine potential). We show how the many-body localization tensor
defined within the MTIS may be used as a powerful probe to discriminate the insulating and the metallic phases,
and to locate the transition point. Then, we investigate the effect of weak repulsive interactions in the Aubry-André
Hamiltonian, a model which describes a recent cold-atoms experiment. By treating the weak interactions within
a mean-field approximation we obtain a linear shift of the transition point towards stronger disorder, providing
evidence for delocalization induced by interactions.
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I. INTRODUCTION

In the modern theory of the insulating state (MTIS), which
was initiated by the seminal article written by Kohn [1], the
different behaviors of metals and insulators are attributed to
the different organizations of the electrons in the many-body
ground state. In insulators, the electrons satisfy a many-particle
localization condition [2]. Kohn associated this localization
with the breakup of the many-electron wave function into
terms which are localized in essentially disconnected regions
of the many-particle configuration space. This approach is fun-
damentally different from conventional theories of insulators,
which require the knowledge of, at least, low-lying excitations,
and are tailored towards a specific kind of insulator, depending
on the physical mechanism which triggers the insulating
behavior. Some fundamental developments in the MTIS were
achieved only in the late 1990s (thanks to the works by Resta
and Sorella [3], and others [4,5]). These developments began
with the observation that the polarization is finite in insulator,
while it is ill defined in metals. This led to a definition of
the localization tensor [3] of a many-body system which is
derived from the Berry-phase formulation of the polarization as
understood within the modern theory of the polarization [6–8].
The direct connection between the many-body localization
tensor and the disconnected parts of the many-electron wave
function, as originally defined by Kohn, was demonstrated by
Souza, Wilkens, and Martins [4].

The MTIS is supposed to be adequate to describe any kind
of insulator, independent of the physical mechanism which
induces the insulating behavior. It should apply to band, Mott
[3], Anderson [9], quantum Hall [10], and possibly even to
topological insulators. Therefore, it represents a promising
approach to address the outstanding open problem of the fate
of Anderson localization [11] in the presence of interactions
[12–14].

So far, band and Mott insulators have been analyzed within
the framework of the MTIS [3], both using lattice models
in a tight-binding scheme, and also via ab initio electronic-
structure simulations [9,15–18]. Instead, Anderson insulators

have received little attention. In particular, it is not known,
even for the noninteracting case, whether the many-body
localization tensor may be used to locate the critical point
of the (Anderson) transition which separates the conducting
and the insulating phases in disordered systems.

The first purpose of the paper is to investigate this issue
in the noninteracting case. With this aim, we study the
Anderson transition in noninteracting one-dimensional lattice
models close to half-filling. Since disorder correlations play
a fundamental role in low-dimensional systems (for instance,
they determine the presence or absence of transition points
and mobility edges [19–21]), we consider various models
of disorder and study the many-body localization tensor,
and its reliability, in qualitatively different scenarios. First,
like Ref. [9], we consider one-dimensional lattices with
uncorrelated disorder, where the single-electron orbitals are
expected to be exponentially localized at any nonzero disorder
strength [11]. Then, we focus on the more intriguing and
instructive case of deterministic disorder due to an external
periodic potential whose period is incommensurate with the
lattice. All single-particle orbitals of this Hamiltonian (named
Aubry-André model) become localized, but only beyond a
finite disorder strength [22]. Next, we consider a generalized
Aubry-André model including next-nearest-neighbor hopping,
where a mobility edge separating extended and localized
single-particle orbitals was predicted [23]. Further, the case of
nondeterministic disorder with tunable spatial correlations is
addressed. In particular, we consider a one-dimensional lattice
with a self-affine disordered potential, where both localized
and extended single-particle orbitals were suggested to be
present [24].

The second purpose of this paper is to investigate the effect
of interactions on the Anderson transition. In particular, we
consider spin- 1

2 fermions in the Aubry-André model with
onsite repulsive interactions. This model describes the experi-
mental setup recently implemented with ultracold atomic gases
in bichromatic optical lattices by the group of Bloch [25]. We
employ the Hartree approximation with temperature-annealed
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self-consistent iterations to determine the phase boundary
separating the metallic and the insulating ground states in the
regime of weak interactions.

The paper is organized as follows: In Sec. II, we introduce
the formalism of the MTIS, provide the definition of the
many-body localization tensor, and describe our numerical
procedure to compute it. The analysis of the one-dimensional
Anderson model is reported in Sec. III. The Aubry-André
model is analyzed in Sec. IV and the generalized Aubry-André
model in Sec. V. The one-dimensional Anderson model
with long-range correlated disorder is studied in Sec. VI. In
Sec. VII, we address interaction effects in the Aubry-André
model. In Sec. VIII, we draw the conclusions, focusing on
the utility of the many-body localization tensor to identify
conductor-insulator transitions in disordered systems with and
without interactions.

