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Due to the spin-orbit coupling (SOC) an electric current flowing in a normal metal or semiconductor can
induce a bulk magnetic moment. This effect is known as the Edelstein (EE) or magnetoelectric effect. Similarly,
in a bulk superconductor a phase gradient may create a finite spin density. The inverse effect, also known as the
spin-galvanic effect, corresponds to the creation of a supercurrent by an equilibrium spin polarization. Here, by
exploiting the analogy between a linear-in-momentum SOC and a background SU(2) gauge field, we develop
a quasiclassical transport theory to deal with magnetoelectric effects in superconducting structures. For bulk
superconductors this approach allows us to easily reproduce and generalize a number of previously known
results. For Josephson junctions we establish a direct connection between the inverse EE and the appearance of
an anomalous phase shift ϕ0 in the current-phase relation. In particular we show that ϕ0 is proportional to the
equilibrium spin current in the weak link. We also argue that our results are valid generically, beyond the particular
case of linear-in-momentum SOC. The magnetoelectric effects discussed in this study may find applications in
the emerging field of coherent spintronics with superconductors.
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I. INTRODUCTION

Over the past decades, superconductor-ferromagnetic (S-F)
structures have been studied extensively [1,2]. The spatial os-
cillatory behavior of the superconducting condensate induced
in the ferromagnet leads to interesting effects as oscillations
of the density of state in F/S [3–5] and F/S/F [6] structures,
oscillations of the Josephson current in S/F/S Josephson
junction [7–10], and oscillations of the critical temperature [1].
Moreover, in the case of multidomain ferromagnets or artificial
multilayer structures with inhomogeneous magnetization, the
singlet Cooper pairs from a superconductor can be transformed
into long-range triplet pairs that may explain the long-range
Josephson coupling observed in S/F/S structures [11–25].
Triplet correlations also lead to a dependence of the critical
current on the magnetic configuration of diverse S/F structures
[26–33]. Such phenomena suggest interesting perspectives of
exploiting triplet correlations for the emerging field of coherent
superspintronics [34,35]. Also promising applications might
be found by using superconducting materials in combination
with ferromagnetic insulators that may act as spin filters [36–
38]. In particular several thermal effects related to these mate-
rial combinations have been studied in recent works [39–44].

All the above mentioned phenomena in S/F structures
originate from the interaction between the superconducting
correlations and the exchange field of the ferromagnet. How-
ever it has recently been shown that spin-orbit coupling (SOC)
in S/F structures will also lead to, for example, a long-range
triplet component [45,46] and peculiarities in the density of
states [47–49]. On the other hand, transport properties of
nonsuperconducting structures with strong SOC are being
intensively studied because of their potential application in
a novel direction of spintronics, which exploits the coupling
between spin and charge currents [50–53].

In particular, the SOC in semiconductors and normal metals
is at the root of a number of interesting phenomena that
originate from the coupling between the charge and spin
degrees of freedom. The prototype of these phenomena is the
spin Hall effect (SHE) [54–64] which consists of the creation
of a spin-polarized current by an electric field. Reciprocally, by
means of the inverse SHE a spin current can create an electric
field [65–67]. These effects allow one to generate and detect
spin-polarized currents in nonmagnetic materials [68–72].

There is also another relevant effect in normal systems
related to the SOC. It consists of creating a stationary spin
density Sa along the a direction in response to an electric field
Ek applied in the k direction [73,74]. Within linear response,
this effect is described by

Sa(ω) = σa
k (ω)Ek(ω), (1.1)

where the sum over repeated indexes is implied here, and
throughout this paper. In particular, in 2D systems with Rashba
SOC, the applied electric field and the generated spin density
are perpendicular to each other. This magnetoelectric effect,
also called the Edelstein effect (EE), has been observed in
experiments [60,75]. The Edelstein conductivity σa

k (ω) in
Eq. (1.1) is related to the Kubo correlator χa

k (ω) = 〈〈Ŝa; ĵk〉〉ω
of the spin and current operators via σa

k (ω) = χa
k (ω)/iω

[76]. Because of the gauge invariance in normal systems the
function χa

k (ω) should vanish in the limit ω → 0 reflecting
the fact that there is no response to a static vector potential.
Therefore the σa

k (0) = σa
k remains finite and describes the dc

EE. It has been pointed out in Ref. [76] that this property,
together with the Onsager reciprocity principle, implies that
the inverse dc EE, also referred to as the spin-galvanic effect,
consists of generating a charge current jk by a steady spin
generation induced by a time-dependent magnetic field via the
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paramagnetic effect:

jk = σa
k [gμBḂa], (1.2)

with the Landé g factor, μB the Bohr magneton, and Ḃa

the time derivative of the magnetic field along the a axis.
The inverse EE effect has also been observed in experiments
[77,78].

Similar magnetoelectric and spin-galvanic effects should
also exist in superconductors [79,80]. However, there the
physical situation is different because in the presence of the
superconducting condensate the gauge invariance does not
forbid the existence of a finite static current-spin response
function χa

k . In contrast to the normal case, in a superconductor
an equilibrium electric (super)current can flow in the absence
of an external electric field. The supercurrent j = nsvs

(here ns is the density of superconducting electrons and vs

the superfluid velocity) is proportional to the gradient of
the macroscopic gauge-invariant phase ∇ϕ̃ = ∇ϕ − eA ∼ vs ,
which is the physical field coupled to the current operator in
the Hamiltonian of a superconductor. The existence of such a
gauge-invariant field implies that the static response function
χa

k = 〈〈Ŝa; ĵk〉〉ω=0 can be nonzero without violating the gauge
invariance. In principle, a supercurrent can thus generate an
equilibrium spin polarization according to the general linear
response relation:

Sa = χa
k ∂kϕ̃, (1.3)

where ∂k = ∂/∂xk . This effect has been indeed theoretically
demonstrated by Edelstein for a 2D superconductor with
Rashba SOC, who calculated the proportionality tensor χa

k

at temperatures T close to the critical superconducting tem-
perature Tc, in both pure ballistic [79] and diffusive [80] limits.

Because in the superconducting state the response function
χa

k at ω → 0 is finite, the reciprocity of the EE effect becomes
complete. In contrast to the normal case, in superconductors a
static Zeeman field B can induce a supercurrent jk . Therefore,
instead of Eq. (1.2) the following relation holds:

jk = eχa
k ha, (1.4)

where ha = gμBBa . An explicit expression of this type
has been obtained in a particular case of a 2D ballistic
superconductor with intrinsic Rashba SOC [81,82].

