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Recent extended x-ray absorption fine structure (EXAFS) studies suggest that in skutterudites, the nearly
square rings (such as As4 in CeFe4As12) are quite rigid and may vibrate with low-energy modes in one direction,
similar to “rattler” atom vibrations. That work suggests that the motions of the square rings and the rattler atoms
are coupled. In addition, for LnCu3Ru4O12, the second-neighbor pairs about Ln have stiffer effective springs than
the nearest-neighbor pairs. To investigate these systems, a one-dimensional, four-mass, linear chain spring model
is developed to describe the recent experimental results and provide insight about the low-energy vibrations
in such systems. Our model solves the resulting coupled network of overlapping weak and strong springs and
determines the eigenfrequencies and eigenvectors. The dispersion curves show an acoustic mode, two different
low-energy optical rattling modes involving both the rattler and square, and a noninteracting optical mode. Each
rattler mode can couple to the acoustic mode, which generates avoided crossings characterized by flattening
of the modes; this has important consequences for thermal transport. From these results we calculate atomic
correlation functions and the Debye-Waller–like function used in EXAFS σ 2 as a function of temperature. These
calculations show that for the rattler-neighbor pairs, σ 2 is a sum over several modes; it is not the result of a
single mode. The inverse slope of σ 2(T ) at high T provides a measure of the effective spring constants, and the
results show that for small direct spring constants the effective spring constant can be significantly larger than the
direct spring constants. The locations of the avoided crossings (between rattler modes and the acoustic mode) in
q space can be tuned by the choice of both the rattler and the square atoms. Consequently, it may be possible to
further reduce the thermal conductivity using a mixture of nanoparticles, each with avoided crossings at different
positions in q space.
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I. INTRODUCTION

The family of skutterudite compounds is growing larger;
the frequently studied, filled variety has the chemical formula
LnM4X12 (Ln = lanthanide; M = Fe, Ru, or Os; and X = P, As,
or Sb). These compounds display a wide variety of interesting
phenomena, including low thermal conductivity and good
thermoelectric properties at high temperatures, characterized
by a high figure of merit, ZT = T S2 σe

κtot
, where S is the Seebeck

coefficient, σe is the electrical conductivity, and κtot is the
thermal conductivity, dominated by the lattice contribution
[1–8]. The low thermal conductivity, and hence higher Z

in these materials, is generally attributed to the low-energy
“rattling” motion of the Ln atoms. The unfilled skutterudites,
such as CoSb3 (Co4Sb12), have no rattler atoms and have a
higher thermal conductivity than the filled compounds [9].
Here we consider primarily filled compounds with a large
fraction of the rattler sites occupied.

Skutterudites crystallize in the cubic Im3̄ space group, and
are characterized by a large unit cell which includes three X4

squares for every rare-earth Ln atom. The transition metal, (M)
atoms, and pnictogen (X) atoms form a “cage” surrounding
the Ln atom. Oxyskutterudites, such as LnCu3Ru4O12, are
more recently developed materials [10,11], similar to the filled
skutterudites, except that the X4 square is replaced with a CuO4

group as shown in Fig. 1. The CuO4 unit is relatively larger,
considerably lighter than the X4 (X = As and Sb) squares, and
slightly more rectangular, although we’ll continue to refer to
CuO4 as a square.

Recent extended x-ray absorption fine structure (EXAFS)
studies of CeM4As12 and LnCu3Ru4O12 propose that the
As4 and CuO4 squares are nearly rigid units and that their

suspension within the skutterudite structure is anisotropic [12].
The squares are suspended in the unit cell via strong Ru-O or
M-As bonds, which are quite stiff but are nearly perpendicular
to the square; thus there are strong restoring forces only
for motion perpendicular to the squares. There are also
moderately large effective spring constants between squares,
but the resulting restoring forces are mostly perpendicular to
the rattler-square axis. Thus the rattler-square system forms
weakly connected chain linkages along the x, y, or z directions
within a stiffer framework formed of M atoms [12]; vibrations
within this linkage should not be considered local modes.

Further support for anisotropic motions of the square rings
comes from two other recent EXAFS experiments. In the
compound CePt4Ge12−xSbx [13] the disorder about Ce, Pt,
and Ge for x = 0 is low at 10 K, similar to other skutterudites.
However, as Sb is added, the environment about Ce becomes
disordered, and for x = 3 the peaks are approaching noise
levels at 10 K. Thus the Ce-Sb pairs become disordered rapidly.
In contrast, for the Pt data, the first Pt-Ge peak remains
well ordered and only decreases slightly (25% at 10 K) for
x = 3; this bond is nearly perpendicular to the square rings
and thus the Ge rings are not displaced significantly in a
perpendicular direction. However, the next neighbor Pt-Ge
pair, which has a large component in the plane of the squares,
becomes disordered rapidly with increasing x, and at x = 3,
the peak is decreases by a factor of 2. This implies motions of
the Ge4 rings are primarily within the plane of the rings.

