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Ergodicity in quantum many-body systems is—despite its fundamental importance—still an open problem.
Many-body localization provides a general framework for quantum ergodicity and may therefore offer important
insights. However, the characterization of many-body localization through simple observables is a difficult
task. In this article, we introduce a measure for distances in Hilbert space for spin- 1

2 systems that can be
interpreted as a generalization of the Anderson localization length to many-body Hilbert space. We show that
this many-body localization length is equivalent to a simple local observable in real space, which can be
measured in experiments of superconducting qubits, polar molecules, Rydberg atoms, and trapped ions. By using
the many-body localization length and a necessary criterion for ergodicity that it provides, we study many-body
localization and quantum ergodicity in power-law-interacting Ising models subject to disorder in a transverse field.
Based on the nonequilibrium dynamical renormalization group, numerically exact diagonalization, and an analysis
of the statistics of resonances, we find a many-body localized phase at infinite temperature for small power-law
exponents. Within the applicability of these methods, we find no indications of a delocalization transition.
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I. INTRODUCTION

Ergodicity is a fundamental concept of statistical physics.
If a classical system is ergodic, phase-space trajectories cover
uniformly constant energy hypersurfaces, such that time and
microcanonical ensemble averages become equivalent [1].
Although attempts to extend these ideas to the quantum
regime date back to von Neumann’s quantum ergodic
theorem [2,3], a general conceptual understanding of quantum
ergodicity has not yet been achieved [4]. This, however,
is crucial for fundamental questions such as regarding the
thermalization of closed quantum many-body systems. A
lack of quantum ergodicity can, in analogy to the classical
phase-space description, be seen as localization in Hilbert
space, for which a general framework has been introduced
recently: many-body localization (MBL) [5–7].

MBL phases exhibit further peculiar properties [8,9] be-
yond the fundamental question of quantum ergodicity. Perhaps
most notable among them is a universal temporal growth
of entanglement following global quenches out of weakly
entangled initial states [10–14]. Additionally, MBL phases can
exhibit finite-temperature phase transitions even in one dimen-
sion [7,15], which are excluded for thermodynamic phases.
Even more, many-body localization can stabilize order in one
dimension over the full spectrum [16–18], which may be of
interest for designing quantum-information devices [8]. Com-
pared to conventional localization in real space [19,20], how-
ever, theoretical calculations of many-body localization suffer
from the complexity of the underlying geometry—the many-
body Hilbert space. Therefore, revealing many-body localiza-
tion properties and finding suitable, experimentally accessible
quantities for their characterization remains challenging.

In this article, we introduce an observable that measures
distances in Hilbert space and as such can be interpreted as a
many-body generalization of the Anderson localization length.
Importantly, it can be obtained via simple local measurements
such as on-site magnetizations. This observable thus opens

a feasible and efficient route for studying many-body local-
ization in experiments. By using this measure, we study in
detail the disordered quantum Ising model with power-law
interactions at small power-law exponent α � 1, which is
relevant to experiments on polar molecules, Rydberg atoms,
superconducting qubits, and trapped ions. Our calculations
predict that transverse-field disorder drives the model into a
MBL phase even at infinite temperature. These findings are
drawn from the recently introduced nonequilibrium dynamical
renormalization group (ndRG) [21], from extensive numerical
simulations using exact diagonalization (ED), as well as
from an analysis of the statistics of resonant Hilbert-space
configurations. Within the applicability of these methods, we
find no indications of a delocalization transition, even for weak
disorder strength.

The remainder of this paper is organized as follows: In
Sec. II we introduce the disordered quantum Ising chain
with power-law interactions, which we use to illustrate our
considerations. Basic principles of many-body localization are
discussed in Sec. III, including the main result of this work:
the many-body localization length. In Sec. IV, we calculate the
many-body localization length for the disordered power-law-
interacting Ising chain at infinite temperature, using the ndRG
as well as extensive numerically exact simulations, indicating
a many-body localized phase at nonzero disorder strength. We
corroborate these predictions by an analytical analysis of the
statistics of resonances.

II. LONG-RANGE ISING CHAINS

In this work, we study localization beyond the single-
particle, i.e., Anderson-localized, limit, by considering dis-
ordered Ising chains with algebraic long-range couplings
between the spins,

HIsing =
∑
l<m

J
|l − m|α σ x

l σ x
m +

N∑
l=1

hlσ
z
l , (1)
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with σ
μ

l , μ = x,y,z, being the Pauli matrices, and where the
exponent α � 0 determines the range of the interactions. This
class of Ising models appear in many natural contexts [22]—
especially in systems with Coulomb, dipole-dipole, and van
der Waals interactions—and they can be synthesized in
a variety of architectures, including trapped ions [23–26],
superconducting qubits [27–30], polar molecules [31–33], and
Rydberg atoms [34,35]. To connect to current experiments,
we choose antiferromagnetic interactions (J > 0) and open
boundary conditions, although our main results do not depend
on these choices. The transverse fields hl ∈ [−W,W ] are
drawn from uncorrelated uniform distributions.

In order to assure extensivity of the full many-body
spectrum of the Hamiltonian (1), we follow the Kac prescrip-
tion [36] and normalize the coupling constant by

J = J

N (α)
, N (α) = 1

N − 1

∑
l �=m

1

|l − m|α . (2)

This choice reproduces the N−1 scaling of J in the fully
connected model at α = 0 (see Ref. [37]) as well as the system-
size independence for α > 1.

In equilibrium, the transverse-field Ising model (1) hosts
paramagnetic and magnetically ordered phases, both for the
clean [38] and the disordered system [37,39]. Specifically,
the Ising critical point is unstable against disorder for α > 1
and the magnetic quantum phase transition is governed by a
strong-disorder fixed point [39] with magnetic order only at
vanishing temperature. For the fully connected case at α = 0
the magnetic phase extends also to nonzero temperatures, with
a phase boundary as determined in Ref. [37].