It is then clear that the free energy of a superconductor with
a SOC must have a term of the Lifshitz type,

FL = haχa
k ∂kϕ̃, (1.5)

and Eqs. (1.3) and (1.4) follow directly from the general
thermodynamic definitions of the spin and current densities,
S = δF/δh and j = −δF/δA.

In principle, Eqs. (1.3) and (1.4) apply for bulk su-
perconductors, but one can expect similar effects to occur
also in an S-X-S Josephson junction, between two massive
superconductors (S) and a normal or ferromagnetic bridge
X with an intrinsic SOC. In a Josephson junction the
supercurrent depends on the phase difference ϕ between
the superconducting electrodes. In the particular cases of a
weak proximity effect between the S and the X, or in the
high-temperature regime (T � Tc), the current-phase relation
is given by j = jc sin ϕ, where jc is the critical Josephson
current.

When the SOC competes with a Zeeman effect, the natural
conjectures following Eqs. (1.3) and (1.4) are as follows: (i)
In accordance with Eq. (1.3), the flow of a supercurrent may
generate a spin polarization in the X bridge (the Edelstein
effect). (ii) In turn, from Eq. (1.4), a Zeeman (spin-splitting)
field may induce a supercurrent through the junction, even
if the phase difference between the electrodes vanishes (the
inverse Edelstein effect).

In other words, the inverse EE is presumably the cause
of an anomalous phase ϕ0 which modifies the current-phase
relation according to j = jc sin (ϕ − ϕ0), with a nontrivial
(i.e., nonequal to 0 or π ) equilibrium phase ϕ0. This defines
the so called ϕ0 junctions, a subject that has been extensively
studied in the past years in different systems, including
conventional superconductors with SOC [83–95], with triplet
correlations [96–101] or in contact with topological materials
[102,103], and also in hybrid systems with nonconventional
superconductors [104–112], quantum dots [113–115], and
hybrid (0-π ) structures [116–119]. ϕ0 junctions may produce
a self-sustained flux when embedded in a SQUID geometry
[120], act as phase batteries in coherent circuits [121,122],
present a current asymmetry, and act as supercurrent rectifiers
[113].

In the present work we develop a complete theory of the
magnetoelectric and spin-galvanic effects in hybrid super-
conducting structures and confirm the above conjectures. We
focus on systems with linear-in-momentum SOC that can be
conveniently described in terms of an effective background
SU(2) gauge field. This allows us to use the SU(2) covariant
quasiclassical equations for the Green’s functions (GFs) de-
rived in Refs. [45,46,123]. We establish a connection between
the tensor χa

k in Eqs. (1.3) and (1.4) and the equilibrium
spin current Ja

j [124,125]. We show that in a generic S-X-S
Josephson junction the condition for a nontrivial anomalous
phase ϕ0 to appear is that Ja

jh
a �= 0, where ha can be either an

external Zeeman field or the internal exchange field of a ferro-
magnet. Our SU(2) covariant formulation results in a simple
and tractable system of equations to describe hybrid structures
with arbitrary linear-in-momentum SOC, temperatures, degree
of disorder, and quality of the hybrid interfaces. We also show
that qualitatively our results are generically valid beyond the
particular case of the linear-in-momentum SOC.

The structure of the paper is the following: In the next sec-
tion we present a qualitative discussion of the superconducting
proximity effect in structures with SOC and its connection with
the spin diffusion in normal systems. This qualitative analysis
allows us to guess the form of the quasiclassical equations
for superconducting structures in the presence of generic
spin fields, and in particular to explicitly show the analogy
between the charge-spin coupling in normal systems and the
singlet-triplet coupling in superconducting ones. In Sec. III
we present our model, discuss the associated symmetries,
and derive microscopically the quasiclassical equations for
generic linear-in-momentum SOC. In Sec. IV we use the
derived equations to explore the magnetoelectric effects in
bulk superconductors. We generalize the previously known
results for the EE and its inverse obtained for 2D Rashba
SOC [79–81,126] to generic linear-in-momentum SOC, and
relate them to the spin current and the SU(2) gauge fields.
In Sec. V we explore the Josephson effect through an S-X-S
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diffusive junction and in Sec. VI through a ballistic one. In both
cases we show that the anomalous phase ϕ0 is proportional to
Ja

i h
a and determine its dependence on other parameters of the

structure, such as temperature and length. We finally present
our conclusions and discuss possible experimental setups to
verify our predictions in Sec. VII.

II. DIFFUSION OF SUPERCONDUCTING CONDENSATE
IN THE PRESENCE OF SPIN-ORBIT COUPLING:

HEURISTIC ARGUMENTS

Before presenting the full quantum kinetic theory it is
instructive to discuss at the qualitative level the main features
of the proximity-induced superconductivity in the presence of
an intrinsic SOC. For this sake we present a simple heuristic
derivation of the equations describing the coupled motion of
the singlet and triplet components induced in a ferromagnet
from a bulk s-wave superconductor.

Let us consider an S-X-S junction, where X is a diffusive
ferromagnet. We assume that the system is at equilibrium, and
that the proximity effect between S and X is weak. In such
a case the junction is fully described by the quasiclassical
anomalous Green’s function f̂ (r), which describes the super-
conducting condensate in X. In general f̂ (r) is a 2 × 2 matrix
in the spin space f̂ = fs 1̂ + f a

t σ a . Here the scalar fs and the
vector with components f a

t describe the singlet and the triplet
components of the condensate, respectively. In this section we
show that the functions fs(r) and ft (r) are reminiscent of the
charge and spin density in the normal systems.

In the absence of SOC, but in the presence of the exchange
field h, the diffusion of the condensate is described by the well
known linearized Usadel equations (see, e.g., Ref. [2]),

D∇2fs − 2|ωn|fs + 2i sgn(ωn)haf a
t = 0, (2.1)

D∇2f a
t − 2|ωn|f a

t + 2i sgn(ωn)hafs = 0, (2.2)

where D is the diffusion constant and ωn is the Matsubara
frequency. The terms proportional to 2|ωn| are responsible for
the decay of the superconducting correlations in the normal
metal. The last terms on the left-hand sides of Eqs. (2.1) and
(2.2) describe the usual singlet-triplet coupling coming from
the exchange field. It is worth emphasizing the presence of
imaginary unit i in the exchange field terms, which reflects the
breaking of the time-reversal symmetry. Because of this, the
singlet-triplet conversion due to the exchange field is always
accompanied with a phase shift of π/2. This point will be
of primary importance in the following for understanding the
origin of the anomalous phase ϕ0.

