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Ab initio study of the structure and dynamics of bulk liquid Fe
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Several static and dynamic properties of bulk liquid Fe at a thermodynamic state near its triple point have
been evaluated by ab initio molecular dynamics simulations. The calculated static structure shows very good
agreement with the available experimental data, including an asymmetric second peak in the structure factor
which underlines a substantial local icosahedral short-range order in the liquid. The dynamical structure reveals
propagating density fluctuations, with an associated dispersion relation which closely follows the experimental
data. The dynamic structure factors S(q,ω) show a good agreement with their experimental counterparts which
have been recently measured by an inelastic x-ray scattering experiment. The dynamical processes behind the
S(q,ω) have been analyzed by using a model with two decay channels (a fast and a slow) associated with the
relaxations of the collective excitations. The recent finding of transverselike excitation modes in the IXS data is
analyzed by using the present ab initio simulation results. Several transport coefficients have been evaluated and
the results are compared with the available experimental data.
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I. INTRODUCTION

For the last two decades or so, the research into the physical
properties of iron under extreme conditions has been a field
of intense activity, both theoretical and experimental. As the
Earth’s core is largely composed of iron, an understanding
of the different phenomena occurring in the core presumes a
knowledge about the behavior of the solid and liquid phases
of iron at those pressure and temperature conditions occurring
in the core. Moreover, the complexity of laboratory research
under those conditions has stimulated a substantial amount of
theoretical and molecular dynamics (MD) simulation studies
which have addressed a variety of thermodynamical, structural,
electronic, and transport properties of solid and liquid iron and
some alloys [1–5].

The experimental work has already provided information on
several thermodynamic [6–8] and structural [9–13] properties
of iron, although most work has focused on crystalline Fe
rather than liquid Fe (l-Fe) because of the greater practical
complications posed by the liquid phase.

The static structure factor of l-Fe near its triple point has
been measured by x-ray diffraction (XD) [9,10] and neutron
diffraction (ND) [11] techniques. It displays a symmetric main
peak followed by a second maximum with a small shoulder
on its right-hand side. This peculiar feature in the second
maximum has been found in other transition metals (Ni, Ti,
Zr) [11,14] and in liquid Mg [15], and has been related to
icosahedral (either ideal or distorted) short-range order that is
enhanced upon undercooling [16]. Recently, Shen et al. [13]
have measured the static structure factor of l-Fe at several
pressures up to 58 GPa and temperatures up to 2900 K and they
found that, within this pressure/temperature range, the shape
of the static structure factor remained qualitatively similar to
that at the triple point.

The microscopic dynamics of l-Fe has recently been
studied experimentally by Hosokawa et al. [17], who have
performed inelastic x-ray scattering (IXS) measurements of
l-Fe at 1843 K. The dynamic structure factor S(q,ω) was

determined within the range 0.13 � q � 2.13 Å
−1

and the
results were analyzed by modeling the S(q,ω) in terms

of a central Lorentzian function plus a damped harmonic
oscillator (DHO) model. Propagating collective excitations
were detected and its associated dispersion relation yielded
an adiabatic velocity of sound ≈3800 m/s. By resorting to the
Landau-Placzek relation, the generalized heat capacity ratio

γ (q) was derived and it was found that for q � 1 Å
−1

the γ (q)
slightly diminishes with decreasing q, leading (when q → 0)
to a ratio of specific heats of ≈1.40. Based on this result, they
suggested a qualitative explanation for the appearance of well
defined collective excitations in l-Fe. Finally, another striking
result was the observation of transverselike excitation modes
in their IXS data [18]; more specifically, those modes showed
up as shoulders in the measured S(q,ω) and within a small
range of q values.

Prompted by the above experimental data, we have per-
formed a study on several static and dynamic properties
of l-Fe near its triple point. We have used an ab initio
molecular dynamics (AIMD) simulation method which is
nowadays a standard technique for the study of a wide
range of condensed matter systems. Most AIMD methods
are based on density functional theory [19] which, given a
number of atoms at given nuclear positions, allows us to
compute the ground state electronic energy and the forces
acting on the atoms. Then, those forces are used to find the
evolution of the system, thereby enabling us to perform MD
simulations with the nuclear positions evolving according to
classical mechanics, whereas the electronic subsystem follows
adiabatically. Although the AIMD methods require significant
computational resources and impose important constrains
concerning the simulation times and size of the systems under
study, nevertheless these drawbacks are compensated by the
accuracy of the results yielded.

We recall that AIMD simulations as well as classical MD
(CMD) simulations based on empirical potentials have been
performed for l-Fe in a wide range of thermodynamic states,
although most of them have focused on a range of high
pressures and temperatures mimicking those of the Earth’s
core. Usually those studies have evaluated several thermo-
dynamic and structural properties as well as some transport
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coefficients. The first AIMD simulation of l-Fe was carried
out by Vocadlo et al. [1] and it reported results for the static
structure of l-Fe at two temperatures (T = 6000 and 4300
K) which were considered representative of those at the inner
core and the core-mantle boundary, respectively. Subsequently,
other AIMD studies of l-Fe under core conditions have
evaluated different static properties [2,3], transport coefficients
(self-diffusion and shear viscosity) [2,20], adiabatic sound
velocity [21], or the melting curve [22].

Oddly enough, there is only one AIMD simulation study of
l-Fe near its triple point [23] and it was just focused on several
static properties of liquid and undercooled Fe. The simulation
used 100 particles, an ultrasoft pseudopotential, and the
generalized gradient approximation (GGA) for the electronic
exchange and correlation energy. This study included spin
polarization as it was assumed that local magnetic moments
exist even above the Curie point; indeed, they found that
inclusion of magnetic moments was important in order to
correctly describe the short-range order in l-Fe.