Localization properties of the disordered long-range Ising
models in Eq. (1) and related systems have already been studied
in the literature. First of all, in the limit α → ∞ where the long-
range model reduces to an exactly solvable nearest-neighbor
Ising chain, the system becomes an Anderson insulator at
nonzero disorder strength. At finite α < ∞, however, the
situation is not completely clear. In particular, it has been
argued that in the regime 1 < α < 2, the system delocalizes
at any finite disorder strength [40]. For α > 2 a many-body
localization transition might be possible as observed for related
long-range XXZ chains; it has not, however, been explicitly
shown yet [41,42]. For the infinitely connected limit with
α = 0 on the other hand, analytical calculations have revealed
a MBL phase for nonvanishing disorder strength [37]. For
the regime 0 < α � 1, the situation is much less clear. It is
one purpose of this work to show that the MBL phase at
any nonzero disorder strength in the long-range Ising chains
extends from α = 0 to the entire regime α � 1.

III. MANY-BODY LOCALIZATION LENGTH

In this section, we discuss in more detail many-body
localization and its connection to quantum ergodicity. In
particular, we explicitly show the mapping of interacting spin
models, such as the Hamiltonian (1), onto noninteracting
Anderson models on a complex graph of spin configurations.
We then present the main result of this work: a definition of a
distance in this complex graph for spin- 1

2 models, which can

be interpreted as the many-body localization length and which
is experimentally accessible.

A. Many-body localization and quantum ergodicity

Quantum ergodicity can be viewed from a dynamical or a
static perspective. Dynamically, quantum ergodicity implies
thermalization. The long-time values of local and quasilocal
observables after a nonequilibrium evolution coincide with
those of a thermal ensemble for almost any initial condition,
because time and ensemble averages are equivalent. There
is, however, one particular situation where ergodicity is not
sufficient for thermalization, but rather requires an additional
principle [21]: Whenever the asymptotic long-time state of a
system, when thermalized, lies in a symmetry-broken phase
of the model, a dynamical symmetry breaking has to occur
restricting the long-time dynamics to one symmetry-broken
sector. The eigenstate thermalization hypothesis (ETH) has
been conjectured as an underlying principle for thermalization
in closed quantum many-body systems [43–46]: If ETH
holds for a given system, then it thermalizes. However, the
connection between microscopic details of a system and the
applicability of ETH is still not fully clarified. Note that in
this article we do not distinguish between ergodicity and
mixing [1], because the observables under study approach
stationary values during time evolution, so long-time aver-
ages (ergodicity) and asymptotic long-time values (mixing)
coincide.

From a static point of view, quantum ergodicity can be
associated with delocalization in Hilbert space [6]. Let |s〉 =
|s1, . . . ,sN 〉, with |sl〉 = |↑〉,|↓〉, be an arbitrary spin configu-
ration in the σ z basis, i.e., an eigenstate of the Hamiltonian (1)
at J = 0. Adiabatically turning on the coupling J deforms
the eigenstates and mixes different spin configurations. When
each spin configuration only acquires weak perturbative
corrections, the system will remain localized in Hilbert space
around theJ = 0 eigenstates and will therefore not be ergodic.
Delocalization, on the other hand, is driven by the proliferation
of resonances between configurations in Hilbert space.

B. Mapping onto Anderson model on a complex graph

With interactions beyond nearest neighbors, the Ising model
in Eq. (1) is not of single-particle type. But still, following
Refs. [6,7], a mapping to a noninteracting (albeit complex)
Anderson model is possible if we represent the Hilbert space
by a lattice where each site is associated with one spin
configuration |s〉. The Ising model then finds an exact mapping
to

HIsing =
∑

s

Es|s〉〈s| +
∑
s,s

Vs,s|s〉〈s|, (3)

i.e., an Anderson model on a complex graph with on-site
energies Es = ∑

l hlsl . The Ising interaction couples all
states that differ by two spin flips, inducing a hopping
with amplitude Vs,s = 〈s|V |s〉, where V = ∑

l �=m Jlmσ x
l σ x

m

and Jlm = J /|l − m|α . Although the Hamiltonian (3) is now
noninteracting, the problem is still hard to solve due to the
complexity of the underlying graph. In particular, the hopping
in the lattice of spin configurations is characterized by an
unconventionally high connectivity, i.e., the number of lattice
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sites accessible by a single hopping process from a given
site. Compared to the real-space problem, the connectivity
is enhanced by a factor proportional to N . For example, the
variable-range Ising chain has a connectivity in Hilbert space
of N (N − 1)/2, in contrast to N − 1 in real space.

In the configurational space, one can define a distance
d(s,s) between two sites |s〉 and |s〉 by counting the number of
spins that differ between the two configurations [6] (Hamming
distance). Fixing one site |s0〉, the remaining lattice can be
classified by grouping configurations of equal distance to |s0〉
into “generations.” We define generation 1 as those states
with d(s,s0) = 2, generation 2 those with d(s,s0) = 4, up to
d(s,s0) = N .

C. Many-body localization length

A good way to characterize localization of an Anderson
insulator is by monitoring the spread of an initially localized
wave function over time. In our case, an analog approach
amounts to initializing the system in a “root” configuration
|s0〉, the most localized object in our graph, and studying how
the mean distance from this initial site,

Ds0 (t) =
∑

s

d(s,s0)P (s,t), (4)

increases during time evolution. Here, P (s,t) is determined by
P (s,t) = |〈s|s0(t)〉|2, the probability for the system to be in the
configuration |s〉, where |s0(t)〉 = U(t)|s0〉 is the initial config-
uration after time evolution under U(t) = exp(−iHIsingt).

The challenge is to measure Ds0 (t) in practice. As a major
result of this work, this global quantity characterizing the
wave function in Hilbert space is related to a local real-space
autocorrelation function χs0 (t) via

Ds0 (t) = N

2
[1 − χs0 (t)], (5)

with

χs0 (t) = 1

N

N∑
l=1

〈s0|σ z
l (t)σ z

l |s0〉, (6)

where σ z
l (t) = U†(t)σ z

l U(t). One arrives at this result from the
definition ofDs0 (t) when using d(s,s0) = ∑

l(sl − s0
l )2/4, with

sl = +1, − 1 for |sl〉 = |↑〉,|↓〉. The Hilbert-space property
Ds0 (t) can therefore be obtained from purely local mea-
surements in real space, provided the initial configuration
is known. In the context of the Richardson model, a sim-
ilar relation has been obtained recently, which, however,
is restricted to particular initial states and the asymptotic
long-time regime [47]. Our Eq. (5) is completely general and
independent of the specific spin system. The local memory χ (t)
is well known in the context of Anderson [19] and many-body
localization [48]. Equation (5) shows that, in the many-body
context, it has a further important meaning by being related to
distances in Hilbert space.