To understand how the Usadel equations (2.1) and (2.2) are
modified in the presence of SOC we recall the description of
the diffusion of spin S(r) and charge n(r) densities in normal
systems. The general spin diffusion equation in a normal
conductor with SOC takes the form

∂tS
a − D∇2Sa = Ta, (2.3)

where Ta is a so called spin torque. In the absence of SOC,
Ta = 0 and hence spin is a conserved quantity which satisfies
the usual spin diffusion equation. In noncentrosymmetric ma-
terials SOC acts as an effective momentum-dependent Zeeman

field that causes precession of spins of moving electrons. This
precession breaks conservation of the average spin, and shows
up formally as a finite torque Ta �= 0 in Eq. (2.3). In the
diffusive regime the motion of the electrons consists of a
random motion superimposed on an average drift caused by the
density gradients. The spin precession related to these types of
motion generates the corresponding contributions to the spin
torque. To the lowest order in gradients the general expression
for the torque can be written as follows [127–129],

Ta = D
[ − 	abSb + 2P ab

k ∂kS
b + Ca

k ∂kn
]
. (2.4)

Here the first term describes the Dyakonov-Perel (DP) spin
relaxation that originates from the spin precession of randomly
moving electrons [54]. The positive-definite matrix 	ab is
the DP relaxation tensor with the eigenvalues equal to the
inverse squares of the DP spin relaxation lengths. The other
two contributions to the torque are related to the average
motion of spins. In particular, the second term on the right-
hand side of Eq. (2.4) originates from the diffusive motion
of spins caused by inhomogeneities of the spin density
distribution. The corresponding spin precession is described
by antisymmetric (spin rotation) matrices P ab

k = −P ba
k with

‖P̂ ‖ ∼ 1/
so, where 
so is the spin precession length.
The last term in Eq. (2.4), which is proportional to the

charge density gradient, can be called the spin Hall torque. The
charge density gradient generates the charge current which is
then transformed to the spin current via the spin Hall effect.
Precession of the spins driven by the charge density gradient,
via the spin Hall effect, is the origin of the spin Hall torque in
Eq. (2.4). The spin Hall torque is parametrized by the tensor
Ca

k which is proportional to θsH/
so, where θsH is the spin Hall
angle—the conversion coefficient between the charge and the
spin currents.

Equation (2.3) with the spin torque of Eq. (2.4) is commonly
used in a spintronics context to describe spin dynamics in
semiconductors with intrinsic SOC [127–129] (for a discus-
sion between intrinsic and extrinsic SOC, see, e.g., [64]). In
the stationary case the diffusion equations for the spin and
charge densities reduce to

∇2n + Ca
k ∂kS

a = 0, (2.5)

∇2Sa − 	abSb + 2P ab
k ∂kS

b + Ca
k ∂kn = 0. (2.6)

It is important to emphasize here that spin-charge coupling
mediated by the spin Hall torque (Ca

k ) is responsible for the
EE. This can be seen directly from Eq. (2.6): A uniform charge
density gradient produces a uniform spin density given by
Sa = (	̂−1)abCb

k ∂kn.
We can now construct the Usadel equations in the presence

of SOC in analogy to the normal case. Since SOC does
not violate the time-reversal symmetry it acts in exactly the
same way on the time-reversal conjugated states compos-
ing the Cooper pair. Therefore the diffusion of the singlet
and the triplet condensates should be modified by SOC
in complete analogy with the diffusion of the charge and
spin densities in normal systems. The formal connection
between the diffusion of the triplet condensate function f a

t

in superconductors and the spin density Sa in normal metals
has been discussed recently in Ref. [46], and it has been also
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noticed in Ref. [86]. Hence, in order to include the effects
of SOC in the Usadel equations all we need to do is to
replace the diffusion operators (the Laplacians) in Eqs. (2.1)
and (2.2) with the diffusion operators entering Eqs. (2.5)
and (2.6), respectively. The result is the following system of
equations describing a coupled diffusion of the singlet and
triplet condensates in the presence of SOC,

∇2fs − κ2
ωfs + sgn (ωn)

[
i
2ha

D
f a

t + Ca
k ∂kf

a
t

]
= 0, (2.7)

∇2f a
t − (

κ2
ωδab + 	ab

)
f b

t + 2P ab
k ∂kf

b
t

+ sgn(ωn)

[
i
2ha

D
fs + Ca

k ∂kfs

]
= 0. (2.8)

In contrast to the normal case, in addition to the DP relaxation,
both the fs and ft experience an additional decay proportional
to the inverse decay length κω = √

2|ωn|/D, due to the finite
lifetime of the superconducting condensate in the normal
metal.

The most important feature of Eqs. (2.7) and (2.8) is the
presence of two mechanisms for the singlet-triplet coupling
which are described by the two terms in the square brackets.
The first mechanism is the above discussed Zeeman coupling
related to the modification of the internal structure of the
Cooper pair by the spin-splitting field h [see Eqs. (2.1) and
(2.2)]. The second channel of singlet-triplet coupling comes
from the spin Hall torque, which converts the gradient of fs

into ft and vise versa, in a complete analogy with the EE in
normal systems. The corresponding singlet-triplet “conversion
amplitudes” have a relative phase shift of π/2, which is related
to the different transformation properties of the Zeeman and
spin-orbit fields with respect to the time reversal. We will
see in the next sections that the interference of these two
singlet-triplet conversion channels is indeed responsible for
the magnetoelectric/spin-galvanic effects in superconductors,
and, in particular, for the appearance of the intrinsic anomalous
phase ϕ0 in Josephson junctions.

Although the present heuristic derivation of Eqs. (2.7) and
(2.8) may seem imprecise, it uncovers a simple but deep
connection between the physics of inhomogeneous supercon-
ductors with SOC and the well known spintronics effects, such
as the spin Hall effects and direct and inverse magnetoelectric
effects (EE). In Sec. III we present a rigorous derivation
of the quasiclassical kinetic equations for superconductors
with a linear-in-momentum SOC, which in the diffusive limit
confirms the correctness of Eqs. (2.7) and (2.8). In the rest of
the article we study in detail the physical consequences of the
interference of the two singlet-triplet conversion channels and
their connection with the theory of ϕ0-Josephson junctions.

III. THE MODEL AND BASIC EQUATIONS

In this section we introduce our model and discuss
the symmetries associated with superconducting systems
in the presence of spin-orbit coupling (SOC). We also present
the derivation of the quasiclassical equations in the presence
of linear-in-momentum SOC.

