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Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries
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In this work we present an alternative way to look at electron diffraction in a transmission electron microscope.
Instead of writing the scattering amplitude in Fourier space as a set of plane waves, we use the cylindrical Fourier
transform to describe the scattering amplitude in a basis of orbital angular momentum (OAM) eigenstates. We
show how working in this framework can be very convenient when investigating, e.g., rotation and screw-axis
symmetries. For the latter we find selection rules on the OAM coefficients that unambiguously reveal the
handedness of the screw axis. Detecting the OAM coefficients of the scattering amplitude thus offers the possibility
to detect the handedness of crystals without the need for dynamical simulations, the thickness of the sample,
nor the exact crystal structure. We propose an experimental setup to measure the OAM components where an
image of the crystal is taken after inserting a spiral phase plate in the diffraction plane and perform multislice
simulations on α quartz to demonstrate how the method indeed reveals the chirality. The experimental feasibility
of the technique is discussed together with its main advantages with respect to chirality determination of screw
axes. The method shows how the use of a spiral phase plate can be extended from a simple phase imaging
technique to a tool to measure the local OAM decomposition of an electron wave, widening the field of interest
well beyond chiral space group determination.
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I. INTRODUCTION

An object is chiral when it is not superposable onto its
mirror image by rotating and/or translating it. Two chiral
objects that differ solely by mirror operations are called
enantiomorphs and are labeled as the right- and the left-handed
variant of the enantiomorphic pair. Chirality occurs from the
macroscopic scale, e.g., a hand, to the nanometer scale, e.g.,
molecules and crystals. In the latter it manifest itself not in
the physical properties of the material (e.g., density, melting
point) but in the interaction with other chiral objects, such
as circularly polarized light or other chiral molecules. This
is of great importance in, e.g., the pharmaceutical industry,
since biological processes mostly are chiral. Enantiomorphic
compounds in drugs can have distinct effects on the human
body, and it is essential for the drug to be enantiomorphically
pure in order to have the desired effect. In crystals the chirality
can be seen directly from the crystal’s space group lacking
an improper symmetry element (mirror, mirror glide plane,
inversion center, or roto-inversion center). When on top of
that the space group possesses a screw axis apart from the 21

screw axis, the space group itself is chiral as well. Namely,
mirroring a crystal with a chiral space group (see Table I), will
change the space group of the crystal to the other one in the
enantiomorphic pair.

Determining the handedness of a crystal in a transmission
electron microscope is a difficult task. In conventional
transmission electron microscopy (TEM) the crystal is seen
as a two-dimensional projection on the viewing screen and
one cannot distinguish between enantiomorphs from one
single image, simply because mirroring the crystal along the
projection plane changes the chirality of the material, but
not its projection on this plane. It is clear that in determining
the chirality, one has to find a way to include the third
dimension. The most intuitive way of doing this is by rotating
the crystal and taking several zeroth-order Laue zone (ZOLZ)
diffraction patterns, as proposed by Goodman and Secomb [1].

However, in order to determine the absolute rotation direction
with respect to the crystal from the diffraction pattern,
one has to perform dynamical simulations, which require
knowledge about the thickness of the sample and the
structure of the crystal. Taking several diffraction patterns
under different angles can be avoided when looking at the
so-called higher-order Laue zones (HOLZs) in the diffraction
pattern [2]. These spots contain information about the crystal
in the direction perpendicular to the projection plane and are
suited to determine the chirality. However, in the kinematical
approximation Friedel’s law imposes extra symmetries on
the Fourier transform of the crystal potential that prevent the
chirality from being determined from only one diffraction
pattern [3]. Therefore, dynamical scattering is needed where,
again, simulations have to be compared with the experiment.
An additional difficulty is that not all HOLZ diffraction spots
are sensitive to the chirality of the crystal, and one has to
identify these in order use them to determine the chirality [4,5].

In previous work [6] we proposed the use of electron vortex
beams to determine the chirality of crystals with a threefold
screw axis. As described theoretically by Nye and Berry [7],
these electrons’ wave function has the form

�(r)m = ψ(r,z)eimφ, (1)

with r , φ, and z the cylindrical coordinates where the z axis
is the propagation axis. A vortex electron is an eigenstate of
the angular momentum operator Lz = −i� ∂

∂φ
and possesses a

well-defined amount of angular momentum of m� per electron,
where the number m is called the topological charge of the
vortex [8]. The first experimental realization of optical vortex
beams [9] inspired active research which led to numerous
applications ranging from nanomanipulation [10–12] and
astrophysics [13–16] to telecommunication [17–19]. Also,
electron vortex beams can be created in a transmission electron
microscope using a phase plate of stacked graphite layers [20],
holographic reconstruction [21], lens aberrations [22], or the
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TABLE I. The 22 chiral space groups in class II, divided in 11
enantiomorphic space-group pairs. Mirroring a crystal belonging to
one of these space groups will change the crystal’s space group to the
other one in the enantiomorphic pair.