Since we are interested in localization properties over the
entire spectrum, in our numerics we average the results over
all initial configurations, which is equivalent to an infinite-
temperature initial state. Averaging also over disorder, we
denote the resulting Hilbert-space distance as D(t) and the
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FIG. 1. (Color online) Dynamics of the disorder-averaged
Hilbert space distance D(t) averaged over 800 disorder realizations
for interaction exponent α = 0.5, N = 16, and different disorder
strengths.

corresponding autocorrelation function as χ (t). Their relation
can then be written as

D(t) = N

2
[1 − χ (t)] =

〈
1

2N

∑
s0

Ds0 (t)

〉
dis

, (7)

with 〈· · · 〉dis denoting the disorder average. In Fig. 1, the
dynamics of the Hilbert-space distance D(t) is shown for the
disordered long-range Ising chain in Eq. (1).

From Eq. (7), it is now straightforward to characterize
ergodicity. Since the system can only be ergodic if the spin
configuration at large times is uncorrelated with the initial con-
figuration [19], we have that χ (t → ∞) = N−1 ∑

l〈σ z
l (t →

∞)〉〈σ z
l 〉. Here, 〈· · · 〉 denotes the average of both the disorder

and all initial spin configurations. If the system is ergodic,
the long-time value of the local magnetization 〈σ z

l (t → ∞)〉
has to approach its equilibrium value, which in the zero-
magnetization sector relevant in this work gives 〈σ z

l (t →
∞)〉 = 0. Therefore, we find the following necessary criterion
for ergodicity:

D∞
N

= D(t → ∞)

N

{
< 1

2 , nonergodic

= 1
2 , ergodicity possible.

(8)

Although D∞ = N/2 is only a necessary condition for
ergodicity (e.g., integrable free fermion models easily satisfy
it), we would like to emphasize that the condition D∞ < N/2
is sufficient for proving nonergodicity because it implies a
preservation of a local memory from the initial state. The
ergodicity condition for D∞ might vary in other cases, e.g.,
when not working in the zero-magnetization sector. Notice
that, although the localization length is defined for a specific
basis (here, we took the most natural choice of configurations
in the direction of disorder), to prove nonergodic behavior it
is sufficient to demonstrate the criterion D∞ < N/2 for only
one choice of basis.

As a consequence of relation (8), the asymptotic many-
body distance D∞ behaves fundamentally different from the
real-space localization length in a single-particle Anderson
insulator. To see this, consider an analogous scenario for a
conventional Anderson insulator, and let us again prepare
an initially localized wave packet, but now in real space.
Evolving the system to infinite time, the mean distance is
DAI ∝ ξ , with ξ being the single-particle localization length,
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as long as we are close to the Anderson transition where the
long-distance exponential tails dominate over the nonuniver-
sal short-range contributions. The single-particle localization
length ξ is independent of system size N in the localized
phase, provided ξ � N , and diverges when approaching the
Anderson transition. The many-body distance D∞ on the other
hand is always extensive, D∞ ∝ N [see Eq. (7)], which can
be attributed to the unconventionally high connectivity of the
underlying graph of spin configurations. Although distances
behave differently in the single-particle and many-body case,
both allow us to detect potential Anderson transitions in real
space or Hilbert space, respectively, either via a divergent ξ or
via Eq. (8).

In practice, and of particular importance for experiments,
we can considerably simplify the averaging procedure in
Eq. (7) because it is possible to restrict the analysis to one
single initial state. For example, one may rotate the local
coordinate systems of the spins around the x axis to map |s0〉
to the fully polarized state |↑↑ · · ·〉, i.e., σ z

l → s0
l σ

z
l . Sign flips

in Eq. (6) cancel, but the magnetic fields in Eq. (1) are mapped
to hl → s0

l hl . If the signs of hl and s0
l are uncorrelated, we

obtain again an Ising model with random fields. Starting from
the polarized state has the additional advantage that D|↑↑···〉(t)
is a simple function of the mean magnetization, i.e., single-site
resolved measurements are not necessary.

IV. MANY-BODY LOCALIZATION IN THE QUANTUM
ISING MODEL WITH POWER-LAW INTERACTIONS

We now turn to a detailed analysis of the Hilbert-space
distance D(t). As we will show, based on the ndRG and
extensive numerical simulations, we find D(t)/N < 1/2 for
any nonvanishing disorder strength [see Fig. 2], indicating
that the random Ising model with the considered power-law
interactions is MBL. In the following, we first summarize our
main findings in Sec. IV A. In Sec. IV B we discuss how we
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FIG. 2. (Color online) Asymptotic long-time value of the many-
body localization length D∞ = D(t → ∞) for interaction exponent
α = 0.5 as a function of the disorder strength W/J . (a) Results from
exact diagonalization (ED) for system sizes N = 6,8,12,16, averaged
over 104, 200 disorder realizations. (b) D∞ from the nonequilibrium
dynamical renormalization group (ndRG) for N = 16,500,1000
(105,103,500 disorder realizations, respectively). Note that the ndRG
provides a remarkably good quantitative description over a large
range of disorder strengths; see the good match with the ED data
at N = 16 which is included for comparison. The saturation at values
D∞ < N/2 indicates nonergodic behavior.

derived the Hilbert-space distance on the basis of the ndRG and
afterwards provide details about analytical explanations for the
absence of ergodicity in the long-ranged regime of 0 � α � 1
by analyzing the statistics of resonances in Sec. IV C.

A. Results for the many-body localization length

In order to address quantum ergodicity and many-body
localization in disordered long-range Ising chains for α � 1,
we use three complementary methods: exact diagonalization,
ndRG, as well as an analytical approach on the basis of the
statistics of resonances.