A. The Hamiltonian in the presence of generic SOC and
symmetry arguments for the appearance of an anomalous phase

Our starting point is a general Hamiltonian describing a
metal or a semiconductor with a linear-in-momentum SOC,
an exchange field, and superconducting correlations

H =
∫

dr[
†H0
 + V ψ
†
↑ψ

†
↓ψ↓ψ↑], (3.1)

where ψ↑,↓(r) are the annihilation operators for spin up and
down at position r, and 
† = (ψ†

↑,ψ
†
↓) is the spinor of creation

operators. H0 is the free electron part [149]

H0 = (p̂i − Ai)
2

2m
− μ + A0 + Vimp, (3.2)

where μ the chemical potential and Vimp the potential induced
by nonmagnetic impurities. The magnetic interactions appear
in two places: as an SU(2) scalar potential A0 ≡ Aa

0σ
a/2,

describing for example the intrinsic exchange field in a
ferromagnet or a Zeeman field in a normal metal, and as an
SU(2) vector potential Ai ≡ Aa

i σ
a/2, describing the SOC.

The latter is associated with the momentum operator [150]
p̂i = −i∂i in the form of a minimal coupling p̂i − Ai . In
practice, all the linear-in-momentum SOC can be represented
as a gauge potential (see, e.g., [130] or [131] and references
therein). In the widely studied case of a free electron gas
with Rashba SOC, Ay

x = −Ax
y = −α, while in the presence of

Dresselhaus SOC Ax
x = −Ay

y = β. Finally, V = V (r) < 0 in
the second term on the right-hand side of Eq. (3.1) describes
the coupling strength which gives rise to superconductivity in
some regions of space.

In analogy to electrodynamics one can define the four-
potential Aμ, with space components (μ = 1,2,3 or μ =
x,y,z) given by the SOC and the time component (μ = 0)
by the Zeeman field. Following the analogy one can define the
strength tensor

Fμν = 1
2Fa

μνσ
a = ∂μAν − ∂νAμ − i[Aμ,Aν] (3.3)

and the electric and magnetic SU(2) fields

Ea
k = Fa

0k and Ba
i = εijkF

a
jk, (3.4)

where εijk is the Levi-Civitta symbol.
In normal metals and semiconductors, the SHE and EE are

consequences of the existence of a finite SU(2) magnetic field.
For a pure-gauge vector potential the SOC can be gauged out
[46], the SU(2) magnetic field is zero, and hence the SHE
and EE do not appear [151]. Following our analogy, in the
superconducting case an anomalous phase can only appear if
the SU(2) magnetic field is finite. This explains why S-F-S
junctions without SOC do not present any magnetoelectric
effect, or equivalently, no anomalous phase. As is well known,
the ground state of S-F-S junctions corresponds to a phase
difference either equal to 0 or to π [1,2,132].

A simple way to describe qualitatively magnetoelectric
effects in a superconductor is to provide simple symmetry
arguments. Let us consider a ballistic superconductor at T

close to its critical temperature Tc and focus on the Ginzburg-
Landau free energy. In such an expansion, a SOC is responsible
for the presence of a first-order derivative of the order
parameter, the so-called Lifshitz invariant which describes

125443-4



THEORY OF THE SPIN-GALVANIC EFFECT AND THE . . . PHYSICAL REVIEW B 92, 125443 (2015)

most of the original phenomenology of noncentrosymmetric
superconductors [82]. Assuming that the amplitude of the
order parameter is constant but its phase position-dependent,
the Lifshitz invariant reads FL ∝ Ti∂iϕ where Ti is a vector
which has to be odd with respect to the time-reversal operation,
and SU(2) invariant. As discussed in Ref. [92], to the lowest
order in SOC the Lifshitz invariant for a superconductor can
be expressed in terms of the SU(2) fields:

FL ∝ Tr{F0jFji}∂iϕ = (Ea × Ba) · ∇ϕ. (3.5)

If we focus on the static case, the electric field is given
by F0j = −∂jA0. Moreover we define the equilibrium spin
current [125] in terms of the SU(2) magnetic field as Jj =
∇̃iFij = ∂Fij /∂xi − i[Ai ,Fij ]. If A0 is spatially homogenous,
for example induced by an external magnetic field, Eq. (3.5)
reads [92]

FL ∝ Aa
0J

a
i ∂iϕ. (3.6)

This Lifshitz invariant agrees with the ones derived from
microscopic considerations [133] or quasiclassical expansions
[134] for a particular sort of SOC.

Equation (3.6) confirms our guessed Eq. (1.5) and demon-
strates that the Edelstein response tensor χa

k behaves like the
spin current tensor Ja

i . The form of FL in Eq. (3.6), in terms of
the equilibrium spin current, suggests that our results remain
valid for any momentum dependence of the SOC. We now
proceed to derive the quasiclassical equations and provide
a microscopic description of the magnetoelectric effects in
superconductors.

B. The quasiclassical equations in the presence of SOC

In order to describe the transport properties of hybrid
structures containing superconducting, normal (N), and/or fer-
romagnetic (F) layers with interfaces and arbitrary temperature
and degree of disorder, we have to go beyond the Ginzburg-
Landau limit. We present here the quasiclassical equations
[135–138] for the Green’s functions in the presence of a
non-Abelian gauge field [45,46,123] (for a similar discussion
in normal metal, see [139]).

We follow here the derivation presented in Ref. [46]. The
basic transport equation derived from Hamiltonian (3.1) for
the Wigner-transformed covariant Green’s functions Ǧ(p,r)
in the time-independent limit reads

pi

m
∇̃iǦ +

[
τ3(ωn − iA0) − i�̌ + 〈ǧ〉

2τ
,Ǧ

]

− 1

2

{
τ3F0j + viFij ,

∂Ǧ

∂pj

}
= 0, (3.7)

where ωn = 2T π (n + 1/2) is the fermionic Matsubara fre-
quency, and �̌ = �( 0 eiϕ

−e−iϕ 0 ) is the (s-wave) gap parameter
of amplitude � and phase ϕ. The scattering at impurities
is described within the Born approximation, where τ is the
elastic scattering time, 〈ǧ〉 is the GF matrix integrated over
the quasiparticle energy, and 〈· · · 〉 describes the average over
the Fermi momentum direction.