II. LOCALIZATION TENSOR

In tune with Kohn’s viewpoint on the origin of the insulating
behavior, the authors of Ref. [3] provided a quantitative
definition of the many-body localization tensor λαβ (the indices
α and β indicate spatial directions) rooted in the modern
theory of polarization. This quantity measures the degree of
localization of the particles in the many-body ground state
and permits to discriminate metallic and insulating phases. In
metals λαβ is expected to be divergent in the thermodynamic
limit, whereas it is finite in insulators; thus, it defines a many-
body localization criterion for the ground state, referred to as
Kohn’s localization [9]. The formula for λαβ was originally
obtained from the estimator of the polarization [3], and can
also be derived using a general geometric quantum theory [26].
The cases of periodic and open boundary conditions need to be
treated separately because the position operator is ill defined
in the former case [27].

In the case of periodic boundary conditions, the localization
tensor is obtained through the auxiliary quantity z

(α)
N , which

for a system of N particles is defined as [3,26]

z
(α)
N = 〈�|ei 2π

L
R̂α |�〉, (1)

where |�〉 is the many-body ground state, R̂α is the α

component of the many-body position operator R̂ = ∑N
i=1 r̂i ,

where r̂i is the position operator for particle i, with the index
i = 1, . . . ,N ; L is the linear system size. We consider ground
states of spin- 1

2 fermions, with N/2 up and N/2 down spins.
For noninteracting particles (or mean-field schemes such as
restricted Hartree-Fock [28]), z

(α)
N may be further simplified,

giving [26,28] z
(α)
N = det2[S(α)

jj ′ ], where the matrix [S(α)
jj ′ ] (with

the indices j,j ′ = 1,2, . . . N/2) is the overlap matrix whose
elements are given by

S
(α)
jj ′ =

∫
dr φ∗

j (r)ei 2π
L

rαφj ′(r), (2)

where φj (r) are the single-particle eigenstate spatial wave
functions ordered for increasing energies, and r is the spatial
coordinate. Using this auxiliary quantity, the localization

tensor is now defined as [3,28]

λ2
αβ = − L2

4π2N
ln

|z(α)
N

∣∣∣∣z(β)
N

∣∣∣∣z(αβ)
N

∣∣ , (3)

where z
(αβ)
N is defined as in Eq. (1) with Rα replaced by

Rα − Rβ . In one-dimensional systems N = L for half-filling,
and the only component of the localization tensor is the
one corresponding to α = β = x, which is given by λ2

xx =
−L ln |zN |/2π2.

In the case of open boundaries, the position operator is
well defined [27] and the localization tensor may be evaluated
according to the formula [3,26]

λ2
αβ = (〈�|R̂αR̂β |�〉 − 〈�|R̂α|�〉〈�|R̂β |�〉)/N. (4)

For a system of independent electrons with N/2 spin-up
and N/2 spin-down particles, this may be further simplified to
give the squared localization length as [26]

λ2
αβ = 1

N

∫
dr dr′(r − r′)α(r − r′)β |P (r,r′)|2, (5)

where ρ(r,r′) = 2P (r,r′) is the one-particle density matrix for
a Slater determinant, which is given by [26]

ρ(r,r′) = 2
N/2∑
j=1

φj (r)φ∗
j (r′). (6)

We stress that the length scale λxx is a many-body localization
length. In particular, it is not simply related to the spatial extent
of the single-particle eigenstates. For example, in the case of
noninteracting band insulators, λxx is related to the spread of
the maximally localized Wannier functions [4], rather than
to the Bloch wave functions. Notice that the latter (which
are the single-particle eigenstates) are always extended. There
is no simple analogy with the Wannier functions for the case
of disordered systems.

Further insight into the nature of λ2
xx can be obtained via

substitution of Eq. (6) into Eq. (5). In the one-dimensional
case, one obtains the expression [16]

λ2
xx = 2

N

N/2∑
i=1

[〈φi |x̂2|φi〉 − 〈φi |x̂|φi〉2] − 2

N

∑
i �=j

|〈φi |x̂|φj 〉|2,

(7)

where x̂ is the single-particle position operator. The first sum
in this equation is proportional to the second moment of the
single-particle orbitals. The second sum in Eq. (7) (which
in the literature has been referred to as the covariance term
[16]) originates from the antisymmetry of the many-particle
wave function, and would be absent in a single-particle
analysis. It reflects the correlations between different orbitals.
These two sums are of the same order of magnitude, as
confirmed by inspection of numerical results. In particular,
in the localized phase they both contribute to the value of λ2

xx ,
clearly indicating that this length scale reflects the properties
of the many-particle wave function, even in noninteracting
systems.