1. (P 41,P 43) 5. (P 61,P 65) 9. (P 31,P 32)

2. (P 4132,P 4332) 6. (P 62,P 64) 10. (P 3112,P 3212)

3. (P 4122,P 4322) 7. (P 6122,P 6522) 11. (P 3121,P 3221)

4. (P 41212,P 43212) 8. (P 6222,P 6422)

Aharonov-Bohm effect at the tip of a magnetized needle [23],
and recent research suggests possible applications in elec-
tron energy-loss magnetic chiral dichroism experiments [21],
spin-polarization devices [24], magnetic plasmons [25], and
nanomanipulation [26]. Since vortex beams are chiral, it may
be expected that they interact differently with enantiomorphic
crystals. Indeed, we showed that when focusing a vortex over
an odd screw axis with only one heavy atom in its vicinity,
the symmetry of the HOLZs will depend on the chirality
of the screw axis [6]. This gives a quantitative method to
determine the chirality of crystals in transmission electron
microscopy, where multiple scattering is not required and
dynamical simulations can be avoided. It also demonstrates
the use of electron vortex beams and their chiral character in
crystallography and shows that modifying the electron probe
can be of use to investigate certain properties. The technique,
however, is impeded by the extreme sensitivity of the probe
position, which has to be maintained exactly on top of the screw
axis during the time of acquisition. Additionally, the symmetry
argument can only be used to determine the chirality of odd
screw axes. For even screw axes, the diffraction pattern still
has to be compared with numerical simulations.

In this work we propose an alternative way of looking
at electron diffraction. Instead of decomposing the scattering
amplitude in Fourier space as a set of plane waves, we write the
scattering amplitude as a sum of electron vortices described
Eq. (1). Using this framework, we study electron scattering
on chiral crystals with screw-axis symmetry and find that by
looking at the OAM coefficients of the scattered wave the
chirality of such crystals can be determined without the need
for dynamical simulations, knowledge about the thickness of
the sample, or the crystal structure. We also propose a way to
measure these components in a transmission electron micro-
scope (TEM) and discuss the main advantages and obstacles
of the technique. We start with analytical calculations in the
first-order Born approximation, extend this to include multiple
scattering, and verify our findings with multislice simulations.

II. THEORETICAL FORMULATION

The scattering amplitude for an incident plane-wave elec-
tron with wave vector k to be scattered by a potential V (r)
to a plane wave with wave vector k′ is called the scattering
amplitude A(k′) = A(k′

⊥,φk′ ,k′
z), with k′

⊥,φk′ and k′
z the radial,

angular, and z component in cylindrical coordinates. Since
this function is periodic in the polar coordinate φk′ , it can be
expanded into a set of discrete Fourier coefficients [27]:

A(k′
⊥,φk′,k′

z) = 1√
2π

∑
m

am(k′
⊥,k′

z)e
imφ. (2)

In doing so, we write the scattering amplitude as a sum of
vortices with a well-defined OAM of m� [see Eq. (1)]. The
OAM coefficients am(k⊥,kz) are given by

am(k⊥,kz) = 1√
2π

∫ 2π

0
dφk A(k⊥,φk,kz)e

−imφk (3)

and play an important role in the description of the angular
momentum of the total scattering amplitude [28,29].

In Appendix A we show how in the first-order Born
approximation the scattering amplitude for an incoming plane-
wave electron with wave function �(r) = eik0z to scatter to a
plane wave � ′(r) = eik′·r on a potential V (r) is given by

A(k′) =
∑
m

i−m

√
2π

Vm(k′
⊥,k′

z − k0)eimφk′ , (4)

with

Vm(k⊥,kz) =
∫ +∞

−∞
dz

∫ ∞

0
dr

∫ 2π

0
dφ rV (r)

× 1√
2π

Jm(k⊥r)e−imφe−ikzz, (5)

the cylindrical Fourier coefficients of the potential, analogous
to the polar Fourier coefficients in two dimensions [27]. Note
that these coefficients depend on the origin of r , which defines
the point around which the expansion is taken. Shifting the
potential with respect to the origin will result in different
coefficients.

For a crystal with periodicity in the z direction, they can be
rewritten as

Vm,n(k⊥) = 1

P

∫ P

0
dz

∫ ∞

0
dr

∫ 2π

0
dφ rV (r)

× 1√
2π

Jm(k⊥r)e−imφe−in 2π
P

z, (6)

where P is the periodicity in the z direction, and kz = n 2π
P

,
n ∈ N. Because of the periodicity, the latter is quantized, which
results in a quantized transferred forward momentum k0 − k′

z

in Eq. (4).
In what follows we consider only elastically scattered

electrons for which the energy and the magnitude of the wave
number are conserved during the scattering process. We thus
have k2

0 = k′2
⊥ + k′2

z and can write the scattering amplitude as

An(φk′) =
∑
m

i−m

√
2π

Vm,ne
imφk′ , (7)

with n = P
2π

(k′
z − k0) and k′

⊥ =
√

k2
0 − k′2

z . Because of the
discretized transverse momentum, the diffraction pattern will
consist of discrete rings that can be labeled with the number
n and are known in conventional electron diffraction theory as
the zeroth-order Laue zone (n = 0), the first-order Laue zone
(n = 1), and the higher-order Laue zone (n > 0), hereafter
referred to as ZOLZ, FOLZ, and HOLZ, respectively. Note
that in this assumption, the ZOLZ would only consist of one
single point, while in reality it consists of a region of Bragg
spots. The reason for this is that the crystal has a finite size in
the z direction, blurring out the reciprocal lattice points of the
potential in Fourier space. This effect is mainly visible in the
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ZOLZs where the Ewald sphere lies relatively flat with respect
to the zone axis, but it is less important for the HOLZs, where
the Ewald sphere cuts the harmonics of the z periodicity under
an angle [30].