After integration of (3.7) over the quasiparticle energy and
by using the fact that Ǧ is peaked at the Fermi level, one

obtains the generalized Eilenberger equation [46,92]:

vF (ni∇̃i)ǧ + [τ3(ωn − iA0) − i�̌,ǧ] − 1

2m

{
niFij ,

∂ǧ

∂nj

}

= − 1

2τ
[〈ǧ〉,ǧ], (3.8)

where ni , i = x,y,z are the components of the Fermi velocity
vector. When deriving (3.8) we have neglected corrections
to the exchange term A0 of the order of |Aj |/pF � 1. In
fact, one sees from (3.7) that {τ3F0j ,∂Ǧ/∂pj } scales like
{Aj ∂/∂pj , − i[τ3A0,Ǧ]} since F0j = −i[A0,Aj ], and so it
renormalizes the term −i[τ3A0,Ǧ] already present in (3.7).
The correction to A0 is of the order Aj /pF � 1 and we neglect
it from now on.

In the Nambu space ǧ reads

ǧ =
(

g f

−f̄ −ḡ

)
, (3.9)

where the g, f are matrices in the spin space which depend
on the spaces coordinates xi , the momentum direction ni , and
the Matsubara frequency. The time-reversal conjugate ḡ and
f̄ are defined as ḡ(n) = σyg∗(−n)σy and f̄ = σyf ∗(−n)σy .
The latter is the anomalous GF which describes the supercon-
ducting correlations.

From the knowledge of ǧ one can calculate the charge
current (density)

j = − iπeN0T

2

∑
ωn

Tr 〈vFτ3ǧ〉, (3.10)

with e the electron charge and N0 the normal density of states
for each spin. The spin polarization is given by

S = iπN0T

2

∑
ωn

Tr 〈τ3σ ǧ〉. (3.11)

C. Linearized quasiclassical equations in diffusive and purely
ballistic limits

In the present work we mainly consider two limiting
cases: the purely ballistic one in which τ → ∞ and the
diffusive limit in which τ is a small parameter. The transport
equation in the ballistic limit is directly obtained from (3.8)
by neglecting the right-hand side. The diffusive limit is a bit
more puzzling. Because of the anticommutator on the left-hand
side of Eq. (3.8), the normalization condition ǧ2 = 1 does not
hold directly and therefore the usual derivation of the Usadel
equations cannot be carried out [140]. There is, however, a
way out of this puzzle if one assumes that the amplitude of the
anomalous GFs, f in (3.9), is small. Then the matrix GF (3.9)
can be written as ǧ ≈ sgn (ωn)τ3 + ( 0 f

−f̄ 0) and the linearized
Eilenberger equation becomes an equation for f :

(vF ni∇̃i + 2ωn)f − {iA0,f } + 2i� sgn (ωn)

− 1

2m

{
niFij ,

∂f

∂nj

}
= − sgn (ωn)

τ
(f − 〈f 〉). (3.12)

This linearization procedure is justified in two cases: either
for temperatures close to the critical temperature Tc when
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the amplitude of the order parameter � is small, or in S-X
structures when the proximity effect is weak due to a finite
interface resistance for arbitrary temperature.

In the diffusive limit one can expand f ≈ f0 + nkfk + · · · ,
in angular harmonics where 〈f 〉 = f0 � fk . We first average
(3.12) over the momentum direction:

vF

dim
∇̃kfk + {ωn − iA0,f0} = −2i� sgn (ωn), (3.13)

where dim = 1,2,3 is the dimension of the system. Next we
multiply Eq.(3.12) by nk and average over the momentum
direction to obtain

vF ∇̃kf0 + {ωn − iA0,fk} − 1

2m
{Fkj ,fj } = − sgn (ωn)

τ
fk.

(3.14)

Equations (3.13) and (3.14) constitute a closed set of coupled
differential equations for f0 and fk . In particular from
Eq. (3.14) we can write fk in terms of f0 up to terms of
second order in τ :

fk ≈ −τ sgn (ωn)vF ∇̃kf0 − τ 2 vF

2m
{Fkj ,∇̃j f0}

+ τ 2vF {ωn − iA0,∇̃kf0} + · · · . (3.15)

Note that the Usadel equation was obtained in several works
in the absence of gauge fields, where one skipped the terms of
the order τ 2. We keep here these terms since they are crucial
for the description of magnetoelectric effects [86,92,141].

The equations can be further simplified by noticing that the
anticommutator in the second line of Eq. (3.15) can be written
as

{ωn − iA0,∇̃kf0} = ∇̃k{ωn − iA0,f0} + i{∇̃kA0,f0}.
(3.16)

In virtue of (3.13), the first term on the right-hand side of the
last equation is in fact of order τ and so this term in (3.15) is of
order τ 3 and can be neglected. The second term reads ∇̃kA0 =
−i[Ak,A0] = Fk0 for a space-independent gauge potential.
This electric field renormalizes the paramagnetic effects A0,
and is neglected in the following. Finally, we replace (3.15)
into (3.13) to obtain the Usadel equation for f0:

− sgn (ωn)D∇̃2f0 + {ωn − iA0,f0}

− τD

2m
{∇̃iFij ,∇̃j f0} = −2i� sgn(ωn) (3.17)

with D = v2
F τ/ dim the diffusion constant. This equation

is supplemented by the generalized Kupriyanov-Lukichev
boundary condition [142]

Ni

[
∇̃if0 + τ sgn (ωn)

2m
{Fij ,∇̃j f0}

]
x0

= −γfBCS (3.18)

at an interface located at position x0 between a bulk super-
conductor described by the anomalous GF fBCS and the X
bridge. The interface is characterized by the transparency γ

and normal vector of component Ni . For a fully transparent
interface, we impose the continuity of the GFs.

We now need to write the current and spin density in terms
of the isotropic anomalous GFs. It is easy to verify, by checking

its conservation, that in the linearized case the electric current,
Eq. (3.10), is given by

j = iπeN0T

2

∑
ωn

Tr〈vFf f̄ 〉 sgn ωn, (3.19)

and correspondingly in the diffusive limit

ji = iπeN0DT
∑
ωn

Tr

{
f0∇̃i f̄0 − f̄0∇̃if0

+ τ sgn(ωn)

2m
(f0{Fij ,∇̃j f̄0} + f̄0{Fij ,∇̃j f0})

}
. (3.20)

The spin polarization (3.11) is more subtle to deal with in the
linearized approximation, since the normalization condition
does not apply in our case. In accordance with the case without
SOC, one may assume that it can be expressed in terms of the
isotropic anomalous f as

Sa = iπN0T
∑
ωn

Tr〈σaf f̄ 〉 sgn (ωn) (3.21)

with 〈σaf f̄ 〉 = σaf0f0 in the diffusive limit. In the next
section we will show a posteriori that these expressions lead
to the known results in bulk systems in the presence of Rashba
SOC.