In Fig. 2, the main results are summarized. In that figure,
we show data at α = 0.5 for the Hilbert-space distance D∞
obtained within the ndRG as well as by using exact diago-
nalization. For any nonvanishing disorder strength W/J > 0,
we get D∞ < N/2. According to the ergodicity criterion
in Eq. (8) this implies that the system is MBL. Therefore,
the autocorrelation function χ (t) preserves for all times an
extensive memory of the initial spin configuration, a behavior
that can be attributed to the emergence of local conservation
laws in MBL systems [12,16,49,50].

Let us focus first on the exact diagonalization data in
Fig. 2(a). The simulations have been performed on the basis
of a Lanczos algorithm with full reorthogonalization [51].
We have determined D∞ by computing the time evolution
of D(t) to large times J t ∼ O(104). Although for increasing
system size a tendency towards larger Hilbert-space distances
and therefore delocalization is visible, the data for N = 12
and N = 16 are already quite close with a weak finite-size
dependence at moderate disorder strength, but increasing
fluctuations for large disorder. However, for a very weak
random field, the finite-size dependence is much stronger.
Here, a delocalized phase might still be possible in the
thermodynamic limit, although the ndRG discussed in the
following gives evidence for a persistence of the MBL phase
also in this regime.

In Fig. 2(b) we show the results obtained by using the ndRG,
which allows us to consider much larger system sizes up to
N = 1000. Moreover, for N = 16 we compare ndRG data to
exact diagonalization where one can see that the agreement
is very good over almost the full range from strong to weak
disorder. Deviations between the ndRG, which is constructed
for strong disorder, and the ED are very small, especially
when bearing in mind that D∞ involves a long-time limit
of a nonequilibrium quantum real-time evolution, which is a
challenging task for perturbative (RG) methods [4]. In this
light, the very good quantitative description of D(t) even in
the long-time limit underlines the capabilities of the ndRG.
Compared to ED, the ndRG can also be used to study very
large systems up to N = 1000 lattice sites.

The corresponding data are also shown in Fig. 2. As one
can see, for very large systems the ndRG tends towards
localization. In particular, we do not find indications of
a strong-coupling divergence which would otherwise point
towards the appearance of an ergodic phase. Therefore, the
ndRG data give strong evidence for a MBL phase. This is
supported by analytical calculations done in Sec. IV C where
we show on the basis of the statistics of resonances that
the system is indeed nonergodic in the regime 0 � α � 1,
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independent of disorder strength. Specifically, we find that the
many-body eigenstates only occupy a very small fraction of
all available states although they are still extended through
many-body Hilbert space.

B. Nonequilibrium dynamical renormalization group

After having summarized the main results, we now discuss
the ndRG implementation for the disordered long-range Ising
chain considered in this work. We state here only its main ideas
and refer to Appendixes B and C for methodological details.
The ndRG provides an iterative coarse-graining procedure
for the full time-evolution operator U(t), with the aim being
to construct an analytically tractable representation of U(t)
for interacting quantum many-body systems. As we have
seen in Figs. 1 and 2, when benchmarking against exact
diagonalization, although the ndRG is constructed around the
large-disorder limit, its results match remarkably well also in
the region W/J = O(1).

Starting from the large-disorder limit W  J , the ndRG
eliminates the Ising couplings perturbatively on an iterative
basis. Its underlying idea is based on the principle of scale
separation: A spin subject to a large magnetic field is
energetically decoupled from the remainder of the system.
Following this reasoning, we can select the spin in the field
with largest magnitude, say at site �, and remove it from the
many-body dynamics by taking its influence on the residual
spins into account perturbatively. As explained in Appendix B,
this leads to renormalized couplings J (r)

mm′ and fields h(r)
m ,

which have to be evaluated self-consistently through the RG
equations

h
(r)
� = h� +

∑
m�=�

J 2
�m

2h(r)
m(

h
(r)
m

)2 − (
h

(r)
�

)2 , (9a)

h(r)
m = hm − J 2

�m

2h
(r)
�(

h
(r)
m

)2 − (
h

(r)
�

)2 , (9b)

J (r)
mm′ = Jmm′ − Jm�

2h
(r)
� σ z

�(
h

(r)
m

)2 − (
h

(r)
�

)2 J�m′ . (9c)

These equations bear a strong similarity to a Schrieffer–
Wolff transformation to order (J/W )2 with, however, one
crucial difference: the right-hand side of the equations in-
volves the renormalized magnetic fields. As a consequence,
degeneracies with vanishing denominators are lifted, greatly
enhancing the stability of the scaling equations. Additionally,
the Kac prescription (2) [36] ensures the extensivity of the
spin-interaction contribution to the total energy, rendering
the ndRG well controlled even in the case of long-range
interactions. In particular, we do not find any indications of
a strong-coupling divergence, which indicates that the ndRG
is well controlled in the present scenario.

The RG equation (9c) for the couplings additionally
involves the spin projection σ z

� of the eliminated spin. This
projection, after the RG step, is a constant of motion, so we can
treat it as a c number. As long as we are in a nonergodic phase
and the system retains a memory of the initial state, we can
replace σ z

� → 〈σ z
� 〉 by its initial value, up to corrections that are

of the order (J/W )2. This means that, within this prescription

we can a priori only describe the MBL phase of the model.
However, the breakdown of the ndRG could potentially also
reveal an approach towards the MBL transition. Note also that
the renormalization introduces a randomness in the couplings.
The initial restriction to a randomness in the field terms is
therefore not a crucial ingredient of the considered model.

Storing the field of the removed spin h
(r)
� into memory,

calling it h∗
� , we remove it from the dynamics. We then

repeat the RG step defined by Eq. (9), choosing the next
spin with the (renormalized) field of largest magnitude. By
successively eliminating all spins, the ndRG scheme prescribes
a unitary transformation U [see Eq. (B8)] to a renormalized
model, where all couplings between spins are removed,U(t) =
U †U∗(t)U , with U∗(t) = e−iH ∗

0 t and H ∗
0 = ∑

i h
∗
i σ

z
i .