However, the dynamical properties of l-Fe (apart from
some transport coefficients) have not been studied by means
of the AIMD simulation technique yet. Indeed, the only
available simulation study of the dynamic properties is a
CMD simulation by Bryk and Belonoshko [24]. These authors
used an embedded atom model (EAM) effective potential
that had been previously constructed by fitting to AIMD
calculations at high temperatures, where l-Fe is assumed to
be nonmagnetic. Note that this implies that magnetic effects
are explicitly excluded in calculations that use this potential.
Subsequently they performed CMD simulations employing
this EAM potential in order to evaluate several static and
dynamic properties of l-Fe near its triple point. The calculated
time correlation functions were analyzed within the context
of the generalized collective modes (GCM) method, which
is a theoretical framework to analyze the hydrodynamic and
nonhydrodynamic collective processes existing, with different
spatial and time scales, in liquids. However, comparison with
experiment was restricted to the values of the sound velocity
and the ratio of specific heats at constant pressure and at
constant volume.

We stress that none of the theoretical studies near the
melting point reported above, be it CMD or AIMD, have
considered the dynamic structure factors, which are key
magnitudes to describe the dynamic properties of l-Fe, that,
as mentioned previously, have been already measured by
IXS. A fortiori, there has been no previous analysis about
the possibility of finding signatures of transverse modes
in the dynamic structure factor, as has also been reported
experimentally.

We have carried out an AIMD simulation study of several
static and dynamic properties of l-Fe at a thermodynamic state
near its triple point. Besides its intrinsic interest, we have
chosen this specific thermodynamic state because of the recent
availability of inelastic x-ray scattering measurements [17].
Our calculations extend the previous AIMD study [23] into
the realm of dynamic properties, and also the previous CMD
study [24] by analyzing the dynamic structure factors through-
out the use of a more accurate approach (DFT vs EAM) that
incorporates important aspects of the interactions, including
magnetism, which were ignored in such CMD studies.

The layout of the paper is as follows: In Sec. II we briefly
present the theory underlying the AIMD simulation method
and we describe some technical details as well as some of
the terms appearing in the Kohn-Sham energy functional. In
Sec. III we report and discuss the obtained structural and
dynamical results which are compared with other previous
studies as well as with the available experimental data. Finally,
some conclusions are drawn.

II. COMPUTATIONAL METHOD

The AIMD simulations have been performed with the
VASP code [25]. For each ionic configuration, the Kohn-Sham
energy functional is minimized leading to the ground state
electronic density. Then the forces on the ions are obtained
via the Hellman-Feynman theorem, and the ionic positions
and velocities are updated by solving Newton’s equations
of motions using the velocity Verlet algorithm. The elec-
tronic exchange-correlation energy has been described by the
Perdew-Burke-Ernzerhof generalized gradient approximation
(GGA) [26] and we have used the projector augmented
wave (PAW) all-electron description of the electron-ion-core
interaction [27]. We used eight valence electrons per atom
(s and d), which is enough at this range of pressures, the
plane-wave cutoff was set to 300 eV and the electronic
iterations converged within 10−5 eV. We employed a 120-atom
cubic supercell with periodic boundary conditions and fixed
periodic lengths to reproduce the experimental ionic number

density ρ = 0.0746 Å
−3

at 1873 K. Spin polarization was
included with the spin interpolation of the correlation energy
proposed by Vosko et al. [28] to account for the existence of
local magnetic moments above the Curie point. For simulations
of this size, a single k point (�) was more than adequate
for performing accurate reciprocal-space summations. The
equilibration process for the initial randomly chosen atomic
positions lasted 4 ps and therefrom, microcanonical AIMD
simulations were performed over 40 ps with a time step of 2 fs.
These latter 20 000 equilibrium configurations were employed
for the evaluation of several static and dynamic properties of
bulk l-Fe.

Finally, in order to study the influence of the local
magnetic moments on the above structural properties, as has
been suggested by Ganesh and Widom [23], we have also
performed another set of AIMD simulations using 150 atoms
and assuming a nonmagnetic (NM) state (i.e., no magnetic
moments).

III. RESULTS

A. Static properties

The AIMD simulations provide a direct evaluation of both
the pair distribution function g(r) and the static structure factor
S(q). In Fig. 1 we have depicted the AIMD result for g(r) along
with the corresponding XD and ND experimental data. The
AIMD g(r) accurately reproduces the main peak’s position at
rp ≈ 2.52 Å, as well as the phase of the subsequent oscilla-
tions; moreover, the amplitude of the oscillations practically
coincides with the XD data of Inui et al. [10]. Incidentally,
we stress that the NM-AIMD calculation gives a g(r) whose
main peak is located at a shorter distance, namely rp ≈ 2.42 Å,
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FIG. 1. (Color online) Pair distribution function g(r) of l-Fe.
Continuous (broken) line: AIMD (NM-AIMD) calculations for l-Fe
at T = 1873 K. Open triangles and full circles: experimental XD data
at 1843 K from Waseda [9] and Inui [10], respectively. Open circles:
experimental ND data at 1873 K from Schenk et al. [11].

and the ensuing oscillations are somewhat out of phase with
respect to the experimental data.

The coordination number (CN) has been evaluated by
integrating the radial distribution function 4πρr2g(r) up to
the position of its first minimum, which for the AIMD g(r)
is located at Rmin = 3.42 Å, leading to a value CN ≈ 12.5
atoms. Had we chosen to integrate up to rmin = 3.52 Å, which
is the position for the first minimum in g(r), then CN ≈ 13.1
atoms. These values for CN are typical of the simple liquid
metals around their respective triple point [29]. We stress that
these structural results are very similar to those obtained in the
AIMD simulation study of Ganesh and Widom [23].