For doping on the M site, e.g., NdFe4−xNixSb12 or
CeFe4−xCoxSb12, the disorder around the Fe site at 10 K
remains small with increasing x; instead, the largest disorder
is again for the neighbors about the rattler atom—the Nd-Sb

1098-0121/2015/92(13)/134111(10) 134111-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.134111


TREVOR KEIBER AND FRANK BRIDGES PHYSICAL REVIEW B 92, 134111 (2015)

FIG. 1. (Color online) The structure of an oxyskutterudite,
LnCu3Ru4O12. The light-blue atoms form the cage and usually consist
of transition elements such as Fe, Ru, Os. The large red atom is the
rare-earth rattler atom. The four small purple atoms are oxygens
surrounding the green, (crosshatched) copper atoms. This square can
also consist of four atoms (crosshatched atom removed), such as As4,
Sb4, etc. for the filled skutterudites.

or Ce-Sb pairs [14]. Thus for both types of substitution—on
the squares or on the M sites—the induced local disorder is
mostly along the rattler-square axis.

Some of the exotic phenomena observed for these materials
originate from the unusual atomic configuration in the large
unit cell [15]. Many measurements demonstrate the presence
of a low-lying optical phonon, supporting the point of view that
the Ln ions undergo a low-energy “rattling” behavior [9,16].
This low-frequency rattling leads to strong effective phonon
scattering and is responsible for the extremely low, nearly
glasslike, thermal conductivity of these materials [8,17–21].
Keppens et al. [9] noted that there is a higher energy mode that
involves Sb atoms in CeFe4Sb12, and theoretical calculations
by Feldman et al. [22] find low-dispersion optic modes also
associated with Sb at somewhat higher energies than the modes
associated with the rattler atoms. However, the nature of these
vibration modes has not been explored.

The early models of the rattler-atom motion assumed that
large-amplitude rattler vibrations inside the cage of rigid
atoms would scatter acoustic phonons, thereby reducing the
thermal conductivity. Such a vibration would be isotropic in
all directions in a weak harmonic potential due to the large
amount of space in the cage and cubic symmetry. The rattler
equation of motion [12] is then mr

d2u
dt2 = −Keffu, where Keff =

4 Krs + 8/3 Krc; here Krs is the nearest-neighbor and Krc the
second-neighbor direct spring constant, and mr is the rattler
mass, within the rigid cage approximation. Others, however,
have proposed [23] that mr should be the reduced mass of
the Ln-X pair. Other groups have argued that point defect
scattering of acoustic phonons by the rattler atoms is likely
not appropriate, and one needs to consider how the the rattler
motion is coupled to the rest of the lattice [21,22,24].

In a recent study of several Os antimonides [25]
(NdOs4Sb12, PrOs4Sb12, and EuOs4Sb12) the vibration

amplitude of the rattler, relative to the first and second
neighbors (i.e., Nd-Sb and Nd-Os pairs for NdOs4Sb12), did
not increase at the same rate with temperature, which is
inconsistent with the rigid cage model. The faster increase in
vibration amplitude observed for the second-neighbor Nd-Os
pair may not be surprising if one assumes some motion of
the Os atoms in the cage; however, the Os-Os pair is quite
stiff, so how that occurs is not obvious. Further, there is an
unusually large static distortion for the Nd-Os pair that is not
well understood but may be related to a cage distortion [25].
Similarly, in a series of As skutterudites (CeM4As12) the Ce-M
bond was weaker than the Ce-As bond [12].

More surprising are the recent results for three oxyskut-
terudites (LnCu3Ru4O12; Ln = La, Pr, and Nd); in these
systems the second-neighbor Ln-Ru bond is stiffer than
the nearest-neighbor Ln-O bond [12]. Thus the rigid cage
approximation is inadequate for describing the rattler motions
in the skutterudites because it predicts the same stiffness for
the first- and second-neighbor bonds, and cannot account for
the differences in the rattler behavior for the second-neighbor
pair, between arsenides and oxyskutterudites.

To gain insight about the local vibrations in rattler systems,
Christensen et al. [26] considered the Ba rattler atom in
the clathrate, Ba8Ga16Ge30. They introduced a two-mass,
one-dimensional model to describe the interaction (coupling)
between the rattler optical mode and the acoustic-phonon
modes. In their paper, the phonon dispersion modes were
calculated and compared with experimental results from
neutron triple-axis spectroscopy. Their simple model predicted
an avoided crossing of the rattler mode and the acoustic-
phonon branch. The resulting flattened dispersion curves lead
to a significant decrease in the thermal conductivity.

While this model might be sufficient for clathrates, it is
insufficient for the skutterudite systems which have both Ln
atoms and squares of atoms inside the cage structure. Because
of the asymmetric restoring forces on each square, it can move
easily towards/away from the rattler and forms a “second
rattler” in the system, which is coupled to the Ln rattler [12].
Thus a model which takes into account the correlated motion
of both the Ln rattlers and squares is required.

Aside from the clathrate model, there are no other simple
models involving rattler-atom vibrations coupled to the ring
atom motions that we are aware of. Several full phonon
calculations have been carried out for skutterudites [22,27–
31] which show low-energy modes with low dispersion,
Einstein-like modes; such modes have been observed directly
using inelastic x-ray scattering (IXS) and/or nuclear resonant
inelastic scattering (NRIS) [29]. However, none of these
theoretical studies calculate the Debye-Waller–like parameters
σ 2 used in EXAFS. Considering such low-dispersion phonon
modes does, however, raise an important issue—How do the
results from direct probes (IXS, NRIS) of these phonon modes
compare with atom-specific probes that look at the vibrations
of a given atom [i.e., atomic displacement parameters (ADP)
in diffraction or the vibrations of atom pairs (σ 2 in EXAFS)]?
The vibration modes probed using IXS and NRIS involve
the vibrations of many atoms, while the probes that look
at the vibrations of specific atoms or pairs of atoms involve
a sum over several modes. We show the latter explicitly in
our calculations of σ 2; thus characteristic energies from direct
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probes of phonon modes (not atom specific) may differ from
atom-specific probes.