When a crystal possesses screw-axis symmetry, it is
invariant under the combined transformation of rotating it
around a point on the screw axis over a certain angle �φ

while translating it over a distance �z parallel to the rotational
axis. Because of the periodicity of the crystal, there are only a
limited amount of possibilities for �φ and �z,

�φ = 2π

M
and �z = lP

M
, (8)

with M ∈ {2,3,4,6} the order of the rotation, P the pe-
riod of the crystal along the screw-axis direction, and l ∈
{0, . . . ,M−1} the translation along the axis in units of P/M .
In the Hermann-Mauguin notation of space groups used in
Table I, a screw axis is denoted as Ml . In Appendix B we show
that the screw-axis symmetry puts restrictions on the polar
Fourier coefficients in Eq. (6) when the crystal is expanded
around a point on the screw axis. For a crystal with Ml

screw-axis symmetry, the nonzero coefficients in the expansion
have to suffice,

m = NM − nl, (9)

with N ∈ N. From Eq. (7), it is clear that every nth diffraction
ring can be seen as a sum of OAM eigenstates eimφk , where the
components are given by the coefficient Vm,n. As a result, the
restriction in Eq. (9) will also be reflected in the OAM states
contributing to the different Laue zones.

As an example, consider a crystal that belongs to space
group P 62 for which M = 6 and l = 2. In this case the first-
order Laue zone, n = 1, will only have OAM coefficients for
which m ∈ {. . . ,−8,−2,4,10, . . . }, while its enantiomorph,
belonging to space group P 64, will only have components
m ∈ {. . . ,−10,−4,2,8, . . . }. Here the periodicity at which the
OAM components occur is given by M .

It is clear that if we would be able to measure the OAM
components of a HOLZ, we could directly identify the crystal’s
chirality. Moreover, it is sufficient to determine for a limited
amount of coefficients whether they are zero or not, which is
generally easier to detect than to measure their actual value.
Note that this property arises because of the symmetry and is
independent of the crystal structure itself.

III. MEASURING OAM COEFFICIENTS
OF HOLZS NUMERICALLY

In order to investigate the OAM decomposition of scattered
electrons in more detail, we perform multislice simulations
with the program STEMSIM [31]. We study α quartz that belongs
to space group P 3121 or P 3221, where we adopt the structure
from Baur [32]. The two enantiomorphs possess a right- or a
left-handed screw axis for which M = 3, and l = 1 and l = 2,
respectively. In Fig. 1(a) the simulated image is shown for a
sample of 20 nm thickness.

In Fig. 1(b) the diffraction pattern is calculated by taking
the square of the Fourier transform of the simulated exit
wave. For the ZOLZ, the disk of spots in the middle contains
information on the projection of the potential on the plane of

FOLZ

ZOLZ

1nm 5Å-

FIG. 1. Simulated TEM image (left) and diffraction pattern
(right) of right-handed α quartz with a 300-keV electron beam,
sample thickness 20 nm. The circle of Bragg spots in the middle
of the diffraction pattern is the zeroth-order Laue zone that contains
information about the projection of the potential on the image plane.
The ring of spots around the ZOLZ is the first-order Laue zone.
These spots contain information on all three dimensions and thus the
chirality of the crystal.

view. The circle of spots around the ZOLZ is the FOLZ and
contains information of the crystal potential in the direction
perpendicular to the plane of view and therefore can be used to
determine the chirality of the crystal. Since the FOLZ involves
high angle scattering, its signal is considerably weaker than
the HOLZ due to the atomic scattering factors.

From the Fourier transform of the simulated exit wave, we
can numerically calculate the coefficients am,n for any nth Laue
zone. First, all pixels in Fig. 1(b) are set to zero, except for
the ones in a small region around the Laue zone of interest.
Then each pixel is multiplied by a factor exp(−imφ). The
coefficients are then obtained by adding up all pixel values,
which is the numerical approximation of the integral in Eq. (3).

The magnitude squared of the coefficients that build up the
FOLZ, |am,1(k⊥)|2, m ∈ {−10,10} for right- and left-handed α

quartz, sample thickness 20 nm, are shown in Fig. 2. Consistent
with Eq. (9), it can be seen that only the coefficients am,n

for which m = NM − nl appear in the OAM decomposition.
In our example, for the left-handed α quartz (l = 2,M = 3)

-9 -6 -3 0 3 6 90
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0.6

0.8
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m

P3122 quartz
P3222 quartz

FIG. 2. (Color online) Simulated OAM coefficients, |am,1(k⊥)|2,
m ∈ {−10,10} of the FOLZ in the diffraction pattern of left- (red)
and right- (blue) handed α quartz, sample thickness 20 nm, assuming
the optical axis to be centered on top of a screw axis. Consistent with
Eq. (9), for the left-handed enantiomorph only the coefficients with
m ∈ {. . . ,−2,1,4, . . . } are present, while for the right-handed variant
m ∈ {. . . ,−4,−1,2, . . . }.
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FIG. 3. (Color online) Schematic illustration of experimental
setup to measure the OAM coefficients a�m,1. An incoming plane
wave is scattered on a sample, after which an annular aperture in the
objective plane selects only the FOLZ electrons. At the same time
a spiral phase plate adds an OAM of �m to the FOLZ. Using a
projector lens, we form an image with the resulting electrons where
the intensity corresponds to |a�m,1|2 when the decomposition is made
around the corresponding point in the sample.

and selecting the FOLZ (n = 1), only the coefficients m =
N.3 − 1.2 ∈ {. . . ,−5,−2,1,4, . . . } contribute, while for the
right-handed enantiomorph, the nonzero coefficients are the
ones for which m ∈ {. . . ,−4,−1,2,5 . . . }.