Figure 2 shows the AIMD result for S(q), which is
compared with the experimental ND [11] and XD [9,10] data.
The experimental S(q)’s have a symmetric main peak located

at a position qp ≈ 2.98 Å
−1

and its height varies between
S(qp) ≈ 2.3 of Waseda [9] and ≈3.0 of Inui et al. [10].
Moreover, both the XD [10] and the ND data [11] show
a shoulder in the second maximum at q ≈ 6.0 Å

−1
. The

AIMD result for S(q) stands in a very good agreement
with the experimental data, i.e., its main peak’s position

is at qp ≈ 2.99 Å
−1

and its height is S(qp) ≈ 2.8, whereas
the subsequent oscillations are in phase with experimental
data; more remarkably, its second maximum displays a small

shoulder at q ≈ 6.0 Å
−1

. It is worth noting that an asymmetric
shape of the second peak of S(q) has been experimentally
observed in several other liquid metals and it has been related
to a significant presence of icosahedral local order. A first
indication of such type of short-range order is given by the
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FIG. 2. (Color online) Static structure factor S(q) of liquid Fe.
Continuous (broken) line: AIMD (NM-AIMD) calculations for l-Fe
at T = 1873 K. Open circles: experimental ND data at 1873 K from
Schenk et al. [11]. Full circles and open triangles: experimental XD
data at 1843 K from Inui et al. [10] and Waseda [9], respectively. The
inset shows a detailed comparison for the second maximum.

positions of the maximum of the second peak of S(q), q2, and
its shoulder q ′

2, as compared to the position of the main peak.
The values found for l-Fe in this study are q2/qp = 1.79 and
q ′

2/qp ≈ 1.91, which are similar to those found for l-Ti and
l-Zr (1.76 and 1.92), for l-Ni (1.74 and 1.95), and for liquid Mg
and other alkaline-earth metals [30] (1.80 and 1.97); else they
are comparable to those corresponding to an ideal icosahedral
environment in a curved space [31], namely 1.71 and 2.04.

On the other hand, the NM-AIMD simulations produce an
S(q) whose main peak is slightly displaced towards greater

q values, i.e., qp ≈ 3.05 Å
−1

, and its height is lower than
the experimental data; moreover, as evidenced by the inset
of Fig. 2, the subsequent oscillations are somewhat displaced
towards greater q values.

We have also estimated the isothermal compressibility κT of
l-Fe by resorting to the equation S(q → 0) = ρkBT κT , where
kB is Boltzmann’s constant. First, the low q values of S(q)
were extrapolated to q → 0 by using a least squares fit S(q) =
s0 + s2q

2 of the calculated q values for q � 1.2 Å
−1

. We
obtained an estimate S(q → 0) = 0.024 ± 0.002, yielding a
value κT = 1.24 ± 0.10 (in units of 10−11 m2 N−1) which is
close to the experimental data κT ≈ 1.21 ± 0.02 [32]. Again
we note that an equivalent calculation using the NM-AIMD
result for S(q) produced a result S(q → 0) = 0.20 ± 0.02, and
a value κT = 10.3 ± 0.2.

A more detailed description of the local order in the
liquid can be achieved by resorting to the common neighbor
analysis [33] (CNA) method. Here each pair of atoms is
characterized by four indices, with the first index being 1
if the pair belongs to the first peak of g(r). The second
index is the number of common first neighbors and the third
index is the number of bonds that connect those shared first
neighbors. Finally, the fourth index is used to distinguish
configurations with the same first three indices but with a
different topology. The CNA method allows us to discern
fcc, hcp, bcc, and icosahedral (ICOS) packings as well as
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TABLE I. Common neighbor analysis of the AIMD configura-
tions of l-Fe at 1873 K compared with several local structures.

Pairs l-Fe NM l-Fe ICOS hcp fcc bcc

1551 0.35 0.17 1.00 0.00 0.00 0.00
1541 0.18 0.16 0.00 0.00 0.00 0.00
1431 0.17 0.23 0.00 0.00 0.00 0.00
1321 0.02 0.09 0.00 0.00 0.00 0.00
1421 0.02 0.03 0.00 0.50 1.00 0.00
1422 0.03 0.07 0.00 0.50 0.00 0.00
1441 0.08 0.04 0.00 0.00 0.00 0.43
1661 0.13 0.04 0.00 0.00 0.00 0.57

more complex polytetrahedral environments. For example,
fcc and hcp crystalline packings are composed of 142×-type
pairs, bcc is typified by 144× and 166× pairs, whereas ICOS
is characterized by 155× pairs and the distorted ICOS is
described by the 154× and 143× pairs. We have taken several
configurations generated in the present AIMD simulation,
found the corresponding inherent structures (local minimum
of the energy surface closest to the selected configuration) by
removing the thermal energy, and finally we have performed a
CNA analysis of the inherent structures. After averaging over
the configurations, we have obtained the results summarized
in Table I.

First, notice that the fivefold symmetry dominates in l-Fe
as the sum of perfect and defective icosahedral structures
amounts to 72% of the pairs (65% of the pairs in the NM-AIMD
calculation), with the number of perfect ones being nearly half
of the total. Moreover, we also find a 21% appearance of local
bcc environments, which is the phase in which l-Fe crystallizes.
These results are similar to those already obtained in the
AIMD simulations of Ganesh and Widom [23]; moreover,
their calculation for undercooled l-Fe showed an increase in
the percentage of 1551 pairs. Furthermore, the ND data of
Schenk et al. [11] for undercooled l-Fe display a shoulder on
the second maximum of S(q) which becomes more noticeable
with decreasing temperature. All in all, these features point to
a high ability of l-Fe for undercooling, which agrees with
a similar behavior found in other liquid transition metals
[11,16].

B. Dynamic properties

Several dynamic properties, both single-particle ones (ve-
locity autocorrelation function, mean square displacement)
and collective ones (intermediate scattering functions, dy-
namic structure factors, longitudinal and transverse currents)
have also been evaluated. We note that the calculation of
the time correlation functions was performed by taking time
origins every five time steps. Some correlation functions have
a dependence on the wave vector �q which, for an isotropic
system, reduces to a dependence on q ≡| �q | only.