Here we report a four-atom unit cell, linear chain model to
describe the skutterudite systems in which both the rattler atom
and the square rings have weak restoring forces. We consider
this the simplest possible model which captures the essential
physics of the rattler atom interacting with the square rings and
also the cage of surrounding atoms. For this model we calculate
the phonon dispersion curves; plots of these dispersion curves
illustrate where avoided crossings occur and how they move
with changes in parameters. We also calculate σ 2(T ) for each
pair, including the contributions for each mode, and compare
the results with recent EXAFS results [12]. The effective spring
constant for each pair (Sec. II) is extracted from the inverse
slope of σ 2(T ) at high T .

II. EXPERIMENTAL SPRING CONSTANTS

In recent EXAFS studies of skutterudites [12,23,32–34]
the rattler vibrations have been characterized in terms of
an Einstein temperature and a static offset. In the Einstein
model the vibrations of the rattler atom are described by one
frequency. Although the vibration amplitude (σ 2) is a weighted
average over all modes and all of q space, many details are
averaged out. The general equation for σ 2(T ) in this model is

σ 2(T ) = σ 2
static + �

2

2μkBθE
coth

θE

2T
, (1)

where θE is the Einstein temperature, μ is the effective reduced
mass, and σ 2

static is the static offset. Within the rigid cage model
the effective reduced mass is equal to the mass of the rattler.

Although temperature dependencies are most often reported
in terms of an Einstein (or correlated Debye) temperature,
EXAFS actually measures an effective spring constant when
in the high-T limit [35]. The effective spring constant is a
combination of the direct spring constant plus a network effect
from surrounded bonds. It is denoted by Kxy−eff and should
not be confused with the direct spring constant Kxy between
atoms x and y, which is not directly measurable with EXAFS
but is needed for input into the model. To determine the
effective spring constants Keff from experimental EXAFS
data, we use the high-temperature approximation to Eq. (1),
given by Eq. (2). Specifically, the Einstein fit of the σ 2 data is
extrapolated to high temperatures, and the inverse slope of the
data is determined. A similar extrapolation can be used if the
data are modeled using a correlated Debye model [12],

Keff = kB

�T

�(σ 2)
. (2)

As an example, experimental σ 2(T ) results for the Ce-As,
Ce-Ru, and As-As pairs [12] in the As skutterudite CeRu4As12

are presented in Fig. 2, and the fits are extrapolated to 1000 K
to estimate the effective spring constants using Eq. (2). Krs−eff

and Krc−eff are computed, as well as the much stiffer Kcc−eff ,
where rs corresponds to rattler-square, rc to rattler-cage, and
cc to cage-cage.

Table I shows the experimentally calculated effective
spring constants [12] for filled skutterudites CeRu4As12 and
NdCu3Ru4O12 using the inverse slope of the σ 2(T ) plot. The
cage atom nearest-neighbor springs are approximately 2–3
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FIG. 2. (Color online) The experimental values of σ 2 for three-
atom pairs in CeRu4As12 from Ref. [12] and fits to an Einstein model.
These fits were extrapolated to 1000 K to obtain effective spring
constants for the three bonds, Ce-As, Ce-Ru, and Ru-As.

times stiffer than the rattler springs. All comparable bonds of
the oxyskutterudites are stronger than the filled skutterudites.
This is consistent with the smaller lattice constant of the
oxyskutterudites and more tightly bound oxygen bonds.
However, the second-neighbor Ln-Ru bonds are substantially
stiffer than the first-neighbor Ln-O bonds, which is opposite
the results for the filled skutterudites. To estimate the effective
spring constant providing the restoring forces for motion in
a particular direction, we use the quantity Kxycos2(θ ), where
θ is the angle between the bond direction and the direction
of motion. For additional spring constant values and further
discussion, see Ref. [12].

III. SPRING MODEL

We are primarily interested in the low-energy (large-
amplitude) vibrations along the (100) directions, i.e., between
a rattler atom and a square. The relevant part of the unit cell is
shown in Fig. 3; it contains one rattler and one square inside the
cage atoms. We project all masses and springs onto the (100)
axis as shown in Fig. 3(b). There are four different masses:
mr represents the rattler mass (in amu), which is nearly the
same for the Nd-filled oxyskutterudite (144.2) and Ce-filled
skutterudite (140.1); ms is the square mass, which is 127.6 for
CuO4 and 299.6 for As4; while mc represents a generalized
cage mass of four Ru atoms (404.3) and is present twice
in the unit cell, separating each square and rattler. In this
one-dimensional (1D) projection onto a linear chain, it should
be noted that in the actual three-dimensional (3D) crystal, the
square is the nearest neighbor to the rattler.

TABLE I. Experimentally calculated effective spring con-
stants [12] for the As skutterudite CeRu4As12 and oxyskutterudite
NdCu3Ru4O12 using the inverse slope of the σ 2 plot. The spring
constants for the cage atoms are significantly stiffer than for the
springs connected to the rattler atoms. Here “rs” corresponds to Ln-X,
“rc” to Ln-Ru, and “cc” approximately to Ru-Ru.