For the following discussions it is convenient to write the
anomalous GF f as the sum of singlet (scalar) and triplet
(vector in spin space) f = fs + f a

t σ a , and to expand all the
spin variables in term of Pauli matrices: Fij = Fa

ij σ
a/2, Aμ =

Aa
μσ a/2. From Eqs. (3.12) we obtain the equations for the

singlet and triplet components in the ballistic case:

(vF ni∂i + 2ωn)fs = −2i sgn (ωn)�

+
(

iAa
0 + niF

a
ij

2m

∂

∂nj

)
f a

t , (3.22)

vF ni(∇̃ift )
a + 2ωnf

a
t =

(
iAa

0 + niF
a
ij

2m

∂

∂nj

)
fs. (3.23)

Equivalently, from Eq. (3.17) one obtains the equations for
the isotropic part of the singlet fs0 and triplet ft0 components
in the diffusive case (for simplicity we skip the subindex 0):

(
∂2
i − κ2

ω

)
fs − 2i

�

D
+ sgn(ωn)

[
i
Aa

0

D
+ τ

2m
(Ji∂i)

a

]
f a

t = 0,

(3.24)

(∇̃i∇̃ift )
a − κ2

ωf a
t + sgn(ωn)

(
i
Aa

0

D
+ τ

2m
Ja

i ∂i

)
fs = 0.

(3.25)

We write the covariant derivative as ∇̃i · = ∂i · −i[Ai ,·] ≡
∂i + P̂i , where P̂i is a tensor dual to Ai with components
P ab

i = εabcAc
i . Thus, ∇̃i∇̃i = ∂2

i + 2P̂i∂i − 	̂, where P̂i P̂i =
−	̂. By noticing that (τ/2m)Ja

k = Ca
k , it is easy to verify that

the diffusive equations (3.24) and (3.25) are identical to those
derived in Sec. II from heuristic arguments [Eqs. (2.7) and
(2.8)]. One should emphasize though that while Eqs. (3.24)
and (3.25) are derived for the particular case of linear-in-
momentum SOC, Eqs. (2.7) and (2.8) suggest that the form
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of the diffusion equations remain the same for arbitrary
momentum dependence.

In particular the form of Eq. (3.25) proves the full analogy
between singlet-triplet and charge-spin coupling in diffusive
systems [cf. Eqs. (2.5) and (2.6)]. In Ref. [46], the analogy
between the diffusion of spin in normal systems and the
triplet components was discussed. Here we can extend this
result and find that the tensor Ca

k , responsible for the SHE in
normal systems, is an additional source for the singlet-triplet
conversion and, as we will see in the next sections, is at the root
of magnetoelectric effects and the anomalous phase. Equations
(3.22)–(3.23) and (3.24)–(3.25) are the central equations of this
work, which we now solve for different situations. In Sec. VI B
we go beyond this linear approximation.

IV. THE EDELSTEIN EFFECT IN BULK
SUPERCONDUCTORS FOR T → Tc

In order to illustrate the usefulness of the SU(2) covariant
quasiclassical equations presented above, we study here the
magnetoelectric effect and its inverse in bulk superconductors
with an intrinsic SOC linear in momentum and derive the
response coefficients in (1.3) and (1.4).

We assume that the superconducting order parameter �

is constant in magnitude but has a spatially dependent phase
�(r) = |�|eiϕ(r), where ∇ϕ is assumed to be a constant vector.

Let us first consider a diffusive superconductor. From (3.24)
in the lowest order of ∇ϕ one obtains

fs ≈ −i
|�|
|ωn|e

iϕ, (4.1)

and hence one can easily obtain the lowest order correction to
the triplet component from (3.25):

f a
t = |�|

|ωn|
τ

2m
sgn (ωn)

[(
	̂ + κ2

ω

)−1]ab
Jb

j ∂jϕ. (4.2)

From Eq. (3.21) it becomes clear that the spin density is
determined by the product of the singlet (4.1) and triplet (4.2)
components which results in Sa = χa

i ∂iϕ with

χa
i = 4πN0

τ

2m
T

∑
ωn>0

�2

ω2
n

[(
	̂ + κ2

ω

)−1]ab
Jb

i . (4.3)

This is the Edelstein result generalized for arbitrary linear-in-
momentum SOC.

With the help of Eqs. (3.24) and (3.25) we can also describe
the inverse EE, the so-called spin-galvanic effect. We now
assume a finite and spatially homogenous Aa

0 and a zero
phase gradient. In such a case one can obtain ft directly from
Eq. (3.25), which is now proportional to Aa

0. By substitution
of this result into the expression for the current, Eq. (3.20),
and by noticing that only the second line contributes to the
current we obtain ji = eχa

i Aa
0, with χa

i given by Eq. (4.3) in
agreement with Onsager reciprocity.

In short, we are able to derive in a few lines the tensor (4.3),
which describes the EE and inverse EE in superconductors.
Moreover, the expression (4.3) is valid for arbitrary linear-in-
momentum spin-orbit effect and generalizes the result obtained
in Ref. [80] for the particular case of a Rashba SOC. If one
assumes the same here, i.e., Ay

x = −α = −Ax
y and all the other

components equal to zero, one obtains from Eq. (4.3)

χa
i = (

δ
ay

ix − δax
iy

)
4πN0

Dτ

2m
T

∑
ωn>0

�2

ω2
n

α3

2|ωn| + Dα2
(4.4)

that coincides with the expression obtained in Ref. [80].
If we neglect in Eq. (4.2) the Dyakonov-Perel relaxation,

then the triplet component is simply proportional to f a
t ∼

Aa
0(r). By substituting this into the expression for the current

Eq. (3.20) one can easily show that

ji = 4eπN0
τ

2m
T

∑
ωn>0

�2

ω2
nκ

2
ω

Fa
0jF

a
ji . (4.5)

This expression suggests that a spatially inhomogeneous
magnetization together with SOC may also induce a finite su-
percurrent. In this case the spin-galvanic effect scales with the
square of the SOC parameter, in contrast to the α3 dependency
found previously for spatially uniform magnetization.

The same effects can be explored in the pure ballistic limit,
for which Eqs. (3.22) and (3.23) apply. The singlet component
in the lowest order in the SOC is given by

fs ≈ −i
�

|ωn|
(

1 − i
vF ni

2ωn

∂iϕ

)
, (4.6)

whereas the triplet component can be obtained easily from
Eq. (3.23):

f a
t = − �vF

2|ωn|ωn

[(vF nkP̂k + 2ωn)−1]ab
niF

b
ij

2m
∂jϕ. (4.7)

By using Eq. (3.21) we obtain the Edelstein result Sa =
χa

j ∂jϕ but now for an arbitrary linear-in-momentum SOC

χa
i =−2π

N0vF

2m
T

∑
ωn>0

�2

|ωn|3
〈
[(vF nkP̂k + 2ωn)−1]abnjF

b
ji

〉
.