1. Single particle dynamics

Information about transport properties can be extracted
from the normalized velocity autocorrelation function of a
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FIG. 3. (Color online) Normalized AIMD calculated velocity au-
tocorrelation function of liquid Fe at 1873 K (full line). The inset
represents its power spectrum Z(ω). The dashed lines stand for the
NM-AIMD calculation.

tagged ion in the fluid Z(t), which is defined as

Z(t) = 〈�v1(t) · �v1(0)〉/〈v2
1

〉
, (1)

with �v1(t) being the velocity of a tagged ion in the fluid at
time t and 〈· · · 〉 standing for the ensemble average. The
calculated Z(t), which is depicted in Fig. 3, displays the typical
backscattering behavior with a marked first minimum which
is followed by rather weak oscillations. This first minimum is
related to the so-called cage effect by which a given particle
rebounds against the cage formed by its nearest neighbors. An
estimate of the frequency at which a given particle vibrates
within its near neighbor’s cage [34] can be derived by the
short time expansion Z(t) = 1 − ω2

Et2/2 · · · , where ωE is
the so-called “Einstein frequency” of the system. A short
time fitting of the calculated Z(t) curve in Fig. 3 gives
ωE ≈ 32.4 ps−1. The inset of Fig. 3 represents the associated
power spectrum Z(ω), which shows a maximum located at
≈25 ps−1 and a shoulder at ≈39 ps−1; parenthetically we
note that ωE stands between the peak and the shoulder of
Z(ω), which is a characteristic feature of the simple liquid
metals [29]. On the other hand, the NM-AIMD simulation
yields a much weaker cage effect.

The self-diffusion coefficient D can be found by either the
time integral of Z(t) or from the slope of the mean square
displacement δR2(t) ≡ 〈| �R1(t) − �R1(0)|2〉 of a tagged ion in
the fluid. In this AIMD study, both routes yield the same value,

namely DAIMD = 0.37 ± 0.02 Å
2
/ps at T = 1873 K, which is

comparable to other estimates, i.e., the CMD calculation of

Belashchenko [35] gave D ≈ 0.368 Å
2
/ps for l-Fe at T =

1820 K, whereas the AIMD simulations of Sobolev et al. [36]
for l-Fe at T = 1833 K gave D = 0.350 Å

2
/ps. Moreover, by

using experimental data for other thermodynamic magnitudes,

Iida et al. [37] have suggested a value Dexp ≈ 0.355 Å
2
/ps for

l-Fe at T = 1811 K. Finally, we mention that the NM-AIMD
calculation gives a substantially greater value, namely D =
0.82 ± 0.03 Å

2
/ps at T = 1873 K.
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2. Collective dynamics

The intermediate scattering function F (q,t) is defined as

F (q,t) = 1

N

〈⎛
⎝ N∑

j=1

e−i �q �Rj (t+t0)

⎞
⎠ (

N∑
l=1

ei �q �Rl (t0)

)〉
(2)

and it contains information on the collective dynamics of
density fluctuations. Its frequency spectrum is the dynamic
structure factor S(q,ω), which can be directly measured by
either inelastic neutron scattering (INS) or inelastic x-ray
scattering (IXS) experiments. Another relevant quantity, which
is also connected to the density fluctuations, is the current due
to the overall motion of the particles �j (q,t) defined as

�j (q,t) =
N∑

a=1

�va(t) exp[i �q · �Ra(t)], (3)

which is usually split into a longitudinal component �jL(q,t),
parallel to �q, and a transverse component �jT (q,t), perpendic-
ular to �q. The longitudinal and transverse current correlation
functions are obtained as

Cl(q,t) = 1

N
〈jL(q,t)j ∗

L(q,0)〉 (4)

and

Ct (q,t) = 1

2N
〈 �jT (q,t) · �j ∗

T (q,0)〉. (5)

The respective time Fourier transforms (FT) give the asso-
ciated spectra Cl(q,ω) and Ct (q,ω). The previous dynamical
magnitudes have been calculated from the configurations
generated in the present AIMD simulations. Moreover, in order
to analyze the microscopic mechanisms ruling the collective
dynamics, we have performed a detailed theoretical analysis of
the F (q,t) by resorting to the generalized Langevin formalism
(see the Appendixes for details). Thus, using the AIMD
results for the F (q,t) we have calculated its first- and second-
order memory functions M(q,t) and N (q,t), respectively;
subsequently the N (q,t) has been fitted to an analytical model
containing two exponentially decaying functions (a slow and
a fast one), i.e.,

N (q,t) = As(q)e−t/τs (q) + Af (q)e−t/τf (q), (6)

where τs(q) and τf (q) are the slow and fast relaxation
times. Physically, one relaxation channel is considered of
thermal origin, whereas the other is related to the viscoelastic
behavior of the liquid. The model allows two possible physical
interpretations for the terms in N (q,t). One choice identifies
the thermal relaxation with the slow channel, whereas the
viscoelastic relaxation is described by the fast one. The other
choice, which implies making the reverse identifications, has
been suggested by Scopigno et al. [38] as a result of their
analysis of experimental IXS data for liquid Li. More details
about this model are given in the Appendixes.

Figure 4 shows some AIMD simulation F (q,t), for several
q values. The F (q,t) exhibit an oscillatory behavior up to
q ≈ (4/5)qp, with the amplitude of the oscillations becoming
weaker for increasing q values; moreover, this oscillatory
shape is superposed on a rather weak diffusive component.
At q ≈ qp, the F (q,t) exhibit a slow decay, known as “de
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FIG. 4. (Color online) Normalized AIMD intermediate scatter-

ing functions F (q,t) at several q values (in Å
−1

units), for liquid Fe
at T = 1873 K (full lines). The vertical scales are offset for clarity.
The dashed lines are the NM-AIMD results.

Gennes narrowing,” which is induced by the strong spatial
correlations at around those q values. Remarkably, we note
that a similar qualitative behavior, including the marked
oscillations at small q values, is also displayed by the F (q,t)
obtained in the CMD simulations and GCM calculations of
Bryk and Belonoshko [24] for l-Fe. Indeed, a very similar
trend is found in the simple liquid metals near their respective
triple point [39–43].