Bond CeRu4As12 (eV/Å
2
) NdCu3Ru4O12 (eV/Å

2
)

Ln-X 2.70 4.17
Ln-Ru 2.15 6.50
Ru-X 9.85 13.15
Ru-Ru 4.57 7.17
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FIG. 3. (Color online) The top panel shows the rattler and square
enclosed by cage atoms forming one quarter of the unit cell along the
(100) direction. The lower panel is our symbolic 1D representation
of this part of the unit cell; it is shown expanded vertically for
comparison to the top structure but in the model is compressed to
a 1D model. mr represents the rattler-atom mass, (rare-earth atom),
mc represents the cage atom mass and is repeated twice per unit cell,
and ms is the mass of the square. Kcc is the stiff spring between the
cage atoms, and Krs is the spring between the rattler and square of
atoms (nearest neighbor in 3D). Ksc is the spring which connects the
square of atoms to the cage, and Krc is the spring constant between the
rattler and cage atoms. (It corresponds to the rattler second-neighbor
pair in 3D.) The uiβ are the displacements of the atoms in the βth unit
cell.

Four spring constants are defined in Fig. 3, and only these
direct spring constants are input parameters to our model.
Further neighbor spring coefficients are weaker, difficult to
estimate, and ultimately not needed at this level. The advantage
of a system with few parameters is a tractable grasp of the
results. The shortcoming is that we have only approximate
measures for the springs comprising the system and a 1D
model. The direct springs used in the model are estimated from
the sum of first-neighbor pair bonds projected along the (100)
axis. There is no easy way to extract exact values of these
spring constants, so instead we introduce four generalized

direct springs as follows: The spring Krs connects the rattler
and square of atoms, corresponding roughly to the two nearest
Ln-X bonds projected onto the x axis, though there are also
contributions from other atoms comprising the square. The
strength of Krs is much less than the stiff bonds comprising

cage-cage interactions. We use a value of 2.2 eV/Å
2

for both
the As and oxyskutterudites in all calculations. There are two
potentially different cage-cage bonds in each unit cell (one
spanning the rattler, and the other spanning the square); we set
them equal and define them as Kcc. This is the strongest bond
in the system but difficult to quantify, as it represents both
Ru-Ru bonds and the projections of two stiff, nearly parallel

Ru-X bonds in series. For simplicity we set Kcc = 12 eV/Å
2

for both the As and oxyskutterudites.
Next we define Krc as the spring between the rattler and

cage Ru (or M) atoms. In the 3D crystal this is related to the
second-neighbor spring for the rattler; its relationship to Krs

is of primary interest because the strength of this effective
bond is one of the major differences between the As and
oxyskutterudites. Krc is the projection of four Ln-Ru (Ln-M)
bonds onto the x axis; here we explore several different values
for this bond as it effectively couples a one-dimensional chain
of cage atoms to a one-dimensional chain of alternating rattlers
and squares. The square-to-cage bond is Ksc, which is similar
in nature to Krc as it also couples the motion of the cages to the
squares and rattlers. However, the effective spring constant for
Ksc cannot be directly measured experimentally; it arises from
a projection of the restoring forces from the Ru-As (or Ru-O)
spring constants along the 100 direction and is estimated as
KRu−Ascos2(θ ), where θ is large and cos2(θ ) is < 0.1. We
expect Ksc to be the same order of magnitude as Krc, and we
explore a range of values.

The equations of motion for unit cell β with a basis of four
atoms are written in terms of the atom coordinates uαβ , where
α is the index of the atom within a cell, and β is the index of
the unit cell. An example of the equation of motion of the first
cage atom motion is shown in Eq. (3). We change variables to
a reduced mass coordinate zα(q) and utilize the infinite chain
model, replacing uαβ with Eq. (4), where a is the length of the
unit cell:

mc

d2u1β

dt2 = −Kcc(u1β − u3β ) − Kcc(u1β − u3[β−1])

−Krc(u1β − u2β) − Ksc(u1β − u4[β−1]), (3)

uαβ = zα(q)√
mα

ei[−ωt+qaβ+qa(α−1)/4]. (4)

From the equations of motion, for a particular wave vector
q, we obtain the dynamical matrix in terms of the renormalized
coordinates zα . The matrix that is diagonalized to extract the
eigenfrequencies ωj and eigenstates εα is given in Eq. (5):

⎛
⎜⎜⎜⎜⎜⎝

2Kcc+Krc+Krs

mc

−Krce
iaq/4√

mcmr

−Kcce
−iaq/2−Kcce

iaq/2

mc
−Ksce

−iaq/4√
mcms

−Krce
−iaq/4√

mcmr

2Krs+2Krc

mr
−Krce

iaq/4√
mcmr

−Krse
−iaq/2−Krse

iaq/2√
mrms

−Kcce
−iaq/2−Kcce

iaq/2

mc
−Krce

−iaq/4√
mcmr

2Kcc+Krc+Ksc

mc
−Ksce

iaq/4√
mcms

−Ksce
iaq/4√

mcms
−Krse

iaq/2−Krse
−iaq/2√

mrms
−Ksce

−iaq/4√
mcms

2Krs+Ksc

ms

⎞
⎟⎟⎟⎟⎟⎠

. (5)
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FIG. 4. (Color online) A plot of the dispersion curves for the
system when Kcc is significantly larger than Krc for the three-atom
unit cell. The lowest mode is the acoustic, the intermediate is
the low-energy rattler mode, and the highest is the noninteracting
optical mode. The interaction between the modes is illustrated by the
repulsion (avoided crossing) of the lowest two modes at qa = 1.6.