IV. MEASURING OAM COEFFICIENTS
OF THE HOLZS IN A TEM

So far we have looked only at OAM decompositions by
means of simulations where we knew both the amplitude and
the phase of the scattered wave. In a transmission electron
microscope, however, we cannot detect the phase of the
scattered wave directly, but we can manipulate the scattered
wave such that we can detect the OAM coefficients, as we
demonstrate below.

Let us consider the image created by selecting a HOLZ with
an annular aperture in the diffraction plane while inserting a
spiral phase plate as proposed in Ref. [33]. This experimental
setup is schematically shown in Fig. 3. With a spiral phase
plate we mean any phase plate that adds an angular-dependent
phase of the form e−i�mφk to the wave in diffraction space.
This can be achieved by passing the wave through a material
with continuously increasing thickness proportional to the
angular coordinate φ [20,34], or by exposing the wave

to a magnetic monopolelike field induced by the tip of a
magnetized needle [23]. These spiral phase plates are not to be
confused with the spiral aperture described in Ref. [35], which
only generates a set of vortex beams with different focal points
and does not add net OAM to the wave.

Mathematically, the resulting wave in the image plane
is given by the two-dimensional Fourier transform of the
scattered wave multiplied by a δ function selecting the HOLZ
and an OAM eigenstate e−i�mφk :

ψ�m,n(r,φ) =
∫ ∞

0
dk⊥

∫ 2π

0
dφk k⊥A(k⊥,φk,kz)e

−i�mφk

×δ(k⊥ − kn
⊥)e−ik⊥r cos(φk−φ). (10)

The point now is that the center of this image (r = 0) gives us,
up to some constants, the expression for the OAM coefficients
of the HOLZ [Eq. (3)],

a�m,n ∝ ψ�m,n(0), (11)

where again the number n = P
2π

(k′
z − k0) and k′

⊥ =
√

k2
0 − k′2

z .
This means that the intensity at the center of the image is
proportional to |a�m,n|2.

Inserting a phase plate imposing an OAM of −�m to the
wave can reveal whether or not the �mth coefficient is present
in the decomposition around a certain point in the crystal
simply by looking at the intensity of the corresponding point
in the image. This is demonstrated in Fig. 4, where a screw axis
lies in the center of the image. For the left-handed α quartz,
a bright spot can be seen on the screw axis for �m = 1 and
�m = 4, while for right-handed α quartz, this is the case for
�m = 2, which is consistent with Eq. (3) and with Fig. 2.

An important note here is that in the theoretical description
of the reciprocal space, we have always put the center of our
coordinate system on top of a screw axis. When the crystal is
shifted, the screw-axis symmetry with respect to the center of
the coordinate system will be broken and the components in
the OAM spectrum no longer have to satisfy Eq. (9). However,
a shift of the sample will only result in a shift of the images.
The chirality of the crystal can therefore still be seen from the
intensity at the location of the screw axes, which can easily be
recognized from the threefold rotation symmetry that is present
at these points. This is further demonstrated in Appendix C for
crystals with space groups P 41 vs P 43 and P 6222 vs 6422.
In the P 62(4) case a clear distinction can be made between the
sixfold screw axis on the one hand and the threefold screw axes
that are also present, on the other. This shows that, in principle,
we can detect all points of screw-axis symmetry in the field of
view on the atomic level, making it the ideal method to study
screw-axis symmetry behavior on grain boundaries or screw
dislocations.

Because of dynamical scattering, the diffraction pattern as
well as the OAM coefficients depend heavily on the thickness
of the sample and the exact structure of the crystal. However,
in Appendix D we show that the restriction on the components
only depends on the screw-axis symmetry, independent of
the thickness or the structure. This means that, in contrast
to previously developed techniques, when determining the
chirality from the OAM coefficients of the HOLZs, we no
longer require dynamical simulations nor any knowledge about
the crystal structure nor the thickness of the sample, as was the
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FIG. 4. (Color online) Comparison of images of left- and right-
handed 20-nm-thick α quartz. The upper images show the simulated
TEM image on which no difference can be seen between the
enantiomorphs. The images below are the ones obtained by selecting
the FOLZ in Fourier space while changing its OAM by an amount
(in units of �) �m ∈ {0,1,2,3,4,} of the region indicated by the red
square. The upper scale bar applies to the two upper images, while the
lower scale bar applies for the OAM-filtered images. Clear differences
can be seen between the enantiomorphs, of which the appearance of
bright spots on the location of the screw axis can be linked to the
handedness of the screw axis.

case in our previous work using a vortex probe to determine
the chirality of a threefold screw axis [6]. The big advantage
now is that we can determine the chirality of any screw axis,
not only the threefold, in a qualitative way. Additionally, the
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FIG. 5. (Color online) Simulated OAM coefficients, |am,1(k⊥)|2,
m ∈ {−10,10}, of the FOLZ in the diffraction pattern of left- (red)
and right- (blue) handed α quartz, sample thickness 20 nm, including
phonon scattering. Previously forbidden components in Fig. 2 now
become visible.

major drawback, namely, the exact positioning of the probe on
top of a nanometer-sized screw axis, has been overcome.