In generic insulators, including those with correlations, λ2
xx

is related to measurable quantities such as the mean-square
fluctuations of the polarization and the inverse of the optical
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gap via a conductivity sum rule [4]. Furthermore, it is related to
the spread of the generalized many-body Wannier functions, as
defined in Ref. [4], which are localized in disconnected regions
of the high-dimensional configuration space, establishing a
direct connection with Kohn’s theory of the insulating state.

The formulation to compute the localization length pro-
posed in Refs. [3,26], and briefly summarized in this section,
provides a computational procedure to verify Kohn’s con-
tention that the many-body ground state contains sufficient
information to ascertain whether the system is an insulator
or a conductor, without recourse to the analysis of low-lying
excitations. In this paper, we provide evidence for a variety
of disordered one-dimensional systems that this is indeed the
case. The saturation of λ2

xx in the thermodynamic limit is taken
to signal Kohn’s localization [3,9], whereas its divergence
indicates a conductor.

In our computations, we consider both periodic and open
boundary conditions and employ, respectively, Eqs. (3) and
(5) to compute the localization length. The single-particle
spatial wave functions φj (r), needed to form the many-particle
ground state, are determined from full diagonalization of
the Hamiltonian matrix for a single spinless fermion using
the Armadillo library [29].

III. 1D ANDERSON MODEL

We consider disordered tight-binding models of noninter-
acting spin- 1

2 fermions defined by the Hamiltonian

H = t
∑
r,σ

(b†r,σ br+1,σ + H.c) + W
∑
r,σ

εrnr,σ , (8)

where r = 1, . . . ,L is the discrete index which labels the lattice
sites, L is the linear system size, br,σ (b†r,σ ) is the fermionic
annihilation (creation) operator for a spin σ =↑ , ↓ particle at
site r , and nr,σ = b

†
r,σ br,σ is the corresponding particle number

operator. Here and in the rest of the paper, the lattice spacing
is used as the unit of length, and the (even) total number of
fermions N is fixed. The hopping amplitudes to the nearest
neighbors are set by t , εr is the (random) value of the energy
at lattice site r , while the parameter W sets the strength of the
disorder.

In this section we address, from a many-particle per-
spective, the Anderson model of localization where the
onsite energies {εr} are sampled from a uniform probability
distribution in the interval [−1,+1].

For noninteracting many-particle systems in the ground
state, the wave function is the Slater determinant formed
with the lowest-energy occupied single-particle spin orbitals.
The number of fermions per spin component determines the
Fermi energy. In this paper, we consider the many-particle
ground state of N spin- 1

2 fermions, with N/2 spin-up and N/2
spin-down particles.

We recall that in one-dimensional (1D) systems with
uncorrelated disorder, all single-particle orbitals are localized,
meaning that they are characterized by an exponentially
decaying envelope, for any nonzero disorder strength W . This
follows from the one-parameter scaling theory [30], and was
also shown more rigorously in Refs. [31,32]. According to
Anderson’s criterion of localization [11], which is based on
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FIG. 1. (Color online) Half-filled 1D Anderson model with peri-
odic boundary conditions: squared localization length λ2

xx (log-scale)
as a function of the disorder strength W/t . Data for different systems
sizes L are shown, and their mutual agreement indicates Kohn’s
localization at all disorder strengths. The lines are guides to the eye.
Here and in all figures, the unit of length is the lattice spacing.

the localized shape of the single-particle orbitals at the Fermi
energy, the system should be an insulator at any filling.

In Fig. 1, we show the results for the squared localization
tensor λ2

xx as a function of the disorder strength W/t . The data
corresponding to three large (even) lattice sizes with periodic
boundary conditions are shown. The lattices are half-filled, and
ensemble averaging of the results is performed considering
5–10 realizations of the disorder pattern. The localization
length λxx varies by a few orders of magnitude as we tune the
disorder strength. However, it is always finite and system-size
independent, in the whole range of disorder strengths we
explore, which extends down to the extremely weak disorder
W/t = 0.05. These findings constitute a clear signature of
Kohn’s localization. Also, the variation of λ2

xx with the disorder
strength exhibits no sharp features (as opposed to the results of
the next sections). We verified that the data obtained using open
boundary conditions (not shown) agree with those obtained
using periodic boundary conditions.