The simple form of the resulting renormalized Hamiltonian
allows for the calculation of the autocorrelation function
defined in Eq. (6), as explained in detail in Appendix C.
By using a recently introduced scheme [52] for evaluating
expectation values of local observables within techniques such
as the ndRG, one obtains for a single disorder realization, up
to second order in the renormalized coupling strengths J (r)

lm ,

χ∞
s0

= 1

N

∑
l

exp

{∑
m

4
(
J (r)

lm

)2(
h

(r)
l s0

l − h(r)
m s0

m

)2

−[(
h

(r)
l

)2 − (
h

(r)
m

)2]2

}
, (10)

where χ∞
s0

≡ χs0 (t → ∞), and h
(r)
l are the renormalized fields

at the step where the coupling J (r)
lm is removed.

We numerically performed the ndRG to calculate D∞ =
D(t → ∞). As already summarized in Sec. IV A, Fig. 2
displays the results for one representative example α = 0.5, but
other values of α � 1 give qualitatively similar outcomes. This
ndRG data compare remarkably well with ED, which gives
additional confidence in the validity of the ndRG approach.
We attribute the reliability of the ndRG to the structure
of the RG equations in Eqs. (9a)–(9c), which relies on a
self-consistent determination of the renormalized Hamiltonian
parameters. In particular, potential resonances with small
energy denominators are lifted which leads to a substantial
increase in stability of the RG equations. The ndRG assumes
that there are not too many such resonances. As we will see
in the next section, this is a well-justified assumption in the
range 0 � α � 1 for all values of disorder.

C. Statistics of resonances

Our ED and ndRG studies showed nonergodic behavior of
the model (1). We now explain this finding analytically for the
parameter regime 0 � α � 1 via the statistics of resonances,
which has proven valuable in the context of single-particle
localization phenomena [19,53–55] and has recently been
extended to the interacting many-body context [6,50,56,57].
This will allow us to characterize localization and ergodicity
in the lattice of spin configurations. For the moment, let us first
concentrate on α = 0 where it has already been shown that the
system is many-body localized [37]. The results obtained for
this limit will also allow us to establish a many-body localized
phase in the entire regime 0 � α � 1.

For J > 0, the eigenstates |s̃〉 = eS |s〉 are perturbatively
connected to the J = 0 eigenstates via a unitary trans-
formation, whose generator S can be obtained through a
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Schrieffer–Wolff transformation [58]. To lowest order in
J /W , the amplitude A� connecting two configurations along
a given trajectory reads (see Appendix A)

A� =
�∏

ν=1

J /2

	εν

. (11)

The details about the trajectory enter through the energy
differences 	εν = Es − Es between “neighboring” configu-
rations |s〉 and |s〉, i.e., configurations connected by the Ising
interaction with Vs,s �= 0 in Eq. (3). The Ising interaction
involves spin flips at two real-space sites l and m. Thus, we
have 	εν = ±hl ± hm, with signs depending on whether the
spins are flipped from ↑ to ↓ or vice versa. For uniformly
distributed magnetic fields, hl ∈ [−W,W ], the probability
distribution for the magnitude of nearest-neighbor amplitudes
|A1| is

P (|A1|) = 2

Z2|A1|3 [Z|A1| − 1], Z = 4W

J , (12)

for |A1| > Z−1 and zero otherwise; see also Ref. [6]. The
fraction of nearest-neighbor states which share a resonance
is given by the probability P1(C) = (ZC)−1[2 − (ZC)−1]
that the amplitude |A1| exceeds a given value C, with C

setting the threshold for resonances. Since J = J/N , we have
Z = 4NW/J , implying P1(C) → 0 for any fixed C > 0 when
N → ∞ which is independent of the precise threshold value
C. How this property relates to ergodicity will be discussed
below.

Although resonances between close generations are ex-
tremely sparse, we now show that the eigenstates are nev-
ertheless highly extended. For multiple hopping processes, the
situation is in general much more difficult than for the hopping
to the next generation analyzed above. It is, however, possible
to simplify the analysis substantially through a controlled
approximate mapping onto a much simpler subgraph that
can be solved analytically as we will show now. Consider
a first hopping process from a “root” site |s0〉 to one
site |s〉 of generation 1. From this particular |s〉, there is
one path back to the root, there are 2(N − 2) paths to the
same generation, and (N−2

2 ) = (N − 2)(N − 3)/2 trajectories
to the next generation. In the thermodynamic limit N → ∞,
it is therefore possible to only consider the latter paths; see
also Ref. [6]. Extending the same argument to trajectories
with � > 2, one obtains an effective directed graph including
only those trajectories that minimize the length between
the connected sites. Such subgraphs are also known in the
context of the forward-scattering approximation [54,55,57],
which is controlled by the perturbation strength J/W [54,55].
It is important to emphasize that, in the present context,
the mapping onto the subgraph is additionally controlled
by the large connectivity of the underlying Hilbert-space
graph towards higher generations, similar to Ref. [6]. As we
discuss below, for α > 1, this mapping is not well controlled,
restricting the use of this graph to α � 1. For � → N/2
the connectivity towards higher generations becomes smaller,
decreasing the accuracy of the description via the subgraph.
In this case, as in the forward-scattering approximation, the
mapping still remains well controlled due to the perturbation

strength. Notice that the graph used here is different from a
Bethe lattice as used in Ref. [6].

On this reduced subgraph, it is possible to use a saddle-point
approximation for �  1 in order to determine the probability
P�(C) that the magnitude of the amplitude A� exceeds a given
C, yielding (see Appendix A)

P�(C) = 1√
2π�

1

C ln (Z)

[
2e ln (Z)

Z

]�

, (13)

for Z−� � C < 1. The probability P � that none of the
trajectories has an amplitude larger than C (see Ref. [6]),
is P �(C) = [1 − P�(C)]n� ≈ exp[−n�P�(C)], where n� =
2−�N !/(N − 2�)! is the number of trajectories connecting
the root to sites in generation �. Using Stirling’s approx-
imation, we obtain n� → [K(λ)]� for �,N  1 with λ =
�/N and K(λ) = N2(1 − 2λ)2−1/λ/e2. Because n�P�(C) ∝
[2e ln(Z)K(λ)/Z]� ∝ [N ln(N )]�, we have P �(C) → 0 for
N → ∞, i.e., there is at least one trajectory and therefore one
site in generation � that is strongly connected to the root. With
probability 1 each eigenstate extends to arbitrary distance, but
restricted to a small fraction of the available states [6,56], since
P1(C) vanishes in the thermodynamic limit.