Because of the symmetry argument and the qualitative
nature of the signal, the technique seems very promising.
However, there are some challenges for experimental imple-
mentation. The first is that it would be preferential to have a
method to switch the total amount �m of OAM added in order
to be sensitive to multiple OAM coefficients. For now, we only
have a magnetic needle that allows us to study two coefficients
with opposite OAM. In theory a flipping needle adding OAM
�m = ±1 suffices to distinguish between 31 and 32 screw
axes, as well as 41 vs 43 and 61 vs 65 screw axes, since the
difference can be seen by studying the a±1,n components. How-
ever, this is not the case for the 62(4) screw axis. Additionally,
the experiment would be a lot more conclusive if one would be
able to study a series of components giving consistent results.
The second and major obstacle is the fact the feature we are
looking for in the images, namely, the bright and darker spots,
have a size of the order of 0.1 Å, which requires aberration
correction to work up to 86 mrad or 5λ. (Currently, 25λ is the
limit [36,37].) The reason for this is that the images are made
out of electrons with high transverse momentum and thus high
transverse frequencies. Besides putting extreme requirements
on the resolution, the small size of the features makes the signal
very sensitive to phonon scattering, where the atoms deviate
from their equilibrium position. To illustrate this we performed
multislice simulations, including phonon scattering, on a right-
and a left-handed quartz sample using the experimental Debye-
Waller factors from [38] obtained at 20 K, the result being
shown in Fig. 5. We clearly see previously forbidden compo-
nents appearing that obscure the signal, an effect that increases
with growing sample thickness. For thin samples, however, the
largest components are still the ones satisfying Eq. (9).

V. CONCLUSION

By describing electron scattering on chiral crystals with
screw-axis symmetry in cylindrical coordinates we were able
to write the scattering amplitude as a sum of eigenstates of
the orbital angular momentum operator. Using the first-order
Born approximation, we found that the screw-axis symmetry
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puts restrictions on the OAM states building up the HOLZs
and that these restrictions are dependent on the order and the
handedness of the screw axis. We verified this with numerical
multislice simulations and found this to remain valid even
when multiple scattering is dominant. This means that the
screw-axis symmetry and the chirality of the crystal can be
determined simply by looking at which OAM coefficients are
zero and which are not.

We propose a method to measure these coefficients by
making an image after selecting the FOLZ with an annular
aperture in the objective plane, while modifying its OAM by
an amount �m using a magnetic needle as described by Béché
et al. [23]. We calculate that the OAM components of the FOLZ
then are proportional to the intensity of the rotation symmetric
points in the image and show with numerical simulations
that the chirality can be seen from bright and dark spots in
high-symmetry points in the image.

Although the OAM components depend on the thickness
of the sample and the exact structure of the crystal, we
show theoretically and numerically that the restriction on
the components depends only on the screw-axis symmetry,
independent of the thickness or the crystal’s structure. This
means that our proposed method does not require dynamical
simulations, nor any knowledge about the crystal structure or
the thickness of the sample. In previous work we demonstrated
that this was possible for crystals with a threefold screw
axis using electron vortex beams. The new method, however,
extends this for all possible screw axes, while the main
disadvantages of the vortex technique, namely, the exact
positioning of the probe on the screw axis, is overcome. On top
of that, all screw axes in the field of view can be determined at
once on the atomic scale, while in the vortex setup we could
only determine the chirality of one screw axis at a time.

The main challenge for experimental implementation
is the required resolution of the order of 0.1 Å for a
300-keV probe. Although this lies well within the diffraction
wavelength, it lies beyond the resolution of current state-of-
the-art microscopes. Reaching these may require technological
breakthroughs which pose serious challenges. Also, adding a
range of different amounts of OAM to the scattered wave in
Fourier space such that we can acquire a series of images with
a different OAM filter would be preferential, where currently
we can impose only two values with opposite sign using a
single magnetic needle.

Finally, this work shows that looking at the OAM de-
composition of a scattered wave can reveal extra information
about a sample if one understands how the scattering process
influences the OAM of the wave. The experimental method
to measure the OAM components proposed here would also
work without FOLZ filtering, in which case it would be
directly applicable in a conventional TEM without the extreme
performance which is needed here. Such a method could find
use way beyond the field of chiral space group determination.
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APPENDIX A: DIFFRACTION IN
CYLINDRICAL COORDINATES

Consider a plane-wave electron with wave vector k scat-
tered on a potential V (r). In the first-order Born approxima-
tion, the scattering amplitude to scatter to a plane wave with
wave vector k′ is given by [30]

A(k′) = 〈k′|V |k〉 =
∫

d r e−ik′·rV (r)eik·r . (A1)

In what follows it will be convenient to have an expression
for the scattering amplitude in cylindrical coordinates. To
calculate this, we first expand the potential in its cylindrical
Fourier components [27],

V (r) =
∫ +∞

−∞
dkz

∫ ∞

0
dk⊥ k⊥

∞∑
m=−∞

Vm(k⊥,kz)

× 1√
2π

Jm(k⊥r)eimφeikzz, (A2)

with

Vm(k⊥,kz) =
∫ +∞

−∞
dz

∫ ∞

0
dr

∫ 2π

0
dφ rV (r)

× 1√
2π

Jm(k⊥r)e−imφe−ikzz. (A3)

For the scattering amplitude for an incoming electron along
the z axis with wave number k0, substituting Eq. (A2) into (A1)
gives us