Therefore, we conclude that the formalism of the MTIS
predicts the many-particle ground state of the 1D Anderson
model to be an insulator, in agreement with the theory of
Anderson localization and the one-parameter scaling theory
[30]. However, in this latter formalism, the insulating character
is attributed to the localized shape of the single-particle orbitals
in the vicinity of the Fermi energy, while the MTIS deals with
the many-body ground-state wave function.

IV. AUBRY-ANDRÉ MODEL

In this section, we consider the one-dimensional Aubry-
André model [22]. This is described by the Hamiltonian
defined in Eq. (8), but with the onsite energies given by
the incommensurate potential εr = cos(2πrg + θ ), where
g = (

√
5 + 1)/2 is the golden ratio, and θ is an (almost)

arbitrary phase. This is an archetypal model to study Anderson
transitions in lower dimensions; it has been experimentally
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realized with ultracold atomic gases trapped in bichromatic
optical lattices [33], and also in quasiperiodic photonic
lattices [34].

The sinusoidal potential does not display periodicity on a
finite lattice, and so the Aubry-André model is, in this sense,
disordered. However, this disorder is deterministic, and so
is not truly random. In the presence of such “deterministic
disorder,” as opposed to true disorder, the one-parameter
scaling theory of Ref. [30] does not apply. In fact, it is known
that this model hosts a transition from a diffusive phase at weak
disorder to a localized phase at strong disorder. In the former
phase, all single-particle eigenstates are extended over the
whole system (possibly with the exception of a zero-measure
set of nonexponentially localized states) [22]. In the latter
phase, they are all localized if g is a Diophantine number
(which is the case considered here) and for almost every value
of θ [35]. We chose θ = 0. The transition occurs at the critical
disorder strength Wc/t = 2.

In simulations with periodic boundary conditions, we need
to consider system sizes given by Fibonacci numbers, so that
the potential fits the periodicity of the lattice. The results
for the squared localization length λ2

xx of half-filled lattices
are displayed in Fig. 2 (top panel), both for periodic and
open boundary conditions. A sharp variation of λ2

xx occurs in
the close vicinity of W/t = 2. For W/t > 2, the localization
length is finite and does not depend on the system size. This
is a signature of Kohn’s localization. Instead, for W/t < 2, a
very rapid increase of λ2

xx with the system size is observed,
possibly indicating a metallic phase. In order to confirm this
supposition, we perform a detailed analysis of the finite-size
scaling of λ2

xx . Various data sets obtained in the regime W < 2
are shown in Fig. 2 (bottom panel). A best-fits analysis
indicates that these data are accurately described by the
(empirical) power-law fitting functions: λ−2

xx = cL−γ , where
c and γ are the fitting parameters. The exponents obtained
from the fitting procedure are γ = 1.135(2),1.151(2),1.14(1)
(for W/t = 0.2,0.5,1), and γ = 1.008(5) (W/t = 1) for peri-
odic and open boundary conditions, respectively. This fitting
function predicts a divergence of the many-body localization
length in the thermodynamic limit, providing a clear indication
of metallic behavior. The divergence occurs both for periodic
and open boundary conditions, but it is more rapid in the former
case.

It is worth noticing that in the insulating phase the values of
λ2

xx obtained using periodic and open boundary conditions
are indistinguishable within our numerical accuracy. This
independence from the type of boundary conditions is indeed
expected for insulators since in these systems the localization
lengths (and the polarization) are bulk properties, as opposed
to metals where they depend on the size of the system.

The analysis of the Aubry-André model in the framework
of the MTIS provides a clear signature of the metal-insulator
transition at W/t = 2, in agreement with the Anderson
criterion of localization, which also predicts a phase transition
at the same disorder strength since the single-particle orbitals
change from extended to localized [22]. We point out that we
also performed a similar analysis of the Aubry-André model
at different lattice fillings in the regime 0.1 < N/(2L) < 0.9,
without observing measurable shifts of the critical point. This
is also expected following Anderson’s criterion of localization
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FIG. 2. (Color online) Half-filled 1D Aubry-André model. Top
panel: squared localization length λ2

xx (log-scale) as a function of
the quasidisorder strength W/t for periodic (PBC) and open (OBC)
boundary conditions, and for different Fibonacci lengths L of the
chain; the vertical line indicates the critical disorder strength Wc/t =
2, separating extended from localized states. Bottom panel: scaling
of λ−2

xx with the inverse system size 1/L in the conducting phase
Wc/t < 2. The continuous curves represent the power-law fits λ−2

xx =
cL−γ (c and γ are fitting parameters). λ−2

xx diverges with the exponent
γ ≈ 1.14 for PBC (left axis) and with γ = 1.008(5) for OBC (right
axis).

since the single-particle spectrum of this model does not host
mobility edges [22].