In Fig. 4 we have also plotted the NM-AIMD results for
the F (q,t), which are qualitatively different from the previous
ones; now the F (q,t) are dominated by a strong diffusive
component, which is superposed, up to q ≈ (4/5) qp, on a
very weak oscillatory behavior.

Using the previous AIMD results for F (q,t), we have
determined their respective second-order memory functions
N (q,t). Figure 5 shows, for some q values, the obtained
N (q,t) as well as its two components, namely, its fast and slow

decay channels. At the smaller q = 0.54 Å
−1

, both channels
contribute in the time range below ≈10 fs, although for shorter
times the fast channel has a contribution around twice that of
the slow one. With increasing q values, the contribution of the
fast channel at short times becomes more important and its
rule over the memory function extends to a longer time range;

in fact for q = 2.0 Å
−1

, the fast channel dominates up to times
≈100 fs.

Next, we analyze the physical origin of both relaxation
channels in order to find out whether the present AIMD results
for the N (q,t) are consistent with a generalized hydrodynamic
model (fast viscoelastic channel and a slow thermal one), or
a generalized viscoelastic model, where the fast term is the
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FIG. 5. Memory function N (q,t) for several q values (full
line) along with its two exponential components. The dashed line
represents the slow component and the dotted line stands for the fast
component.

thermal one. Therefore, we have evaluated the generalized heat
capacity ratio γ (q), which in the q → 0 limit leads to the ther-
mophysical value of γ0, i.e., the ratio between specific heats at
constant pressure and at constant volume (see the Appendixes).
The obtained results for γ (q) are dependent on the model
used. If the thermal relaxation proceeds on the slow channel,
then As(q) = [γ (q) − 1]M0(q) and τs(q) = [γ (q)DT (q)]−1.
But if the viscoelastic relaxation occurs along the slow channel
then As(q) = ω2

L(q) − γ (q)M0(q). Therefore, using the As(q)
values calculated in the evaluation of the N (q,t), we have
derived the functions γth(q) and γv(q) which correspond to
the thermal and the viscoelastic relaxations along the slow
channel, respectively. The results are depicted in Fig. 6 along
with the “experimental” γexpt(q) data of Hosokawa et al. [17].

We already mentioned that γexpt(q) was estimated by
fitting the experimental S(q,ω) to an analytical model and
subsequently applying the Landau-Placzek relation. Although
some uncertainty is bound to this procedure, as for example

in the observed data scattering for q � 0.70 Å
−1

, however we
believe that the qualitative trend is correct, namely that for

0 1 2

q (Å
-1

)

1

2

γ(
q)

  

FIG. 6. Generalized specific heat ratio γ (q) as obtained from ei-
ther the generalized hydrodynamic model (circles) or the generalized
viscoelastic model (lozenges). The full circles with error bars are
experimental IXS data of Hosokawa et al. [17]. The arrow shows the
hydrodynamic value γ0 ≈ 1.72.

q � 1.0 Å
−1

, the γexpt(q) rapidly decreases with increasing
q and it goes to one at q ≈ qp/2. Indeed, a similar trend
has been obtained in theoretical calculations of γ (q) for
liquid Li, Bi, Pb, Hg, and Cd [44,45]. As for the present
calculations, we observe that the γv(q) takes greater values
than the experiment and quickly increases with q. On the
other hand, the γth(q) qualitatively follows the experimental
results and it appears to smoothly approach a q → 0 value
similar to that of the experimental γexpt(q). In our opinion,
this result clearly suggests that the slow channel is the one
through which the thermal relaxation takes place and that the
generalized hydrodynamic model is the appropriate one for
describing the microscopic dynamics of l-Fe near the triple
point.

The model of Eq. (6) leads to an associated F (q,t) with
an analytical expression comprising four exponential terms
(two real and two with complex conjugate amplitudes and
exponents), i.e.,

F (q,t)

S(q)
= A1 exp(−a1t) + A2 exp(−a2t)

+ exp(−bt)[B cos (ωst) + C sin (ωst)]. (7)

Out of the eight q-dependent parameters only four are left
as independent when the correct short time behavior (initial
value equal to one, zero initial values for the first and third
derivatives, and initial value of the second derivative equal to
the second frequency moment) is imposed.

This model provides a very good description of the AIMD
simulation results for the F (q,t), and it could be useful in
order to obtain an analytic expression of S(q,ω) as a sum of two
central Lorentzians plus a pair of stretched Lorentzian inelastic
peaks. It would be especially interesting if the raw calculated
F (q,t) displayed relatively large noise for long times due
to the limited statistics. In fact, the present calculations do
not show such a problem and the results presented below for
S(q,ω) are obtained by numerical Fourier transformation of
the AIMD F (q,t), after application of a window function (see
the Appendixes for details).

A proper comparison with the IXS data requires a convolu-
tion of the AIMD calculated S(q,ω) with the experimental
resolution function [17] as well as the inclusion of the
detailed balance factor [29]. Now the S(q,ω) thus obtained
are plotted, for several q values, in Figs. 7 and 8 where they
are compared with the IXS data of Hosokawa et al. [17]. Up
to q ≈ (4/5)qp we observe side peaks which are indicative
of collective density excitations and for greater q’s the
S(q,ω) show a monotonic decreasing behavior. In general, the
AIMD calculated S(q,ω) qualitatively agree with experiment,
specially concerning the position and amplitude of the side
peaks.