IV. AVOIDED CROSSINGS

Before investigating the two-rattler system, it is useful to
first consider the eigenfrequency spectrum for the simplified
case with no independent motion of the X4 square. This is
done by making Krs and Ksc equal to zero, simplifying Eq. (5)
into a 3 × 3 matrix. In this limit the system is described by
three masses per unit cell, mr and mc (repeated twice) and two
different spring constants Kcc, Krc; here Krc plays the role of
the weak rattler spring to the rest of the system. This three-
mass model can be compared to the simple system proposed
by Christensen et al. [26] for the clathrates. The dispersion
curves for the three-mass model are shown in Fig. 4; the lowest
mode is the acoustic, the intermediate is the low-energy rattler
mode, and the highest is the noninteracting optical mode. The
rattler mode has low energy because of the weak spring (Krc)
connecting it to the nearest masses.

Coupling occurs between the acoustic mode and the low-
energy rattling mode at qa approximately 1.6 rad, which is
shown by the avoided crossing in this region, with flattening
of the acoustic modes as observed in the model of Christensen
et al. [26]. Flattening of modes has important consequences,
since the group velocity is the slope of the dispersion curves.
Thermal transport is proportional to the group velocity, and
if the slope is decreased via mode coupling, then the thermal
conductivity will be decreased. The higher optical mode does
not couple to the other modes in this calculation and is
noninteracting. The location of the avoided crossing is affected
by the ratio of the rattler-to-cage mass, a larger rattler mass
shifts the coupling to be closer to the origin. This means that
a heavier rattler will effectively scatter phonons at a lower
frequency. Additionally, as the ratio of springs Krc to Kcc is
decreased, the coupling is also shifted nearer to the origin.

In the four-mass model, the square—now treated as a
large atom—can act as an additional rattler moving in the
(100) direction where the restoring forces are smaller; this
is especially true for the oxyskutterudites, because the CuO4

square is of comparable mass to the rare-earth rattler. There
are two potential rattler modes corresponding to different
combinations of the vibrations of the lanthanide and square.
Each of these can couple to the acoustic mode, creating a
more diverse dispersion relation with potentially two crossings
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FIG. 5. (Color online) Plots of different dispersion curves for the
As-based skutterudite. Krc is varied along the horizontal axis, and

Ksc is varied along the vertical, each from 0.3 to 2.1 eV/Å
2
; values

of Krc, Ksc are given on each panel. There are two avoided crossings
in each case, occurring at different wave vector q, depending on the
spring constants.

instead of one. The two low-energy optical modes can interact
with each other, and with the acoustic mode, creating several
possible avoided crossings. The highest mode is again a
noninteracting optical mode for these choices of parameters.

To understand the effect of the spring constants on the
dispersion curves and the locations of the avoided crossings,
we systematically vary the spring parameters. For comparison

purposes, Kcc is kept the same and is large (12 eV/Å
2
) for

all figures, because the cage-cage spring is always at least 3–5
times larger than the weaker rattler spring constants. Krs is also

kept at a constant value (2.2 eV/Å
2
) for all figures, since we

are primarily interested in the ratios of Krc:Krs and Ksc:Krs .
In Fig. 5 a grid of nine sets of dispersion curves (appropriate
for CeRu4As12) are presented, with Krc (horizontal) and Ksc

(vertical) varied from 0.3 to 2.1 eV/Å
2
. In Fig. 6 we present

the corresponding figure for the oxyskutterudite, which has all
of the same spring parameters but a different square mass.

The changes in the curves along the rows of Fig. 5, with
Ksc constant, shows that increasing Krc shifts the positions
of both avoided crossings to higher q values. Additionally,
the separation of the modes at the avoided crossing increases
with Krc. Along columns, increasing Ksc at constant Krc has
a similar though smaller effect, due to the larger square mass.

The locations of the avoided crossings are different for
the As and oxyskutterudites, mainly because of the different
square mass used. A heavier rattler/square mass will cause
the avoided crossings to occur nearer to the origin; compare
Figs. 5 and 6.
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FIG. 6. (Color online) The dispersion curves for the oxyskutteru-
dite, with the square mass equal to that of the CuO4 unit. Krc is again
varied along the horizontal axis and Ksc along the vertical. The two
avoided crossings occur at different wave vectors q than in Fig. 5.

V. CORRELATIONS

It is helpful to consider the correlation functions, Cα1α2(q),
between atoms at positions α1 and α2 in the same unit cell
to understand the relative atomic motions. This function is
defined by

Cα1α2 = 〈
uα1 · uα2

〉
, (6)

where uα1 is defined by Eq. (4). The correlation is positive if
the atoms are vibrating in phase and negative if they are out
of phase. For each atom pair (defined by the spring between
them) there are four components to the correlation from the
four different branches of the dispersion curves as shown in
Fig. 7. Because of the avoided crossings, it is difficult to strictly
identify some of the various modes (i.e., the acoustic, and the
two rattler optic modes) for some values of q. Notice that
for each panel the total sum of the positive and negative
components cancel for each panel. The dispersion curves
are also included at the top, to show how avoided crossings
correspond to features in the correlations. Only the region from
qa = ±1.8 is shown to illustrate the first avoided crossing at
qa = 0.8; the second avoided crossing appears as a spike near
qa = 2.8 and is not on this plot.