(4.8)

Identically, we find ji = eχa
i Aa

0.
In the particular case of a 2D systems with Rashba SOC

we recover the Edelstein result for a ballistic superconductor
[79]:

χa
i = πN0�

2

4vF m
T

∑
ωn>0

(vF α)3

|ωn|3[(2ωn)2 + (vF α)2]

(
δ

ay

ix − δax
iy

)
.

(4.9)

The agreement between our and Edelstein results proves the
validity of the expression (3.21) in the linearized approxima-
tion.

To conclude this section we note that for Rashba SOC in
both cases, diffusive (4.4) and ballistic (4.9), χa

i is proportional
to α in the strong SOC limit (see also [134]), and to α3 for weak
spin-orbit interaction (see also [92]). So, the quasiclassical
formalism is able to recover in an elegant way some well
established results obtained after a cumbersome diagrammatic
[79,80], and it also allows some easy generalizations of them.
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V. MAGNETOELECTRIC EFFECTS IN DIFFUSIVE
JOSEPHSON JUNCTIONS

We now turn to the central topic of the present work
which is the description of magnetoelectric effects in S-X-S
Josephson junctions, and demonstrate their connection to the
anomalous phase problem. We first consider the diffusive limit
and postpone the discussion of ballistic junctions for the next
section.

In particular we consider an S-X-S Josephson junction with
an interlayer X of length L. We assume that the magnetic
interactions are only finite in X and vanish in the S electrodes.
Moreover, we assume that the structure has infinite dimensions
in the y-z plane and therefore the GFs only depend on the x

coordinate. The superconducting bulk solutions in the leads
are written as fL = fBCSe

−iϕ/2 and fR = fBCSe
iϕ/2, in the left

(x � −L/2) and right (x � L/2) electrodes, respectively, with

fBCS = �√
ω2

n + �2
, (5.1)

whereas the normal metal fills the region −L/2 � x � L/2.
We will consider both the highly resistive and the perfectly

transparent interfaces between the S and X parts. When the
barrier transparency is low, the linearized approximation is
justified for all temperatures, whereas for transparent barriers,
one is limited to temperatures close to the critical temperature
of the junction.

For the particular case of Rashba SOC in the X region
and an in-plane exchange field the Josephson current has
been calculated in Ref. [92]. It has been shown explicitly that
the current-phase relation is given by I = Ic sin(ϕ − ϕ0). The
anomalous phase ϕ0 was calculated as a function of the strength
of the spin fields, the temperature, and the junction parameters.
Here instead we focus on a generic linear-in-momentum SOC
and we derive the expressions for the anomalous Josephson
current in the lowest order of the spin fields. This will allow
us to understand the link between the inverse EE and the ϕ0

junctions.

A. Diffusive junction with low-transparency interfaces

We first consider an S-X-S diffusive Josephson junction
with highly resistive S-X interfaces. In this limit the lin-
earization of the quasiclassical equations is justified for all
temperatures. Our goal here is to determine the Josephson
current through the junction, which in the linearized regime
is given by Eq. (3.20). The components of the condensate
function fs entering this expression have to be obtained by
solving the system (3.24) and (3.25) in the normal metal which
couples the singlet with the triplet component. For the specific
S-X-S geometry considered here these equations read

(
∂2
x − κ2

ω

)
fs + sgn (ωn)

[
i
Aa

0

D
+ τ

2m
(Ji∂i)

a

]
f a

t = 0,

(5.2)

(∇̃i∇̃ift )
a − κ2

ωf a
t + sgn (ωn)

(
i
Aa

0

D
+ τ

2m
Ja

i ∂i

)
fs = 0,

(5.3)

Dτ
2mJ a

i ∂i

iAa
0 iAa

0

Dτ
2mJ a

i ∂i

FIG. 1. (Color online) Schematic representation of the singlet-
triplet-singlet conversion process at the lowest order with respect to
the spin fields. Black arrows represent the action of the exchange
field, whereas red arrows encode the effect of the singlet-triplet
coupling term due to the SOC. Only mixed red-black paths lead
to the appearance of an anomalous phase ϕ0 in the singlet component
and hence to a supercurrent in an S-X-S junction even without a phase
bias between the S electrodes.

and the boundary conditions for the resistive interface [cf.
Eq. (3.18)]:(

∂xfs + sgn(ωn)
τ

2m
Ja

xf
a
t

)
x=±L/2

= ±γfR,L,

∂f a
t |x=±L/2 = 0. (5.4)

The expression Eq. (3.20) can be simplified by calculating
the current at the right interface (x = L/2) and by using the
boundary condition (5.4):

jx = ieπDN0Tcγ
∑
ωn>0

Tr{fsf̄R − f̄sfR}x=L/2. (5.5)

It is clear from this equation that the correction to the current
due to the spin fields (the anomalous current) is proportional to
Im[f ∗

Rδfs(L/2)], where δfs is the first correction to the singlet
component due to the gauge potentials. In the absence of a
phase difference between the S electrodes fR is real and the
anomalous current is proportional to the imaginary part of the
singlet component. According to Eq. (5.2), in the absence of
spin fields (exchange and SOC), there is no triplet component
and the singlet component is real. Therefore no supercurrent
flows at zero phase difference.

In the presence of spin fields there are two sources for
singlet-triplet conversion, as seen from the second term on the
left-hand side of Eq. (5.3). The first one is the extensively stud-
ied mechanism for singlet-triplet conversion in S/F junctions
via the intrinsic exchange field A0 [1,2]. Inclusion of SOC
leads to an additional singlet-triplet conversion mechanism
described by the last term on the left-hand side of Eq (5.3). As
discussed in Sec. II, the singlet-triplet conversion in this case
corresponds to the charge-spin conversion in normal systems
with SOC. Conversely, once the triplet component is created,
both mechanisms will convert it back to singlet, as can be seen
in Eq. (5.2).