A(k′) =
∫

d r
∫ +∞

−∞
dkz

∫ ∞

0
dk⊥ k⊥

∞∑
m=−∞

Vm(k⊥,kz)

× 1√
2π

Jm(k⊥r)eimφei(kz+k0−k′
z)ze−ik′

⊥·r⊥ . (A4)

Using the Jacobi-Anger identity,

eik′
⊥·r⊥ = eik′

⊥r⊥ cos(φ−φ′
k ) =

∞∑
m=−∞

imJm(k′
⊥r)eim(φ−φ′

k ), (A5)

we get

A(k′) = 1√
2π

∫
d r

∫ +∞

−∞
dkz

∫ ∞

0
dk⊥ k⊥

∞∑
m,m′=−∞

Vm(k⊥,kz)

×Jm(k⊥r)eimφei(kz+k0−k′
z)zi−m′

Jm′ (k′
⊥r)eim′(φk′ −φ)

= 1√
2π

∫ +∞

−∞
dkz

∫ ∞

0
dk⊥ k⊥

∞∑
m,m′=−∞

Vm(k⊥,kz)

×i−m′
eim′φk′

∫ ∞

0
dr Jm(k⊥r)Jm′(k′

⊥r)

×
∫ 2π

0
dφ ei(m−m′)φ

∫
dz ei(kz+k0−k′

z)z. (A6)

The integrals over r , z, and φ give two Dirac δ functions and a
Kronecker δ. The final expression for the scattering amplitude
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thus becomes

A(k′) = 1√
2π

∫ +∞

−∞
dkz

∫ ∞

0
dk⊥ k⊥

∞∑
m,m′=−∞

Vm(k⊥,kz)

×i−m′
eim′φk′ δ(k⊥ − k′

⊥)

k⊥
δm,m′δ(kz + k0 − k′

z)

= 1√
2π

∑
m

i−mVm(k′
⊥,k′

z − k0)eimφk′ . (A7)

Equation (A7) gives the most general form of a scattering
amplitude for a plane-wave electron to scatter to a plane wave
with wave vector k′ scattered on a potential determined by its
cylindrical Fourier coefficients Vm(k′

⊥,k′
z − k0).

APPENDIX B: SCATTERING ON POTENTIAL
WITH SCREW-AXIS SYMMETRY

For a crystal potential with screw-axis symmetry around
the origin one has

V (r,φ,z) = V (r,φ + �φ,z + �z), (B1)

where the periodicity of the crystal puts restrictions on �φ and
�z,

�φ = 2π

M
and �z = lP

M
, (B2)

with P the period of the crystal along the screw-axis direction,
M ∈ {2,3,4,6} the order of the rotation, and l ∈ {0, . . . ,M−1}
the translation along the axis in units of P/M .

A first thing to note is that because of the periodicity in the
z direction, the potential can be written as

V (r) =
∫ ∞

0
dk⊥ k⊥

∞∑
m,n=−∞

Vm,n(k⊥)

× 1√
2π

Jm(k⊥r)eimφein 2π
P

z, (B3)

with

Vm,n(k⊥) = 1

P

∫ P

0
dz

∫ ∞

0
dr

∫ 2π

0
dφ rV (r)

× 1√
2π

Jm(k⊥r)e−imφe−in 2π
P

z. (B4)

Secondly, the screw-axis symmetry puts restrictions on the
contributing components:

Vm,n(k⊥) = 1

P

∫ P

0
dz

∫ ∞

0
dr

∫ 2π

0
dφ rV (r,φ,z)

× 1√
2π

Jm(k⊥r)e−imφe−in 2π
P

z

= 1

P

∫ P

0
dz

∫ ∞

0
dr

∫ 2π

0
dφ rV (r,φ + �φ,z + �z)

× 1√
2π

Jm(k⊥r)e−imφe−in 2π
P

z

= 1

P

∫ P

0
dz′

∫ ∞

0
dr

∫ 2π

0
dφ′ rV (r,φ′,z′)

× 1√
2π

Jm(k⊥r)e−im(φ′−�φ)e−in 2π
P

(z′−�z)

= ei(m�φ+n 2π
P

�z)Vm,n(k⊥). (B5)

Therefore the nonzero components have to satisfy the relation

m�φ + n
2π

P
�z = N2π, (B6)

or equivalently,

m = NM − nl (B7)

with N ∈ N. The polar Fourier coefficients for which this
relation is not fulfilled, will automatically be zero.

Knowing this, we can write the scattering amplitude,
Eq. (A7), for a potential with screw-axis symmetry as

A(k′) = 1√
2π

∑
m

i−mVm(k′
⊥,k′

z − k′
0)eimφk′

= inl

√
2π

∑
N

i−NMVNM−nl,n(k′
⊥)ei(NM−nl)φk′ , (B8)

where the transferred forward momentum, k′
z − k0 = n 2π

P
, is

discretized because of the periodicity of the potential. For
elastically scattered electrons the energy is conserved and the
relation k2

0 = k′2
⊥ + k′2

z has to be satisfied. Since for a given
k′
z or equivalently, a number n the variable k⊥ is fixed by the

relation k⊥ = √
k2
z − k′2

z and can be dropped in Eq. (B8), we
then get

An(φk′) = inl

√
2π

∑
N

i−NMVNM−nl,ne
i(NM−nl)φk′ , (B9)

where

Vm,n = Vm,n(k⊥)|
k⊥=

√
k2

0−(n 2π
P

−k0)2 . (B10)

The discretization of the transverse momentum allows the
diffraction pattern to consist of discrete rings which can be
labeled with the number n. These rings coincide with the ZOLZ
(n = 0), FOLZ (n = 1), and higher-order Laue zones (n > 0)
known from conventional electron-beam diffraction theory.