The cage-cage correlation has a large negative component
from mode 4, which is balanced by a positive contribution
from modes 1 and 2. Notice that the correlations for mode
1 are larger than for mode 2 near q = 0 and transitions to
mode 2 when qa is above the position of the avoided crossing
at qa = 0.8. There is negligible contribution from mode 3.
The correlation for the rattler-square has a large negative
component from mode 3 balanced by positive components
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FIG. 7. (Color online) The dispersion curves corresponding to
the As skutterudite are shown in the top panel for the restricted
qa range −1.8 to 1.8 (Krc = 0.3, Ksc = 0.3). This figure highlights
the avoided crossing at qa = 0.8; a second crossing (between mode
2 and 3) at qa = 2.8 is not shown. The second panel shows the
components of the correlation function for Kcc. The third, fourth, and
fifth panels correspond to Krs , Krc, and Ksc. Positive correlations
mean the pair of atoms move in the same direction for a given mode;
negative correlations mean they move in opposite directions.

from both mode 2 near the origin and mode 1 for qa > 0.8.
There is almost no contribution from mode 4. The correlations
for the rattler-cage are similar to that for the square-cage; for
each, the correlation is negative for mode 2 and positive (with
the same magnitude) for mode 1.

VI. THERMAL BROADENING

The average thermal motion as a function of temperature
for a pair of atoms is quantified by σ 2(T ), defined in Eq. (7),
where σ is the width of the pair distribution function. This is
a parameter which EXAFS can measure, and as discussed in
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Sec. II, we can use the inverse slope of σ 2(T ) in the high-T
limit to calculate effective spring constants.

Using the eigenvalue analysis, we can determine the
contribution for each mode and q vector. These contributions
are multiplied by the thermal occupation for each state based
on the energy, �ωj (q), and integrated over all wave vectors
q, as shown in Eq. (8). We sum over the four branches of the
dispersion curves to get the total σ 2 for a pair, though it is
useful to look at each mode independently:

σ 2
α1α2

= 〈∣∣uα1 − uα2

∣∣2〉
, (7)

σ 2
α1,α2(T ) =

4∑
j=1

∫ ∣∣∣∣εα1,j (q)√
mα1

− εα2,j (q)√
mα2

∣∣∣∣
2

�

2ωj

coth
ωj�

kBT
dq.

(8)

The values of the components of σ 2 as a function of
temperature for each pair are shown in Fig. 8 along with
the sum of all of the components. This figure uses the same
parameters as the correlation functions. In panel one, the
overall amplitude of σ 2

cc is quite low relative to the other
pairs, which is characteristic of the stiff cage-to-cage bond. The
largest component of σ 2

cc is from mode 4, which is the highest
optical mode. In panel two, σ 2

rs is substantially larger than σ 2
cc,

but slightly smaller in magnitude than σ 2
rc and σ 2

sc. The largest
component in panel two is from mode 3, followed by mode
1 and mode 2, with almost none from mode 4. σ 2

rc in panel
3 and σ 2

sc in panel 4 have approximately equal slopes, which
is expected since they have the same initial spring constants.
Each has the most significant contribution from mode 2 and
very little contribution from mode 4. σ 2

rc has contributions from
both mode 1 and 3, while σ 2

sc has a significant contribution from
mode 1 but little from mode 3. Note that because of the mixing
of modes, the nature of mode 1 changes from an acoustic mode
to a rattler mode as qa increases; similar crossovers occur for
modes 2 and 3 at higher qa. These plots show explicitly that
the vibration amplitude for atom pairs is a sum over two or
more modes and hence a characteristic energy will be some
weighted average of several modes. The average energy may
not be very close to the dominant optic mode energy.

In Fig. 9(a), σ 2(T ) is plotted for the first four neighbors
in CeRu4As12 from simulations using the spring model. The
slope for the Ce-Ru pair (Krc−eff ) is greater than that for the
the Ce-As pair (Krs−eff ), implying a weaker second-neighbor
bond as observed. The slope for the Ru-Ru pair (Kcc−eff )
is much lower, indicating a stiff bond. In part (b) the σ 2(T )
plots correspond to pairs in NdCu3Ru4O12. Here the slope
for the Nd-Ru pair (Krc−eff ) is less than that for the Nd-O
pair (Kr−eff s), which means the first-neighbor bond is weaker
than the second-neighbor bond, in contrast to the result
for the As skutterudite but consistent with experiments on
oxyskutterudites. Note that Ksc−eff has approximately the
same stiffness as Krc−eff (triangles and squares on Fig. 9);
however, both are much larger than the direct bonds Ksc or
Krc used to calculate the dispersion curves. Kcc−eff is much
stiffer than the other bonds and is almost unchanged from the
value for the direct spring constant Kcc. Einstein fits were
applied to the rattler pairs and are in good agreement with
experimental results.
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FIG. 8. (Color online) The components of σ 2 are shown as a
function of temperature for each atomic pair, using the calculation
appropriate for CeRu4As12. In panel one the components of σ 2

cc

(Ru-Ru) are shown, and in panels two, three, and four σ 2
rs (Ce-Sb),

σ 2
rc (Ce-Ru), and σ 2

sc are shown; the latter corresponds to the effective
restoring force along a 100 direction in the cubic unit cell from the
projected component of the Ru-Sb bonds. The sum of all modes in a
panel is shown as the dot-dash curve; this should be comparable to
the experimental curve.