V. GENERALIZED AUBRY-ANDRÉ MODEL

Hopping processes beyond nearest-neighbor sites can
dramatically alter the localization properties, even causing
the occurrence of single-particle mobility edges when none
existed in the absence of such effects [23]. In this section,
we consider the generalized Aubry-André model, including
next-nearest-neighbor hopping. With this modification, one
obtains the Hamiltonian H ′ = H + t2

∑
r,σ (b†r,σ br+2,σ + H.c),

where H is defined in Eq. (8), t2 is the energy associated to
hopping to next-nearest neighbors, and the onsite energies εr
are defined by the same incommensurate sinusoidal potential
of the native Aubry-André model considered in the previous
section.
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FIG. 3. (Color online) Generalized 1D Aubry-André model with
next-nearest hopping t2/t = 0.5, at half-filling. Top panel: squared
localization length λ2

xx (log-scale) as a function of the quasidisorder
strength W/t . Data for periodic (PBC) and open boundary conditions
(OBC) are shown for different chain lengths L. The gray vertical stripe
indicates the approximate location of the critical point between the
metallic and the insulating phases. Bottom panel: scaling of inverse
squared localization length 1/λ2

xx with the inverse system size 1/L

at quasidisorder strength in the metallic phase W/t = 1 and in the
insulating phase W/t = 3 (blue dashed lines are a guide to eye).
The continuous red curve represents the power-law fitting function
λ−2

xx = cL−γ , with the best-fit parameter γ = 1.19(2).

This generalized Aubry-André model was studied in
Ref. [23]. The analysis of the single-particle spectrum based on
calculations of the inverse participation ratio (which measures
the spatial extent of the single-particle orbitals) presented
evidence of the presence of mobility edges in a certain regime
of disorder strength W . The location of the mobility edges
was found to vary with W . As in previous sections, here
we analyze the many-particle ground state of the generalized
Aubry-André Hamiltonian in the framework of the MTIS. We
consider various lattice fillings, varying from vanishing density
to full filling. We fix the next-nearest-neighbor hopping at
t2/t = 0.5, a value which was also considered in Ref. [23].
An illustrative example of the dependence of the squared
localization length λ2

xx as a function of W is shown in Fig. 3
(top panel), where the data sets correspond to half-filled
lattices of different sizes L. Here too, as in the case of the
native Aubry-André model, a sharp variation of λxx occurs

 0

 0.25

 0.5

 0.75

 1

 0  1  2  3  4

ρ

W/t

FIG. 4. (Color online) Zero-temperature phase diagram of the
generalized Aubry-André model with t2/t = 0.5, as a function of
filling ρ = N/(2L) and quasidisorder strength W/t . The black points
indicate the phase boundary separating the metallic phase (left) from
the insulating phase (right) obtained within the MTIS. Our results
may be compared with the critical point extracted from the inverse
participation data of Ref. [23] (blue dashed curve).

at a finite disorder strength Wc. For W > Wc, λ2
xx is finite

and system-size independent, indicating Kohn’s localization.
Instead, for W < Wc, λ2

xx rapidly increases as L increases.
In order to assert whether in this regime the ground state is
metallic, we analyze the finite-size scaling of λ2

xx [see Fig. 3
(bottom panel)]. The scaling of the squared localization length
with the system size L turns out to be accurately described
by the empirical fitting function λ−2

xx = cL−γ , where c and
γ are fitting parameters. At W/t = 1, the best fit is obtained
with γ = 1.19(2). This scaling behavior clearly indicates a
divergence of the localization length, which is a signature of
metallic behavior.

In order to approximately pinpoint the phase boundary
between the metal and the insulator, we determine the
largest disorder strength where λxx clearly diverges in the
thermodynamic limit, and the smallest value of W where it
is system size independent, within numerical accuracy. This
allows us to provide a (rather narrow) interval containing the
critical disorder strength Wc. For the case of half-filling, we
obtain Wc/t = 2.275 ± 0.125. This is displayed in Fig. 3 (top
panel) as a gray vertical stripe.

By performing a similar analysis for different fillings, we
obtain the zero-temperature phase diagram as a function of
disorder strength and filling factor ρ = N/(2L) (see Fig. 4).
The phase boundary separating the metallic and the insulating
phases varies rapidly with the filling. Interestingly, these
variations are nonmonotonic: starting from the zero-density
limit, Wc first decreases as the filling increases, then it rapidly
increases when the filling is ρ � 0.5.