The scattering amplitude for an incident plane-wave elec-
tron with wave vector k to be scattered by a potential V (r)
to a plane wave with wave vector k′ is called the scattering
amplitude A(k′) = A(k′

⊥,φk′,k′
z), with k′

⊥,φk′ and k′
z the radial,

angular, and z component in cylindrical coordinates. Since
this function is periodic in the polar coordinate φk′ , it can be
expended into a set of discrete Fourier coefficients [27].

We can write the scattering amplitude in cylindrical coor-
dinates A(k′) = A(k′

⊥,φk′ ,k′
z), with k′

⊥,φk′ , and k′
z the radial,

angular, and z component. Since this function is periodic in the
polar coordinate φk′ , it can be expended into a set of discrete
Fourier coefficients [27]:

A(k′
⊥,φk′ ,k′

z) = 1√
2π

∑
m

am(k′
⊥,k′

z)e
imφ. (B11)

In doing so, we write the scattering amplitude as a sum of
vortices with OAM m� [see Eq. (1)]. The OAM coefficients
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am(k⊥,kz) are given by

am(k⊥,kz) = 1√
2π

∫ 2π

0
dφk A(k⊥,φk,kz)e

−imφk . (B12)

The use of cylindrical coordinates makes it clear how exactly
the scattering amplitude is written in terms of OAM eigen-
states. From Eq. (A7) it follows that these are proportional to
the cylindrical expansion coefficients

am(k′
⊥,k′

z) = i−mVm(k′
⊥,k′

z − k′
0). (B13)

For a crystal with screw-axis symmetry we thus get Eqs. (B7)
and (B9):

am,n =
{
i−mVm,n m = NM − nl

0 otherwise.
(B14)

As an example consider a crystal that belongs to space group
P 62, for which M = 6 and l = 2. In this case the OAM
decomposition of the first-order Laue zone, n = 1, will only
have components for which m ∈ {. . . , − 8, − 2,4,10, . . . },
while its enantiomorph, belonging to space group P 64,
will only have components m ∈ {. . . , − 10, − 4,2,8, . . . }. M

always gives the periodicity of the occurring components,
while −l, in the FOLZ case, is given by the largest negative
m-component contributing.

APPENDIX C: EXAMPLES OF CRYSTALS
WITH OTHER SCREW-AXIS SYMMETRIES

So far we only looked at α quartz with a threefold screw axis.
Of course, relation (B14) puts restrictions on the OAM com-
ponents of HOLZs of diffraction patterns of crystals belonging
to all chiral space groups in Table I. This is demonstrated in

-9 -6 -3 0 3 6 90

0.2

0.4

0.6

0.8

(b)

m

P6222 quartz
P6422 quartz

-8 -4 0 4 80

0.2

0.4

0.6

0.8

(a) P41 Cs3P7
P43 Cs3P7

FIG. 6. (Color online) Simulated OAM coefficients, |am,1(k⊥)|2,
m ∈ {−10,10}, of the FOLZ in the diffraction pattern of left- (red)
and right- (blue) handed (a) Cs3P7 and (b) β quartz. Sample thickness
is 20 and 200 nm, respectively. Again, relation (B14) is fulfilled.

Δ
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1im
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Δ
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FIG. 7. TEM image and FOLZ-filtered, OAM-modified images
of right-handed β quartz, �m ∈ {1,4,7,10,13} . From the bright spots
a 62 screw axis in the center and six 31 screw axes at the edges can
be identified. Scale bar applies to all subfigures.

Fig. 6, where we look at the OAM decomposition of P 6222
and P 6422 β quartz [39] with respect to the sixfold screw axis
and P 41 and P 43 α-tricesium heptaphosphide [40]. It is clear
that in all cases, indeed, only the OAM components satisfying
relation (B14) are present in the FOLZ.

A big advantage of our technique is that one can identify
different screw axes on one series of images, as can be seen in
Fig. 7. Here we look at the FOLZ-filtered image of P 6222 β

quartz with different �m. As expected from Fig. 6(b), we can
identify a 62 screw axis from the bright spots at �m ∈ {4,10}.
However, at the same time we can see bright spots in the
threefold symmetric points at �m = {1,4,7,10,12} indicating
a 31 screw axis, which also is present in space group P 6222.
The technique is thus capable of determining all screw axes
and their handedness on the atomic scale in the entire field
of view.

In Fig. 8 we give the FOLZ-filtered images for tricesium
heptaphosphide. Because of the relatively large periodicity in
the z direction, the FOLZ will have a smaller radius. This
means that the electrons that make up the image will have a
smaller transverse frequency, which is why the features now
are of the order 0.5 Å wide, a factor of 5 bigger than previous
examples. Lowering the acceleration voltage will also result in
a smaller radius for the FOLZ, having the same effect on the
size of the spots we are trying to distinguish. However, doing
this generally results in a lower resolution of the microscope.
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FIG. 8. TEM image and FOLZ-filtered, OAM-modified images
of right-handed Cs3P7, �m ∈ {−1,3,7}. From this a 41 screw axis
in the center and in the corners can be identified. As a result of
the relatively large periodicity in the direction of the screw axis, the
FOLZ will have a smaller radius, which results in bigger features in
the image of the order of 0.5 Å. The scale bar applies to all subfigures.