VII. EFFECTIVE SPRING CONSTANTS

The effective spring constants were determined from the
inverse slope of the σ 2 data as in Sec. II. Different cage masses
do not significantly change the effective spring constants
when they are calculated from the high-temperature slopes
of σ 2(T ) (with direct spring constants fixed). This result at
first may seem counterintuitive but is a fundamental feature
of the system. Changing the ratio of masses instead changes
the zero-point-motion contributions, which are measured by
the y intercepts on the σ 2(T ) data at T = 0; i.e., σ 2(T = 0).
Smaller rattler masses have greater zero-point motion than
larger masses. The ratio of the direct spring constants used as
input to the model determines the effective spring constants in
a nontrivial way.

To understand the relationship between the direct spring
constants and effective spring constants, it is instructive to
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FIG. 9. (Color online) (a) σ 2(T ) functions, calculated from the
spring model for the first few neighbor pairs in CeRu4As12; Krc =
Ksc = 0.3 eV/Å

2
. The slope for the Ce-Ru pair (Krc) is greater than

for the Ce-As pair (Krs), implying a weaker bond. (b) Calculated
σ 2(T ) functions for pairs in NdCu3Ru4O12 are shown. The slope for
Nd-Ru (Krc) is less than that for Nd-O (Krs), which indicates that
the Nd-Ru effective bond is stronger than the effective Nd-O bond.
The solid lines are fits to an Einstein model for σ 2

rs(T ), σ 2
rc(T ), and

σ 2
sc(T ), and to a correlated Debye model for σ 2

cc(T ).

once again turn to the simplified three-mass system (the square
mass is remove by setting Krs and Ksc = 0). As the ratio of
the direct spring constants Krc to Kcc is varied, the value of
Krc−eff changes as shown in Fig. 10. As Kcc becomes much
larger than Krc, then we approximate a rigid cage model and
the value of Krc−eff approaches 2*Krc. For the case where
Kcc is less than Krc, the value of Krc−eff approaches Krc.

For the four-mass system, the relationship between effective
and direct spring constants is more complex. To illustrate the

behavior we keep Krs at 2.2 eV/Å
2

and Kcc at 12 eV/Å
2
,

 1

 1.5

 2

 0  2  4  6  8  10

K
rc

-e
ff 

/ K
rc

Kcc  / Krc

FIG. 10. The variation of Krc−eff as the ratio of Kcc to Krc

increases. As Kcc becomes much larger than Krc, the value of Krc−eff

goes to 2 Krc. When Kcc becomes much less than Krc, the value of
Krc−eff = Krc.

TABLE II. The four effective spring constants, calculated for the
As skutterudite system, are tabulated as a function of both Krc and
Ksc, simulating a variety of possible results. Using the oxyskutterudite
square mass gives nearly identical values. Ksc is varied horizontally,
and Krc is varied vertically. The upper-left corner is more like
the As skutterudite system, while the lower right is more like the

oxyskutterudites. All entries are in units of eV/Å
2
, Kcc = 12 eV/Å

2
,

Krs = 2.2 eV/Å
2
.

Bond Ksc = 0.3 Ksc = 1.2 Ksc = 2.1

Krc = 0.3 Kcc−eff 11.67 11.85 11.94
Krs−eff 2.76 3.15 3.36
Krc−eff 2.11 2.87 3.21
Ksc−eff 2.13 3.87 5.36

Krc=1.2 Kcc−eff 12.10 12.25 12.34
Krs−eff 3.15 3.65 3.97
Krc−eff 3.80 4.36 4.64
Ksc−eff 2.91 4.45 5.85

Krc=2.1 Kcc−eff 12.51 12.65 12.72
Krs−eff 3.36 3.97 4.37
Krc−eff 5.22 5.69 5.94
Ksc−eff 3.26 4.74 6.11

determining all effective spring constants as a function of
changing Krc and Ksc. In Table II each of the four effective
spring constants is shown as Krc (rows) and Ksc (columns)
are incremented (0.3 to 1.2 to 2.1). Since the square mass has
no significant contribution to the spring constants, this table
is the same whether using the As4 or CuO4 square. Kcc−eff is
not significantly different from Kcc (<6%) and remains much
larger than any of the other effective spring constants. Krs−eff

is approximately 25% larger than Krs for small values of
Krc and Ksc, and is nearly a factor of 2 larger for the largest
values of Krc and Ksc considered. Krc−eff and Ksc−eff are
each much larger than their direct spring constant values for
any values in the table, having significant contributions from
the networks of springs.