From the positions of the side peaks ωm(q), the correspond-
ing dispersion relation of the density fluctuations has been
derived and its slope at q → 0 yields the adiabatic sound
velocity cs . Unfortunately, the small size of the simulation
box implies that the smallest attainable q value is qmin =
0.536 Å

−1
, which is not small enough to afford a precise

quantitative estimate of cs ; nevertheless a qualitative guess
may be extracted from the value of ωm(qmin) which leads
to cs,AIMD(qmin) ≈ 3950 ± 150 m/s. An additional check on
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FIG. 7. (Color online) Dynamic structure factors S(q,ω) of liq-
uid Fe at several q values. Full circles: experimental IXS data at
T = 1843 K [17]. Full (dashed) line: present AIMD (NM-AIMD)
results after convolution with the experimental resolution function.

this estimate can be made by resorting to the expression [34]
cs = [γ kBT /mS(q → 0)]1/2, where m is the atomic mass.
Using for the ratio of the specific heats γ ≈ 1.40 [24] and our
calculated value S(q → 0) = 0.024, the previous expression
gives cs = 4030 ± 250 m/s, which attests to the consistency
between the static and dynamic results obtained in the present
AIMD study. For comparison we recall that the experimental
hydrodynamic value is cs,expt ≈ 3820 ± 150 m/s [7].
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FIG. 8. (Color online) Same as in the previous figure.
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FIG. 9. Dispersion relation for l-Fe at T = 1873 K. Open circles
and squares: AIMD results from the positions of the inelastic peaks
in the S(q,ω) and from the maxima in the spectra of the longitudinal
current Cl(q,ω), respectively. Full circles with error bars: IXS data
from Hosokawa et al. [17]. Broken line: linear dispersion with the
hydrodynamic sound velocity cs = 3820 m/s. Full (open) triangles
with error bars: experimental (calculated) values for the HWHM �(q)
of the inelastic peaks.

We have also included in Fig. 9 the dispersion relation ωl(q),
which is calculated from the maxima of the AIMD results for
Cl(q,ω). Moreover, the figure also includes the experimental
dispersion ωl(q) data of Hosokawa et al. [17]. According
to these authors, the experimental dispersion relation data
exhibit, in the low-q region, a positive dispersion, i.e., an
increase of the ωl(q) values with respect to those given by the
linear dispersion of the experimental adiabatic sound velocity.
A similar conclusion has also been drawn from the CMD
simulations and the subsequent GCM analysis of Bryk and
Belonoshko [24]. Although it appears that the AIMD results
for both ωm(q) and ωl(q) may suggest some kind of positive
dispersion, however, the scarcity of small q values afforded by
the present AIMD simulations prevents us from ascertaining
the appearance of positive dispersion.

Another magnitude related to the collective density ex-
citations is the half-width at half-maximum (HWHM) �(q)
of the inelastic peaks because it provides information on the
lifetimes of the excitations. This magnitude cannot be obtained
solely from the values of S(q,ω), since it is necessary to
single out the contribution from the propagating excitations to
the dynamic structure factor. This can only be accomplished
by using a model. For this purpose only we have fitted
our F (q,t) to Eq. (7), and identified the parameter b with
�(q). The experimental data [17] for �(q) (which were also
obtained via a model for the dynamic structure factor) show
an almost linear behavior up to q ≈ qp/2, which suggests
that the hydrodynamic limit (quadratic law) is restricted to
very low q values. This is depicted in Fig. 9 along with our
calculated �(q).

In Figs. 7 and 8 we have also depicted, for several q

values, the dynamic structure factors derived from the NM-
AIMD simulations (after convolution with the experimental
resolution function [17] and the inclusion of the detailed
balance factor). Again we observe side peaks at approximately
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FIG. 10. (Color online) (a) Transverse current correlation func-
tion Ct (q,t) at several q values for liquid Fe at T = 1873 K and

q = 0.54 Å
−1

(full curve), q = 1.20 Å
−1

(dotted curve), q = 2.00 Å
−1

(dashed curve), q = 3.08 Å
−1

(dashed-dotted curve), q = 4.05 Å
−1

(dashed-double dot curve), and q = 5.03 Å
−1

(full circles). The
vertical scales are offset for clarity. (b) Same for the spectra Ct (q,ω).
The light red curves are the results of the NM-AIMD simulations.

the same positions as the previous calculations but their
amplitudes are markedly smaller than the experimental ones;
moreover, those side peaks appear in a narrower q range, i.e.,
up to q ≈ (3/5)qp.

The transverse current correlation function Ct (q,t) is not
directly measurable, but provides valuable information related
to the existence of shear modes. Its spectrum Ct (q,ω), when
plotted as a function of ω, may display peaks within some q

range, which are related to propagating shear waves. This is
shown in Fig. 10 which depicts the AIMD results for Ct (q,t)
and Ct (q,ω). The latter has been obtained by numerical FT
after application of a window function, the same procedure
as used for F (q,t). The Ct (q,ω) already shows a peak at
the smallest available q, i.e., qmin = 0.18qp and those peaks
appear up to q � 2.5qp; moreover, its frequency increases
with q, reaches a maximum value at q ≈ qp, and then slowly
decreases until the peaks eventually disappear. In fact, this
behavior is comparable to what has been found in the simple
liquid metals [29].

From the position of the maximum in the Ct (q,ω), a
dispersion relation for the transverse modes ωt (q) has been
obtained and this is plotted in Fig. 11. The existence of a
propagation gap in the shear waves means that the dispersion
starts at a qt (to be estimated later), smoothly increases up
to (3/5)qp, and therefore has a quasiflat behavior. Indeed the
present AIMD result resembles that obtained by the GCM
method of Bryk and Belonoshko [24].

The general behavior of the transverse dispersion relation,
at least in the vicinity of the wave vector region where shear
waves start being supported by the system, is well described
by a viscoelastic model [29,30], which leads to a nonanalytic
behavior ωv

t (q) = α
√

q2 − q2
t . A fit of the previously obtained

data to such an expression (with parameters α and qt ) provides

a value of qt ≈ 0.36 Å
−1

, as shown in Fig. 11. However, the
behavior of ωt (q) near qt is in fact almost linear (except very
close to qt ) and the slope of this line, which is close to the group
velocity of the shear waves in this wave vector region, can be

0 1 2 3 4
q (Å-1)
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30

40

ω
t(q

)  
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)

FIG. 11. Transverse dispersion relation for liquid Fe at T =
1873 K. Open circles: AIMD results from the positions of the peaks
in the spectra Ct (q,ω). Full line: fit to the nonanalytic viscoelastic
expression. Dashed line: linear fit. The lozenges with error bars (full
circles with error bars) are the positions of the transverselike inelastic
modes in the calculated (experimental) dynamic structure factors
S(q,ω).

identified with a velocity of transverse waves ct ≈ 2200 m/s,
near the onset of their appearance.