We now generalize this analysis to the case 1 � α > 0.
The couplings Jν = Jlm appearing in the amplitudes A� =∏

ν Jν/2	εν now depend explicitly on the specific spins that
are flipped along the trajectory. However, to show that the
system is still nonergodic, it suffices to consider an upper
bound for |A�|, obtained by replacingJlm → J by its nearest-
neighbor value. Following the same steps as above, this implies
P1(C) → 0 for N → ∞, because J decays as J/N1−α for
0 < α < 1 and as J/ ln(N ) at α = 1.

Summarizing, the statistics of resonances reveals the
structure of the eigenstates in the disordered long-range Ising
model and therefore its ergodicity properties. For 0 � α � 1,
resonances between nearest-neighboring spin configurations
are vanishingly sparse in the thermodynamic limit because
P1(C) → 0 for N → ∞. Hence, eigenstates occupy only a
vanishing fraction of Hilbert space. Therefore, they are noner-
godic. But, remarkably, eigenstates are still extended [6,56]
because there is always at least one resonant trajectory
connecting a root configuration to one site in generation � with
�  1. Interestingly, localization in many-body Hilbert space
is possible although single-particle excitations can delocalize
in real space for sufficiently-long-ranged interactions [40,42].
In our model, we do not find indications for a phase where
eigenstates are nonergodic and also localized as has been
observed for Cayley trees [6]. We attribute this to the particular
relation between the connectivity K of our lattice, K ∝ N2,
and the effective disorder strength Z ∝ N . Thus, we always
have that K  Z, a regime which does not allow for states
which are both nonergodic and localized [6].

The situation is more complex for α > 1, where, contrary
to α � 1, the couplings J do not decay as a function of
system size N . This scaling, however, is crucial for the above
analysis, preventing the use of the same methods. In particular,
the applicability of the forward-scattering approximation
becomes much less controlled in this case because higher-order
processes can dominate over lower-order processes, as we
discuss now. Consider, for example, the coupling of a spin
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configuration to a configuration in generation 1, where the
two flipped spins in real space are at a distance of r . The
corresponding coupling amplitude is A1 = J /(	εrα). The
same configurations can also be coupled by second-order
processes, for example, one where first the spins at position
0 and r − d are flipped, followed by a second hopping
within generation 1 involving the spins at r − d and r . The
corresponding amplitude is A2 = J 2/[	ε1	ε2(r − d)αdα],
with 	ε1 and 	ε2 being the energy differences of the first
and second spin-flip processes, respectively. Let us consider
the possibility that the second-order process dominates, i.e.,
A2 > A1. This leads to the condition r/d < cd/(cd − 1) for
r > d > 1, with c = [N (α)	ε1	ε2/(J	ε)]1/α . For α > 1,
this condition can always be fulfilled whereas for α � 1 this
is not the case, because then c → ∞ for N → ∞. More
precisely, for α � 1 one obtains that r/d < cd/(cd − 1) → 1,
resulting in a contradiction with r > d > 1. In other words,
for α � 1 second-order processes within generation 1 can be
safely neglected in the thermodynamic limit. This is a further
justification for the applicability of the forward-scattering
approximation and the above use of the reduced subgraph.
For α > 1 instead, taking only the probability for first-order
resonances as a criterion for ergodicity requires care. However,
it is still possible to address the delocalization of single-
particle excitations in real space on the basis of the first-order
resonances [40].

V. CONCLUSIONS

In this article, we studied many-body localization in Ising
models with slowly decaying power-law interactions in a
disordered transverse field, which is relevant for experiments
with polar molecules, Rydberg atoms, and trapped ions. We
presented numerical and analytical calculations predicting
an infinite-temperature many-body localized phase. Conse-
quently, these systems show nonergodic behavior throughout
the entire spectrum.

Moreover, in Eq. (5), we introduced an experimentally
accessible observable that quantifies distances in Hilbert space.
It can be seen as the analog of the Anderson localization
length in the many-body context and thus allows one to
experimentally access fundamental properties of many-body
localized phases. A straightforward sequence to measure it in
a spin system would be: (i) initialize all spins in the ↑ state; (ii)
time evolve under one realization of the disordered model; (iii)
measure the mean magnetization; and (iv) average the results
over disorder realizations. This sequence is general and can be
exploited in other experimental contexts simply by inserting in
the time evolution (ii) the appropriate disordered many-body
model.
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APPENDIX A: STATISTICS OF RESONANCES

Ergodicity, i.e., delocalization in many-body Hilbert space,
is driven by the proliferation of resonances between sites in
Hilbert space [6]. In this section, we provide technical details
about the statistics of resonances presented in the main text.
In the context of localization phenomena, similar analyses
have proven very valuable both for Anderson [19,53–55] and
many-body localization [6,50,56,57].

Our starting point is the Hilbert-space lattice defined by
the spin configurations |s〉 = |s1, . . . ,sN 〉 with sl = |↑〉,|↓〉.
Without the Ising coupling between the spins (J = 0), the
Hamiltonian (1) of the main text becomes purely local and
its eigenstates are the spin configurations |s〉. Within standard
perturbation theory, for nonzero spin interactions (J > 0),
the lowest-order correction to the eigenstates connects states
with Hamming distance 2 that can be reached by flipping
two spins via the interaction, i.e., states |s〉 and |s〉 where
Vs,s �= 0 in Eq. (2). For the statistics of resonances as given
in main-text Eq. (8), however, we are also interested in states
separated by a large Hamming distance, which is far beyond
low-order perturbation theory. In the following, we provide a
general scheme for determining amplitudes for far-distant spin
configurations in a disordered long-range Ising chain.