These findings obtained within the MTIS can be compared
with the prediction based on the Anderson criterion of local-
ization. We extract the location of the single-particle mobility
edge from the contour plot data of the inverse participation
ratio provided in Ref. [23]. This procedure is based on the
digitalization of the color scale shown in Ref. [23], and so it
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entails some approximations. Vanishing values of the inverse
participation ratio indicate extended single-particle orbitals,
while finite values indicate localized states. The critical filling
factor is obtained when the Fermi energy reaches the mobility
edge. Notice that in Ref. [23] only the single lattice size
L = 500 was considered, without analyzing the finite-size
scaling behavior. From the scattering of their data for L = 500,
we estimate the indeterminacy on the extracted critical filling to
be close to 10%. Therefore, performing a precise quantitative
comparison between our data and those of Ref. [23] may not
be completely justified. However, we see from Fig. 4 that
the overall agreement is good. In particular, certain important
features of the ground-state phase diagram are predicted by
both theories. First, in the low-filling limit both theories predict
the critical disorder to be Wc/t � 3, significantly larger than
in the native Aubry-André model (where Wc/t = 2). Second,
the location of the phase boundary has large nonmonotonic
variations as a function of the filling factor.

VI. 1D ANDERSON MODEL WITH
CORRELATED DISORDER

The properties of the Anderson model defined in Sec. III
are affected in a nontrivial manner by the presence of
spatial correlations in the disorder pattern, in particular if the
correlations have a long-range character [19,24,36,37].

The effect of long-range spatial correlations has been in-
vestigated in several studies, considering in particular disorder
patterns characterized by a power-law spectral density S(k) ∝
k−α , where S(k) is the Fourier transform of the two-point
correlation function 〈εrεr ′ 〉, and the brackets 〈. . .〉 indicate
spatial averaging. The value of the exponent α determines the
extent of the spatial correlations. The case α = 0 corresponds
to uncorrelated disorder. For α > 2, one has energy sequences
with persistent increments [24].

A disorder pattern with power-law spectral density can be
constructed using the following equation [24]:

εr =
L/2∑
k=1

(k−α[2π/L]1−α)1/2 cos (2πrk/L + φk), (9)

where φk (with k = 1, . . . L/2) are random phases sampled
from a uniform distribution in the range [0,2π ]. In our
calculations, we shift the onsite energies in order to obtain a
disorder pattern with zero mean [24]: εave = ∑

r εr = 0. Also,
in order to curtail the growth of the disorder fluctuations as
the system size increases, it is necessary to fix the magnitude
of the variance of the onsite energies at

∑
r (εr − εave)2 = 1,

by appropriately rescaling the onsite energy distribution [24].
Notice that, in the notation of Eq. (8), the disorder-strength
parameter is fixed at W/t = 1. This value is not equal to
the maximum amplitude of the onsite random potential.
This model of correlated disorder is nondeterministic, and
so it differs in nature from the deterministic disorder of the
Aubry-André models described in Secs. IV and V. However,
its properties are also qualitatively different compared to the
uncorrelated Anderson model of Sec. III.

In fact, a renormalization group study [24] predicted that
for large exponents α > αc = 2 the single-particle orbitals
become extended in a finite portion of the energy spectrum

10-5

10-4

10-3

10-2

10-1

100

 0.0001  0.0002  0.0004  0.0008

1/
λ2 xx

1/L

α = 5.0, 4.0, 3.0, 1.0, 0.5

FIG. 5. (Color online) Half-filled 1D Anderson model with long-
range correlated disorder and PBC: scaling of ensemble-averaged
inverse squared localization length 1/λ2

xx as a function of the inverse
chain length 1/L (log-log scale), for various values of the exponent α

characterizing the disorder spectral density. For α = 3.0,4.0,5.0 our
simulations indicate a divergence of λ2

xx with system size, which is
accurately described by the power-law fitting function λ−2

xx = cL−γ (c
and γ are fitting parameters), shown as red solid lines. For α = 0.5,1
the results suggest a saturation of λ2

xx in the thermodynamic limit; the
blue dotted lines indicate linear fits.

close to the band center. This is in sharp contrast with the
case of uncorrelated disorder, where all single-particle orbitals
are localized in one-dimensional systems [30–32]. It is worth
emphasizing that the rescaling of the onsite energies was found
to be crucial for the occurrence of the single-particle extended
states [38–40].

Figure 5 reports the squared localization length λ2
xx in

half-filled chains for various values of the exponent α. The
data points correspond to ensemble averages obtained using
from 10 to 200 realizations of the disorder pattern. The
error bars represent the standard deviation of the population
(instead of the estimated standard deviation of the average)
since, as pointed out in Ref. [41], in the presence of long-
range correlations sample-to-sample fluctuations survive in
the thermodynamic limit.