APPENDIX D: EFFECT OF MULTIPLE SCATTERING

Of course, electron scattering is mostly dynamical, making
the FOLZ and its OAM spectrum dependent on the thickness
of the crystal. The latter can be seen in Fig. 9, where the OAM
spectrum is shown for left- and right-handed α quartz for
thicknesses ranging from 50 to 150 nm. However, from this
figure it appears that all forbidden coefficients in Eq. (B14)
remain forbidden, even when multiple scattering is dominant,
independent of the thickness of the sample.

In order to understand this, we first look at the effect of a
translation in the z direction and a rotation around the optical
axis of the incoming beam on the scattering amplitude, as
illustrated in Fig. 10. The effect of a translation of the sample
along the z direction, the propagation direction of the incoming
electron, can be fully incorporated simply by adding a phase
eik0z to the incoming electron. As an effect of this, the scattering
amplitude of a shifted potential V ′(r,φ,z) = V (r,φ,z + �z),
also gets this extra phase such that the scattering amplitude is
written as

A′(k⊥,φk,kz) = A(k⊥,φk,kz)e
ik0.�z. (D1)

Since the incoming electron wave is rotationally invariant,
rotating the sample simple results in a rotated scattering
amplitude. This means that when rotating the sample along
the optical axis over an angle �φ, the scattering amplitude
now becomes

A′(k⊥,φk,kz) = A(k⊥,φk + �φ,kz). (D2)

When combining a rotation of the sample with a translation
in the z direction, V ′(r) = V (r,φ + �φ,z + �z), we thus get
for the scattering amplitude

A′(k⊥,φk,kz) = A(k⊥,φk + �φk,z)eikz�z. (D3)

-9 -6 -3 0 3 6 90
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0.4

0.6

0.8

(c)

m
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0.6
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(b)

-9 -6 -3 0 3 6 90
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(a) P3122 quartz
P3222 quartz

FIG. 9. (Color online) Simulated OAM coefficients, |am,1(k⊥)|2,
m ∈ {−10,10}, of the FOLZ in the diffraction pattern of left- (red) and
right- (blue) handed α quartz for sample thicknesses (a) 50, (b) 100,
and (c) 150 nm. Although the coefficients depend on the thickness
of the sample, they will still obey relation (B14), even when multiple
scattering is dominant.

It is important to note that the treatment includes full dynamical
scattering as no kinematical approximation is made.

Let us now consider the special case of a crystal with screw-
axis symmetry for which the potential has the property

V (r,φ,z) = V (r,φ + �φ,z + �z) (D4)

for �φ and �z, as before

�φ = 2π

M
and �z = lP

M
, (D5)

with M ∈ {2,3,4,6} the order of the rotation, P the pe-
riod of the crystal along the screw-axis direction, and l ∈
{0, . . . ,M−1} the translation along the z axis in units of P/M .

Since the crystal potential is invariant under this transfor-
mation, the scattering amplitude has to be so as well. This
means that in Eq. (D3) A′(k⊥,φk,kz) = A(k⊥,φk,kz) and thus

A(k⊥,φk,kz) = A(k⊥,φk + �φk,z)eikz�z. (D6)

134108-9



ROELAND JUCHTMANS AND JO VERBEECK PHYSICAL REVIEW B 92, 134108 (2015)

ΔφA(k⊥, φk, kz)

A(k⊥, φk − Δφ, kz)A(k⊥, φk, kz)e
ikzz

ΔA(k⊥, φk, kz)

A(k φ Δφ k )A(k⊥, φk, kz)e
ikzz

eikz.dz

Δz

FIG. 10. (Color online) Sketch of the effect of translating a
sample along the beam direction and a rotation of the sample around
the optical axis. The first adds an extra phase eikzz to the scattering,
while the second results in a rotation of the scattering amplitude.

Also, in the dynamical approximation conservation of energy
is assumed, such that we can rewrite the scattering amplitude as
An(φ) with n = P

2π
(k′

z − k0), k′
⊥ =

√
k2

0 − k′2
z . In this notation

Eq. (D6) becomes

An(φk) = An

(
φk + 2π

M

)
ei n2π

M
l . (D7)

As before, we can calculate the OAM expansion coefficients
for the scattering amplitude using the following formula:

am,n = 1

2π

∫ 2π

0
dφk An(φk)e−imφk . (D8)

Filling in relation (D6) eventually gives

am,n = 1

2π

∫ 2π

0
dφk An

(
φk + 2π

M

)
ei n2π

M
le−imφk

= 1

2π

∫ 2π

0
dφk′ An(φk′)ei n2π

M
le−im(φk′ − 2π

M
) (D9)

= am,ne
i( n2π

M
l+m 2π

M
). (D10)

Therefore the nonzero components have to satisfy the same
relation as before,

m�φ + n
2π

P
�z = N2π, (D11)

or equivalently,

m = NM − nl. (D12)

Therefore the nonzero OAM components of the scattering
amplitude have to satisfy the relation (9), and in the case of
dynamical scattering also.
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[22] L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van
Boxem, and J. Verbeeck, Exploiting Lens Aberrations to Create
Electron-Vortex Beams, Phys. Rev. Lett. 111, 064801 (2013).
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