For J > 0, the Ising Hamiltonian HIsing can be diagonal-
ized approximately by using a Schrieffer–Wolff transforma-
tion [58],

e−SHIsinge
S =

∑
l

hlσ
z
l + O(J 2/W ) = H0, (A1)

up to perturbative corrections of the order J 2/W . The
generator S of the transformation is chosen such that [H0,S] =∑

l<m Jlmσ x
l σ x

m, which is achieved by

S =
∑
l<m

Slm, (A2)

with

Slm = i
Jlm

4

[
1

hm + hl

(
σx

l σ y
m + σ

y

l σ x
m

)

+ 1

hm − hl

(
σx

l σ y
m − σ

y

l σ x
m

)]
. (A3)

If |s〉 is an eigenstate of H0, then |s̃〉 = eS |s〉 is an approximate
eigenstate of HIsing. Expanding the exponential eS , we get
|s〉 = ∑∞

n=0 Sn|s〉/n!, where Sn contains all contributions of
the order (J /W )n. For a given n, Sn|s〉 can be decomposed
into individual trajectories connecting the configuration |s〉 to
other configurations. A specific trajectory reaching state |s′〉
will have the amplitude

A� = eiϕ�

�∏
ν=1

Jν/2

	εν

. (A4)

The details of the particular trajectory are contained in the
combined index ν = (l,m), which keeps track of the spins
in real space that have been flipped on the trajectory, with
Jν = Jlm and 	εν = ±hl ± hm. The signs in 	εν depend on
whether the spins on sites l and m have been flipped from ↑ to
↓ or vice versa. These signs, as well as the overall phase ϕ�,
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however, will not be important for what follows, because we
will only be interested in the magnitude of the objects A�.

Focusing first on the case α = 0, we have that Jν = J , and
randomness enters only via the energy denominators, i.e., for
the statistics of the amplitudes A� we need the distribution
D� of the denominators,

D� =
�∏

ν=1

W

	εν

. (A5)

Let us first consider hopping processes between nearest-
neighboring Hilbert-space sites, i.e., � = 1. For a uniform
distribution of hl ∈ [−W,W ], the probability distribution
P (|D1|) for the absolute value |D1| can be calculated straight-
forwardly, yielding P (|D1|) = (2|D1| − 1)/(2|D1|3). For the
full amplitudes A1 = D1J /(2W ), one obtains

P (|A1|) = 2

Z2|A1|3 [Z|A1| − 1], Z = 4W

J , (A6)

the result quoted in Eq. (6) of the main text. For the derivation,
see also Ref. [6].

Importantly, for the considered trajectories in the derived
effective graph of the main text, which include only hopping
processes that increase the generation, the energy denomina-
tors are independent random variables. Let us introduce the
new variables xν = ln(W/	εν). The probability distribution
p�(X) for X = ∑

ν xν (i.e., eX ≡ A�) is then obtained via
Fourier transformation,

p�(X) =
∫

dx1 · · · dx�p1(x1) · · · p1(x�)δ

(
X −

∑
ν

xν

)

= 1

2π

∫
dμeiμX

[ ∫
dxp1(x)e−iμx

]�

, (A7)

with p1(x) = (2e−x − e−2x)/2. We get for the Fourier
transform p1(μ) = ∫

dxp1(x)e−iμx = 2iμ+1[(1 + iμ)−1 −
(2 + iμ)−2]. For �  1, one can use a saddle-point
approximation to obtain p�(X). The saddle point μ∗ occurs at

μ∗ = i
1

2x
[2 − 3x +

√
x2 + 4], x = X

�
+ ln(2) > 2.

(A8)

Performing the saddle-point integral, one obtains

p�(X) = 1√
2πn

1√
x2 + 4 − 2

√
x2 + 4

×
[

2ex2

2 +
√

x2 + 4
e− 3

2 x+ 1
2

√
x2+4

]�

. (A9)

From this expression, one can obtain the distribution P (|A�|)
of the full amplitude. For amplitudes Z−� � |A�| < 1, where
| ln(|A�|)| � | ln(Zn)|—precisely those that characterize the
resonances—the distribution P (|A�|) becomes

P (|A�|) = 1√
2π�

1

|A�|2 ln (Z)

[
2e ln (Z)

Z

]�

. (A10)

Integrating from some constant C to infinity gives the
probability used in Eq. (7) of the main text.

APPENDIX B: NONEQUILIBRIUM DYNAMICAL
RENORMALIZATION GROUP

In this appendix, we present methodological details
for the nonequilibrium dynamical renormalization group
(ndRG) [21]. The ndRG provides a coarse-graining procedure
that establishes an analytically tractable representation of the
full time-evolution operator

U(t) = T e−i
∫ t

0 dt ′H(t ′) (B1)

of complicated many-body problems. This is achieved by
successively eliminating high-energy contributions, thereby
generating an effective theory for the low-energy degrees
of freedom. In Eq. (B1), H (t) denotes the potentially time-
dependent Hamiltonian of the system, and T is the time-
ordering prescription.

In the present case, the system is initially prepared in a
specific spin configuration |s〉, and we are interested in the time
evolution with the disordered long-range Ising Hamiltonian

H (t > 0) = HIsing = H0 + V, (B2)

where H0 = ∑
i hiσ

z
i , and V = ∑

i<j Jij σ
x
i σ x

j . The associ-
ated time-evolution operator is U(t) = exp(−iHIsingt).

In the limit of strong disorder W  J , the largest energy
scale will be the magnetic field of largest magnitude, located,
say, at spin �. It is then convenient to separate the interactions
that involve this spin, denoted by V�, from those which do not,
V �:

V = V� + V �, V� = σx
�

∑
m

J�mσ x
m, V � = V − V�.

(B3)
Following Ref. [21], the ndRG removes all couplings involving
the spin � by using a unitary transformation eS(�)

on the
full time-evolution operator, U(t) = e−S(�)U (�)(t)eS(�)

. This
transformation yields a renormalized model

U (�)(t) = e−iH
(�)
Isingt . (B4)

Throughout this appendix, we use a subindex to denote the
site of the spin � and a bracketed superindex to denote the RG
step where spin � is integrated out. To second-order accuracy,
i.e., including terms up to O[(J/W )2], the renormalized
Hamiltonian H

(�)
Ising after this RG step is given by

H
(�)
Ising = H

(�)
0 + V (�) = H0 + V � + 1

2 [S(�),V�]. (B5)

Here, H (�)
0 = ∑

m h(�)
m σ z

m denotes the renormalized free part of
the Hamiltonian with renormalized magnetic fields h(�)

m , and
V (�) are the renormalized spin interactions that remain after
eliminating spin �.