As seen from the log-log scale of Fig. 5, the data sets
corresponding to large exponents α > αc display a clear
power-law divergence of the localization length λxx with
the system size, indicating metallic behavior in the many-
particle system. Similarly to previous sections, we fit the
disorder-averaged data for α > 2 with the fitting function
λ−2

xx = cL−γ . The best fits are obtained with the exponents γ =
1.26(3),1.130(4),1.127(4), for α = 3.0,4.0,5.0, respectively.
Notice that the latter two data are close to the values found
for the Aubry-André model in the metallic phase. In contrast,
for lower values of α < 2 λ saturates with the increase of
system size. This is confirmed by performing linear fits which
extrapolate to finite values in the thermodynamic limit. These
findings are consistent with the single-particle analysis of
Ref. [24]. Indeed, at half-filling the Fermi energy is close to
the band center, where the extended single-particle orbitals
have been predicted to occur. Notice that, according to
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Ref. [41], ensemble averaging causes the transition between
single-particle localized and delocalized states to morph into
a crossover. However, our aim here is only to identify the two
many-particle regimes with metallic and insulating phases,
without focusing on the precise location of the transition
point. In fact, we have checked that the two phases (with,
respectively, diverging and saturating localization lengths)
can be unambiguously identified also by analyzing the data
corresponding to single realizations (not shown).

Our study, from the many-particle perspective of the
MTIS, substantiates the claim made in Ref. [24] vis-à-vis the
occurrence of metallic states in 1D.

VII. INTERACTING AUBRY-ANDRÉ MODEL

Understanding the intricate interplay between disorder
and interactions in many-fermion systems is an outstanding
open problem [42]. In particular, it is still unclear how an
Anderson localized system is affected when electron-electron
interactions are included [12,14]. The MTIS is clearly a
promising approach to address this problem, given that it
allows us to describe both noninteracting and interacting
insulators within the same formalism.

Here, we investigate the effect of weak repulsive interac-
tions in the Aubry-André model. The Hamiltonian we consider
is defined as

Hint = H + U
∑

r

nr,↑nr,↓, (10)

where H is the noninteracting Hamiltonian defined in Eq. (8),
with the incommensurate disorder pattern εr employed in
Sec. IV. The parameter U ≥ 0 characterizes the interaction
strength, while nr,↑ (nr,↓) is the spin-up (spin-down) density
operator at site r . This Hamiltonian describes the experimental
setup recently implemented by the group of Bloch [25]. The
experimenters created quasi-one-dimensional tubes with two
standing laser waves along the axial direction. One of the two
lasers has a period which is incommensurate with the other.
This creates the deterministic disorder pattern εr characterizing
the Aubry-André model. The interaction strength U can be
tuned employing a Feshbach resonance.

Our goal is to determine the zero-temperature phase
diagram of the Hamiltonian (10) at half-filling N = L, in
the regime of weak interactions. We restrict our analysis to
paramagnetic phases (allowing charge-density waves), and we
determine the phase boundary separating the metallic and the
insulating ground states. In the regime of relatively strong
disorder and weak interactions, the Hartree approximation
is expected to provide reliable results [43,44]. Within this
approximation, the Hamiltonian (10) is simplified using a
mean-field decoupling of the interaction term, obtaining

Hint ≈ H MF,↑ + H MF,↓ + I,

H MF,↑ = H ↑ + U
∑

i

〈nr,↓〉nr,↑,

H MF,↓ = H ↓ + U
∑

i

〈nr,↑〉nr,↓,

I = −U
∑

r

〈nr,↑〉〈nr,↓〉, (11)

where Hσ is that part of H = H ↑ + H ↓ corresponding
to spin σ =↑ , ↓. The densities are obtained via a self-
consistent iterative procedure based on the equation 〈nr,σ 〉 =∑N/2

α=1 Q(σ )∗
r,α Q(σ )

r,α , where Q(σ ) is the matrix of eigenvectors of
the mean-field Hartree Hamiltonians H MF,σ . Paramagnetism
is enforced by setting 〈nr,↑〉 = 〈nr,↓〉. Special care has to be
taken in order to ensure that the iterative procedure converges
to the true ground state; following Ref. [44], we implemented
an annealing scheme where a fictitious temperature param-
eter is gradually reduced down to zero temperature. This
temperature-annealing scheme is combined with the standard
damping of the density profile provided by each iteration. The
Hartree formalism is based on an ansatz that the ground state
is a Slater determinant, which allows us to compute λ2

xx as
described in Sec. II [28].