From the AIMD results for the Ct (q,t), the associated shear
viscosity coefficient η can be derived [39,46]; thus we have ob-
tained an estimate ηAIMD = 5.0 ± 0.3 GPa ps. For comparison
the experimental value for l-Fe at melting (T = 1809 K) is η =
5.82 GPa ps [47], but its extrapolation to T = 1873 K gives
ηexpt ≈ 5.30 GPa ps. On the other hand, based on a critical
analysis of different experimental data, Assael et al. [48]
have suggested a value of ηexpt ≈ 5.20 ± 0.05 GPa ps for
l-Fe at T = 1873 K. Finally, we notice that the NM-AIMD
calculations yield an estimate η = 1.8 ± 0.2 GPa ps which
grossly underestimates the experimental value.

Within the context of the Brownian motion of a macroscopic
particle with a diameter d in a liquid of viscosity η, the
Stokes-Einstein (SE) relation ηD = kBT /2πd establishes a
connection between η and the self-diffusion coefficient D.
Although not intended for atoms, this relation has been used
to estimate η (or D) by identifying d with the position of the
main peak of g(r). The present calculations give d = 2.52 Å,
and when combined with the previous AIMD value DAIMD =
0.37 ± 0.02 Å

2
/ps yields an estimate η = 4.40 ± 0.3 GPa ps

which is slightly smaller, by ≈15%, than the calculated AIMD
value. Indeed, a similar degree of accuracy has been found in
the application of the SE relation to a variety of liquid metals
near melting. On the other hand, most studies on l-Fe at high
pressure and temperature conditions have relied on the SE
relation in order to evaluate the shear viscosity in terms of a
calculated self-diffusion coefficient, and therefore the degree
of accuracy of such relation should be kept in mind for a critical
analysis.

Recently it has been suggested [49] that transverselike
low-energy excitations may be observed as weak shoulders
located between the quasielastic peak and the longitudinal
inelastic peak of the dynamic structure factors. Moreover,
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those excitations should show up within a small q range located
around qp/2, because for smaller q values those transverselike
excitation modes are either overcome by the quasielastic
peak or quickly decrease in intensity. These transverselike
excitations were first detected in the IXS spectra of l-Ga [49]
at 313 K; and subsequently have also been observed in
l-Cu, l-Sn, and l-Fe [18,50]. In the specific case of l-Fe at
T = 1823 K, the IXS data [18] for S(q ≈ 1.20,ω) point to a
transverselike excitation located at ω ≈ 25.0 ps−1. Therefore,
we have analyzed the present AIMD results for S(q,ω) and
the results are plotted in Fig. 12. It is observed that within

the range 0.90 � q � 1.40 Å
−1

, weak shoulders appear in
the region between the quasielastic and the inelastic peaks;
moreover, the shoulder in the S(q = 1.20,ω) is located at
ω ≈ 20.0 ps−1. On the other hand, no shoulders or similar
features are visible in the S(q,ω) corresponding to q � 0.76

and q � 1.61 Å
−1

. Additionally, in Fig. 11 we have plotted
the frequencies associated with these shoulders and it can be
observed that they practically agree with the peak positions
of the transverse current spectra. We consider these results
as another strong indication concerning its interpretation as
transverselike excitation modes.

IV. CONCLUSIONS

We have reported an ab initio simulation study on the
dynamical properties of l-Fe at a thermodynamic state near its
triple point. This study has been spurred by the recent inelastic
x-ray scattering measurements of Hosokawa et al. [17].

A range of static properties have also been evaluated. Thus,
results have been presented for the pair distribution function
g(r) and the static structure factor S(q); both magnitudes
show a very good agreement with the available experimental
data [9–11]. Moreover, the obtained results for S(q) show
an asymmetric shape in its the second peak. This has been
connected to the appearance of icosahedral short-range order,
which has been confirmed by a more detailed CNA study of
the liquid structure.

As for the dynamic structure, the calculated intermediate
scattering functions F (q,t) have been used to analyze the role
of the different decay channels associated with the relaxations
of the collective excitations. Its second-order memory function
was evaluated and fitted to a sum of two exponentially decaying
functions describing a fast and a slow relaxation processes.
The ensuing discussion about the physical origin of both
relaxation processes, which was based on the evaluation of the
generalized γ (q), suggests that a generalized hydrodynamic
model is adequate for describing the microscopic dynamics of
l-Fe near the triple point. The calculated dynamic structure
factors show side peaks, within some q range, which are
indicative of collective density excitations; moreover they
exhibit a good agreement with the IXS data. The calculated
dispersion relation closely follows the experimental data.
Furthermore, we stress that closer analysis of the obtained
S(q,ω) has unveiled the same type of transverselike excitation
modes as found by Hosokawa et al. [18] in their IXS
data.

The AIMD transverse current correlation functions Ct (q,t)
exhibit clear oscillations around zero and the associated spectra
Ct (q,ω) have inelastic peaks which reflect the presence of
shear waves in l-Fe. The calculated transport coefficients,
namely self-diffusion and shear viscosity, show a good
agreement with the experimental data. We have also examined
the reliability of the Stokes-Einstein relation because it has
been widely used to evaluate the shear viscosity of l-Fe at
high pressure and temperature conditions, and found that it
underestimates the viscosity by around 15%.

In the previous AIMD simulations of Ganesh and
Widom [23], it was already shown that for a good description
of the static structure of liquid Fe it was necessary to take into
account the existence of atomic magnetic moments, through
the use of spin-polarized DFT. We have found in our study that
dynamic properties are even more sensitive to the inclusion of
these atomic magnetic moments, as some magnitudes are way
off the experimental ones if nonspin-polarized calculations
are performed, e.g., the diffusion constant is overestimated by
more than 100% and correspondingly the shear viscosity is
grossly underestimated.