The generator S(�) of the unitary transformation is deter-
mined by the equation

S(�)(t) − S(�) = i

∫ t

0
dt ′V�(t ′), (B6)

where V�(t) = eiH
(�)
0 tV�e

−iH
(�)
0 t , and S(�)(t) = eiH

(�)
0 t S(�)

e−iH
(�)
0 t . This gives S(�) = ∑

m�=� S(�)
m , with

S(�)
m = i

J�m

4

(
σx

� σ
y
m + σ

y

� σ x
m

h
(�)
m + h

(�)
�

+ σx
� σ

y
m − σ

y

� σ x
m

h
(�)
m − h

(�)
�

)
. (B7)
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By using this transformation in Eq. (B5), one obtains the RG
equations for the fields and couplings given in Eq. (9).

We can now repeat the above RG scheme for the spin with
second-largest magnetic-field amplitude (after renormaliza-
tion) and proceed this way from high to low energies. Iter-
atively eliminating all couplings, one obtains an analytically
tractable representation of the time evolution operator,

U(t) = U †U∗(t)U, U = T (�) exp

(∑
�

S(�)

)
, (B8)

where U∗(t) = e−iH ∗
0 t is diagonal. The prescription T (�) de-

notes energy ordering, with S(�) to the right for spins in larger
fields, analogous to common time ordering.

Note that the validity of the scale separation underlying
this ndRG algorithm assumes that there are few resonances,
i.e., the dominant energy scale is hl rather than J/|hl − hm|.
Close to a transition to ergodicity, such resonances proliferate,
which would lead to a breakdown of the ndRG procedure. As
the stability of the numerical algorithm demonstrates, in the
parameter ranges considered in this article the influence of such
resonances is small, and ndRG always predicts a nonergodic
behavior.

APPENDIX C: HILBERT-SPACE DISTANCE USING
NONEQUILIBRIUM DYNAMICAL

RENORMALIZATION GROUP

Within the above ndRG procedure, observables can
conveniently be evaluated by the scheme introduced in
Ref. [52], which we outline now for the specific case
of the two-time correlator as defined in Eq. (6), χs0 (t) =
N−1 ∑

m〈s0|σ z
m(t)σ z

m|s0〉 ≡ N−1 ∑
m χs0,m(t).

By using the renormalized time-evolution operator (B8) we
can write

χs0,m(t) = 〈s0|U †U†
∗(t)Uσz

mU †U∗(t)Uσz
m|s0〉. (C1)

To evaluate this equation, it is convenient to perturbatively
eliminate the energy-ordering prescription T (�) appearing in
U by using a Magnus expansion:

U =exp

(∑
�

S(�)+O[(J/W )2]

)
≈ exp

(∑
�

S(�)

)
. (C2)

In principle, for consistency, terms of order (J/W )2 should be
taken into account. In the expectation value 〈s0|σ z

m(t)σ z
m|s0〉,

however, they can yield finite contributions only if two terms of
order (J/W )2 collaborate, so that the corresponding correction
to the final result is of the order (J/W )4. This is beyond the
desired accuracy of the present calculation. Notice that this
argument only holds for initial states that are eigenstates of H0.

The summation over S(�) involves any given spin m several
times: it gets repeatedly renormalized by S(�)

m [see Eq. (9)]

until it becomes the spin in the field with largest magnitude.
It is then removed from the many-body dynamics and obtains
a final renormalization from all remaining spins via S(m). For
the following, it will, therefore, be useful to split

∑
� S(�) into

the part that contains the spin m, which we denote as Sm, and
the part that does not, Sm = ∑

� S(�) − Sm.
By using the Baker–Campbell–Hausdorff formula, these

two contributions can be separated, yielding

U = UmUm, Um ≡ exp(Sm), Um ≡ exp(Sm), (C3)

up to corrections that again only contribute to the final result
for the correlation function χs0,m to order (J/W )4. Due to the
special structure of the transformation described by Eq. (B7),
we have σ z

mUm = U
†
mσ z

m [52], whereas σ z
mUm = Umσz

m. By
inserting these relationships into Eq. (C1) and commuting the
first σ z

m to the right, we obtain

χs0,m(t) = 〈s0|U †
mUm

†U†
∗(t)(Um)2U∗(t)U †

mUm|s0〉. (C4)

In this expectation value, terms of the type [Um
†
,Um

†]
contribute only if they appear pair-wise, so neglecting them
gives again corrections only of order (J/W )4. Thus, we can

commute Um
†

through to the right to annihilate it and write

χs0,m(t) = 〈s0|U †
mUm(t)2U †

m|s0〉 (C5)

= 〈s0|e−Sme2Sm(t)e−Sm |s0〉. (C6)

Here, we understand Um(t) = U†
∗(t)UmU∗(t) as the time

evolution under the renormalized Hamiltonian H ∗
0 , which,

being diagonal, is easily computed following Heisenberg’s
equations of motion.

Finally, a cumulant expansion allows evaluating the expec-
tation values,

χs0,m(t) ≈ exp{〈s0|2[Sm(t) − Sm]|s0〉
+ 1

2 〈s0|4[Sm(t) − Sm]2|s0〉 (C7a)

− 1
2 〈s0|2[Sm(t) − Sm]|s0〉2} (C7b)

= exp{〈s0|2[Sm(t) − Sm]2|s0〉}. (C7c)

The periodically oscillating terms giving the time dynamics
of χs0,m(t) average out in the long-time limit, so that we only
need to evaluate 〈s0|2S2

m|s0〉 to arrive at Eq. (4) given in the
main text.

In Figs. 1 and 2, we show the ndRG results for the disorder-
averaged many-body localization length for two values of
α. Although the present ndRG is a priori formulated for
strong disorder, it agrees remarkably well to ED down to
W/J � 2, and for α = 0.5 even over the entire range of
disorder strengths. This good agreement gives confidence in
the validity of the ndRG approach.
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