Our main results are presented in Fig. 6. The left panel
shows the squared localization length λ2

xx as a function of
disorder strength W for various interaction strengths; the
sharp jump in λ2

xx signals the conductor-insulator transition.
In the conducting phase, the localization length is cut off
by the system size and is independent of the interaction
strength. The inset of the right panel of Fig. 6 shows the
scaling of λ−2

xx with inverse system size for U/t = 0.3, at
two disorder strengths W/t = 2.3,2.7; for the latter value we
see that, in the thermodynamic limit, λ2

xx saturates (signaling
an insulator) whereas it diverges for the former (signaling a
conductor).

An accurate estimate of the transition point is obtained by
locating the maximum differential of a polynomial function
which fits the data of λ2

xx as a function of W . With this
procedure, we determine the zero-temperature paramagnetic
phase diagram of the weakly interacting Aubry-André model,
shown in the right panel of Fig. 6. There is a linear increase of
the critical disorder separating the metallic and the insulating
(paramagnetic) phases. This indicates that repulsive interac-
tions induce delocalization. It is worth mentioning that a posi-
tive drift of the critical disorder strength has been obtained also
in earlier theoretical studies of the Mott-Anderson transition
in higher dimensions based on dynamical mean-field theory
[45]. An interaction-induced increase of the localization length
was also previously seen in a one-dimensional Anderson-
Hubbard model within a simple mean-field treatment valid
in the atomic limit [46]; however, no metallic transition was
observed in that study. In recent experiments, a small linear
increase of the critical disorder strength was observed in a
three-dimensional disordered optical lattice [47]. Moreover,
the bosonic interacting Aubry-André model was implemented
in Ref. [48], where interaction-induced delocalization was
again observed. Bloch’s group implemented the fermionic
interacting Aubry-André model [25], and determined the
critical disorder strength where many-body localization, which
is a dynamical phase transition taking place at finite-energy
density, occurs. The critical disorder strength was found to
increase as a function of the interaction strength for weak
interactions, echoing our findings for the ground state. We
propose that the ground-state metal-insulator transition could
be observed in their setup by employing the technique used in
Refs. [47,49], where an effective force is imposed on the atoms
either by shifting the harmonic confinement or by applying
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FIG. 6. (Color online) Interacting Aubry-André model at half-filling. Left panel: squared localization length λ2
xx for a periodic chain of

length L = 610 for various interaction strengths U ; the jump in λ2
xx signals the conductor-insulator transition. Right panel: paramagnetic

ground-state phase diagram showing the dependence of critical disorder Wc separating insulating and conducting phases as a function of weak
interactions U . Inset shows scaling of λ−2

xx with inverse system length L for U/t = 0.3 at two fixed disorder strengths W/t = 2.3,2.7; the
scaling behavior clearly signals an insulator for the latter and a conductor for the former.

a magnetic field gradient; such experimental results could
directly be compared with our phase diagram.

VIII. CONCLUSIONS

Developing approaches to locate insulating transitions in
disordered systems, for noninteracting or interacting systems,
at zero or finite temperatures, is a central problem in condensed
matter physics and a subject of intense research [12–14,50–
52]. In this paper, we addressed the zero-temperature aspects of
this problem from the perspective of the MTIS. Our findings
provide evidence that the many-body localization tensor, a
bulk quantity measuring Kohn’s localization, provides a clear
signature of the insulating transition induced by disorder at
zero temperature. This was first verified in noninteracting one-
dimensional models with uncorrelated disorder, deterministic
disorder due to incommensurate potentials, and disorder with
long-range correlations described by a power-law spectral
function.

In particular, it was verified that the ground state of the
one-dimensional Anderson model is insulating at any disorder
strength, in agreement with the one-parameter scaling theory
[30] of Anderson localization. In the cases of deterministic
and correlated disorder, we found evidence of metal-insulator
transitions, in agreement with previous studies on the critical

disorder strength and on the position of the mobility edge based
on single-particle theories.

Finally, we investigated the conductor-insulator transition
in a disordered interacting system: Using the Hartree mean-
field analysis within the MTIS, we found that weak repulsive
interactions induce delocalization in the paramagnetic ground
state of the Aubry-André model at half-filling, leading to an in-
crease of the critical disorder strength required for the onset of
insulating behavior. These findings could be observed in cold
atoms using available experimental techniques [25,47,49].

One very appealing feature of the present approach is that
it permits to identify the insulating phase using only ground-
state properties. On the other hand, alternative approaches to
identifying the insulating state, such as the Kubo formula for
dc conductivity, require the knowledge of, at the very least,
low-lying excited states. Within the MTIS, the knowledge of
the ground-state many-particle wave function alone suffices, a
feature which makes it suitable for large-scale computational
approaches such as, say, quantum Monte Carlo simulations
[17,18].
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