Obviously the magnetic properties of liquid Fe are poorly
described by the AIMD method used here: the simulated
system has a spontaneous magnetic moment which cannot be
present in real liquid Fe. There are however several indications,
both experimental [51] and theoretical [52,53], that suggest
that liquid Fe is paramagnetic, so that atomic magnetic
moments are indeed present in the system, although there is
no long-range magnetic order. The average atomic magnetic
moment obtained in our simulations is 2.41 Bohr magnetons.
On the other hand, the excellent agreement between the
experimental static structure and dynamic properties and the
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simulated ones suggests that the interatomic forces are well
reproduced by the theoretical method used.

We conclude that it is essential to take into account the
existence of atomic magnetic moments in order to describe the
interactions among atoms, even though the magnetic ordering
is exacerbated and leads to wrong magnetic properties. While
it might happen that a more detailed account of magnetism,
considering, e.g., the possibility of noncollinearity, could alle-
viate the inaccuracies observed, we nevertheless consider that
this exacerbation of magnetic ordering is an intrinsic defect of
DFT in the study of finite temperature magnetism. In fact, there
have been theoretical constructs, like the dynamic mean field
theory [52], that take into account correlation effects, absent in
DFT, that kill off ferromagnetism and produce a paramagnetic
behavior of solid bcc-Fe above a Curie temperature. This
temperature is usually largely overestimated, but further
improvements in the theory [53] can lead to values comparable
to the experimental Curie temperature. However, such methods
have only been applied to solids, where the symmetries reduce
the number of nonequivalent atoms to a very small number.
It seems very unlikely that this kind of more exact methods
(with respect to magnetism) will become applicable to liquid
systems, with at least one hundred atoms needed in order to
take into account structural and dynamic disorder.
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APPENDIX A: MODEL FOR N(q,t)

We start by introducing the hierarchy of memory func-
tions of F (q,t) and this is most conveniently achieved
through the use of the Laplace transform technique f̃ (z) =∫ ∞

0 f (t) exp[−zt]dt . In this way the first M(q,t) and second-
order N (q,t) memory functions of F (q,t) are defined as

F̃ (q,z) = F0(q)

z + M̃(q,z)
, M̃(q,z) = M0(q)

z + Ñ (q,z)
, (A1)

where F0(q) and M0(q) are the initial (t = 0) values of
F (q,t) and M(q,t), respectively, and take the values F0(q) =
S(q) and M0(q) = −F̈ (q,0)/F0(q) = kBT q2/[mS(q)] the dot
denoting time derivative, with kB the Boltzmann constant
and m the atomic mass. Moreover, since F (q,t) is a real
even function of time, its second derivative can be related
to the second frequency moment of the S(q,ω), so that
M0(q) = 〈ω2(q)〉/S(q) = ∫ ∞

−∞ ω2S(q,ω)/S(q) dω.

The second-order memory function N (q,t) accounts for
all the relaxation processes in the collective dynamics and is a
basic magnitude in most theoretical models for F (q,t). Usually
the N (q,t) has been written as a sum of a rapidly decaying
term, which aims to describe the interactions of a particle with
its nearest neighbors, plus a slowly decaying term intending
to account for the cooperative motion of a large number of
particles. A convenient mathematical description is achieved
by writing the N (q,t) as a sum of two exponentially decaying
functions (a slow and a fast one), namely

N (q,t) = As(q)e−t/τs (q) + Af (q)e−t/τf (q),
(A2)

Ñ (q,z) = As(q)

z + τs(q)−1
+ Af (q)

z + τf (q)−1
.

This model [54] conventionally ascribes to one of the
exponentials the physical origin of a thermal decay chan-
nel, with amplitude [γ (q) − 1]M0(q) and relaxation time
[γ (q)DT (q)]−1, whereas the other exponential accounts
for a viscoelastic decay channel, with amplitude ω2

L(q) −
γ (q)M0(q) and relaxation time τv(q). The values of the
amplitudes are such that N (q,t = 0) recovers its correct value
in terms of the second and fourth derivatives of F (q,t) at
t = 0 or alternatively in terms of the second and fourth
frequency moments of S(q,ω), where in particular ω2

L(q) =
〈ω4(q)〉/〈ω2(q)〉. The other q-dependent magnitudes, namely
γ (q) and DT (q), are generalizations of the thermophysical
parameters γ0 = CP /CV (the ratio between specific heats at
constant pressure and at constant volume) and the thermal
diffusivity DT . We end up by remarking that the analytical
properties of the exponential functions are suitable for the
fitting of simulation data for F (q,t); in fact the previous model
leads to an F (q,t) with an analytical expression comprising
four exponential terms (two real and two with complex
conjugate amplitudes and exponents).

APPENDIX B: WINDOW FOR FOURIER TRANSFORMS

The Fourier transform of a function of time F (t) into
frequency space F̃ (ω) involves an integral over all times from
0 to infinity. In time correlation functions it is unavoidable
to have some small, but unphysical, statistical noise at long
times. This can lead to erroneous results in the FT, and the
usual prescription to eliminate this source of errors is the
multiplication, prior to the integration, of the raw function
F (t) by a window function W (t) that starts from one and goes
smoothly to zero for long times. In particular, the window we
use is defined as

W (t) =
⎧⎨
⎩

1, 0 � t � t0

exp[−(t − t0)2/τ 2], t � t0.

We have chosen this form in order to preserve the initial time
derivatives of F (t), which are related to the frequency moments
of F̃ (ω).
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Phys. Condens. Matter 21, 115106 (2009).

[42] S. Kambayashi and G. Kahl, Phys. Rev. A 46, 3255 (1992); G.
Kahl and S. Kambayashi, J. Phys. Condens. Matter 6, 10897
(1994).
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