The ratio of the second-neighbor to first-neighbor direct
spring constants (i.e., Krc:Krs and Ksc:Krs) determines
whether the effective second-neighbor spring constant is larger
or smaller than the first neighbor. When these ratios are small
enough, the first-neighbor effective spring constant Krs−eff is
largest. Therefore, the upper-left corner of Table II, with small
values of Ksc and Krc, is more like the As skutterudite systems,
while the lower right of the table, with larger ratios, is more like
the oxyskutterudites. The most important factor influencing
the magnitude of the ratio of the first- to second-neighbor
effective spring constants from the rattler or square is the
ratio of the corresponding direct neighbor spring constants;
i.e. Krs/Krc. There is a smooth transition from the As-
skutteruditelike behavior to oxyskutteruditelike behavior, with

intermediate values of Krc = 0.75 eV/Å
2
, yielding nearly

equal first- and second-neighbor effective spring constants.
Figure 11 shows the effect of varying Krc on the effective

spring constants, Krs−eff , Krc−eff , and Ksc−eff . Kcc−eff

is not shown since it remains much larger than the other
effective spring constants and is nearly unchanged. Notice that
increasing Krc has the largest effect on Krc−eff ; it increases
monotonically with Krc. The effect is smaller for Krs−eff and
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FIG. 11. (Color online) Changes of effective spring constants as
a function of Krc with Kcc, Krs , and Ksc held fixed at 12, 2.2, and
0.3 eV/Å

2
, respectively. Notice that increasing Krc has a larger effect

on Krc−eff , and that Krs−eff (first neighbor in 3D) and Krc−eff (second

neighbor in 3D) cross near Krc = 0.75 eV/Å
2
.

Ksc−eff . The figure clearly shows where Krs−eff and Krc−eff

cross; for these parameters, it occurs when the direct spring

constant Krc ∼ 0.75 eV/Å
2
. If one varies Ksc instead of Krc,

the plots are nearly identical, except that Ksc−eff and Krc−eff

are switched, with Ksc−eff having the greater slope.

VIII. DISCUSSION AND CONCLUSIONS

We present a relatively simple four-atom model that
provides a means of exploring the vibrational properties of a
system with overlapping weak and strong springs. The system
can be viewed as two infinite chains (each with two-atom unit
cells) coupled together via weak springs. The equations of
motion were solved numerically to obtain the dispersion curves
and the corresponding eigenvalues. The four resulting modes
correspond roughly to an acoustic mode, two low-energy optic
modes (rattler modes), and a high-energy optic mode, which
plays little role in the low-energy properties. In addition, there
is strong coupling between the acoustic and the two low-energy
optic modes leading to avoided crossings and dispersion curves
with low slopes. This results in a low velocity of sound, which
is beneficial for thermoelectric applications. The location of
the coupling in q space is affected by the spring constants
and masses used; for example, a larger rattler mass shifts the
coupling closer to the origin.

Once the eigenfrequencies and eigenvalues are known as a
function of the wave vector q, a number of useful quantities can
be calculated; these include the correlation functions, which
show the relative motions of pairs of atoms, σ 2 as a function
of temperature which can be compared with experiment, and
effective spring constants. The latter can be extracted from
plots of σ 2 vs T in the same way as for experimental data.
We find that the strongest effective spring constants within the
cage are nearly identical to the direct spring constants used as
input for the model. However, when the direct spring constant
is small compared to other spring constants, the effective
spring constant for that pair can be much larger. Thus the
ratios of effective spring constants depend on the direct spring
constants, in a nontrivial way. For the intermediate spring
constant Krs the effective spring constant is about 25% larger
for parameters corresponding the the As skutterudite and about
a factor of 2 larger for the model for the oxyskutterudites.

As the rattler-cage direct spring constant is increased, the
second-neighbor effective spring constant Krc−eff varies from
being smaller than the rattler-square effective spring constant
Krs−eff to being larger than Krs−eff , although for the direct
spring constants, Krc is smaller than Krs . Thus the unusual
differences for the As skutterudites and the oxyskutterudites
can be understood using this model.

An important feature of this model is that the square
ring also acts as a rattler and introduces additional coupling
with the acoustic modes, which further reduces the thermal
conductivity. Treating the square rings as nearly rigid units is
a simplifying approximation, but because the bonds within
the square rings are the second strongest in the structure,
we consider it is a reasonable approximation for low-energy
modes. We have observed evidence for low-energy motion
of the square rings along the rattler-square axis for many
systems—arsenides, oxyskutterudites, antimonides including
doped materials, and the CePt4Ge12 system. Thus we propose
that this behavior is a general feature of the skutterudite
structure. It would be useful in full calculations of the phonon
modes to project the motions of the ring atoms along various
directions and investigate correlations for the low-energy
modes. If the rings are quasirigid, as proposed here, the
motions of the four ring atoms will be highly correlated.

An interesting and potentially important result from these
studies is that one should have two avoided crossings between
acoustic and low-energy rattler modes, and that the positions
of these avoided crossings in q space can be tuned by changing
masses or spring constants. Consequently, if the material
consists of many nanodomains, with different positions of the
avoided crossings, phonon transport may be highly suppressed;
acoustic phonons of a given frequency and q vector that
propagate freely in one domain cannot propagate in another
region that has an avoided crossing at that q vector. Thus
if large nanoparticles (100–300 nm) containing significantly
different rattler masses or square ring masses are optimized
to have a large power factor S2σe, then a mixture of such
nanoparticles should lead to a low thermal conductivity;
some nanoparticles might also be unfilled [20]. The improved
performance of some multiply filled skutterudites [8,36–46]
may be explained in part from nanodomains with avoided
crossings at different q vectors. However, in many cases
the concentrations of some filler atoms are low, and in that
case defect scattering should also play an important role. To
separate mechanisms it would be useful to compare a multiply
filled material with a mixture of singly filled nanoparticles
with the same average composition.

We anticipate that this simple model will encourage
experiments using a mixture of nanoparticles, as well as
motivate theoretical calculation to look for correlated motions
of the ring atoms and investigate transport in inhomogeneous
materials containing many nanodomains.
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