The singlet-triplet-singlet conversion at the lowest orders
in perturbation with respect to the spin fields is schematized in
Fig. 1. The black arrows represent the singlet-triplet conversion
due to the exchange field which implies a π/2 phase shift due
to the i factor in front of A0 in Eqs. (5.2) and (5.3). The
red arrows represent the singlet-triplet conversion due to the
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SOC, specifically due to the coupling term in Eqs. (5.2) and
(5.3) proportional to Ja

i ∂i . No additional phase is associated
with this latter process. If one follows the black path, i.e.,
the singlet-triplet-singlet conversion only due to the exchange
field, the resulting contribution to the singlet component
acquires a minus sign (a π shift) and it is proportional to
A2

0. This means that there is no anomalous phase 0 < ϕ0 < π

induced and hence no Josephson current flows when ϕ = 0.
Similarly, if one follows the red path the resulting singlet
component also remains real with no change of sign. From
Fig. 1 it becomes clear that a nontrivial ϕ0 only appears from
the “cross-term” path that consists of one black and one red
arrow. In other words, the mutual action of exchange field and
SOC leads to a finite ϕ0 and hence to a supercurrent even
at zero phase difference. In this case the contribution to this
current in the lowest order of the spin fields is proportional
to Aa

0J
a
i ∂ifs between the exchange field and the spin current

tensor, as anticipated in the introduction.
In order to quantify this effect and calculate ϕ0 in the S-X-S

junctions it is convenient to introduce the singlet and triplet
propagators associated with Eqs. (5.2)–(5.4):(

∂2
x − κ2

ω

)
Ks(x,x ′) = −δ(x − x ′),

∂xKs(x,x ′)
∣∣
x=±L/2 = 0, (5.6)

and[
(∂x + P̂x)2 + P̂ 2

y + P̂ 2
z − κ2

ω

]
K̂t (x,x ′) = −δ(x − x ′),

(∂x + P̂x)K̂t (x,x ′) = 0. (5.7)

Thus, Eqs. (5.2)–(5.4) can be rewritten as a set of integral
equations:

fs(x) = f (0)
s (x) − τJa

x

2m

[
Ks(x,L/2)f a

t − Ks(x, − L/2)
]

+ sgn (ωn)
∫ L/2

−L/2
dx1Ks(x,x1)

×
[

i
Ab

0

D
Ks(x1,x) + τ

2m
Jb

x∂x1

]
f b

t (x1) (5.8)

and

f a
t (x) = sgn (ωn)

∫ L/2

−L/2
dx1

×
[
Kab

t (x,x1)

(
i
Ab

0

D
+ τ

2m
Ja

1∂x1

)
fs(x1)

]
. (5.9)

Here f (0)
s = γ (Ks(x,L

2 )fR + Ks(x, − L
2 )fL) and the second

term in Eq. (5.8) takes into account the boundary condition
(5.4).

The Ks propagator can be obtained from Eq. (5.6),

Ks(x1,x2) = cosh κω(L − |x1 − x2|) + cosh κω(x1 + x2)

2κω sinh κωL
,

(5.10)

whereas the equations for the triplet kernel, Eq. (5.7), can be
written in the form of an integral equation which is convenient

for the subsequent perturbative analysis:

K̂t (x1,x2) = e−P̂xx1Ks(x1,x2)eP̂xx2

− e−P̂xx1

∫ L/2

−L/2
dyKs(x1,y)eP̂xy	̂⊥K̂t (y,x2),

(5.11)

where 	̂⊥ = −P̂ 2
y − P̂ 2

z .
In the lowest order of the gauge potentials one can obtain

the correction δfs to the singlet component by substituting the
result (5.10) into Eqs. (5.8) and (5.9). We consider here only the
“cross-term” correction δfs proportional to both the exchange
field A0 and the spin current Ji and which is responsible for
the anomalous phase shift:

δfs(L/2) = iAa
0J

b
x

τγ

2mD
fL

∫ L/2

−L/2
dy1

×
∫ L/2

−L/2
dy2K

ab
t (y2,y1)

cosh[κω(y1 − y2)]

κω sinh κωL
.

(5.12)

In principle, one has all the elements to solve Eqs. (5.8) and
(5.9), for example recursively by performing a perturbative
expansion in the gauge potentials. Here, in order to get
analytical compact expressions we restrict our analysis to the
short junction limit, i.e., L � min(κ−1

ω ,|Ak|−1). In this case
Ks ≈ κ−2

ω L−1 [cf. Eq. (5.10)] and from Eq. (5.11) it is easy to
verify that Kt reads

K̂t ≈
(
κ2

ω + 	̂⊥
)−1

L
. (5.13)

We are interested in calculating the anomalous phase ϕ0

which can be obtained by noticing that the current (5.5) can
be written as

jx = jc sin (ϕ − ϕ0) ≈ jc sin ϕ − ϕ0jc cos ϕ (5.14)

for a small ϕ0. The anomalous phase ϕ0 can be obtained by
setting ϕ = 0 and dividing by the critical current jc in the
absence of SOC. In the short junction limit this is given by

jc = 4eπDN0Tcγ
2

∑
ωn>0

f 2
BCS

κ2
ωL

. (5.15)

We follow this procedure and from Eq. (5.5) and Eqs. (5.12)
and (5.13) we obtain

ϕ0 ≈ τ

2mD
L

∑
ωn>0

f 2
BCS
κ2

ω
Aa

0

[(
κ2

ω + 	̂⊥
)−1]ab

Jb
x∑

ωn>0
f 2

BCS
κ2

ω

. (5.16)

This expression clearly shows the relation between the
appearance of the anomalous phase, ϕ0, and the inverse
Edelstein effect in bulk systems. Both the Josephson current
(proportional in the linearized case to ϕ0) and the bulk
supercurrent are proportional to A0Jx ; i.e., both are generated
from the mutual action of the exchange field and the SOC.

It is worth noticing that in the present case of low transparent
interfaces, the anomalous phase grows linearly with L, the
length of the junction (5.16). In the next subsection we show
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that in the case of a transparent barrier the anomalous phase
behaves like L3.

In the particular case of a 2D situation, with a SOC coupling
of Rashba (described by the parameter α) and Dresselhaus (β)
type we obtain from Eq. (5.16)

ϕ0 ≈ τL

2m

∑
ωn>0

f 2
BCS
κ2

ω

(βAx
0−αA

y

0)(α2−β2)
2ωn+D(α2+β2)∑

ωn>0
f 2

BCS
κ2

ω

. (5.17)

Besides controlling the anomalous phase and hence the
Josephson current by tuning the external magnetic field, this
expression also suggests that the current can be controlled by
tuning the Rashba SOC by means of an external gate. In the
particular case that α = β the anomalous phase is zero and no
supercurrent will flow.

B. Diffusive junction with transparent interfaces

We now briefly consider the limit of a full transparent
barrier. In that case one assumes continuity of the quasiclas-
sical GFs at the S-X interfaces. The problem is then formally
the same as in the previous section, except that the second
equations in (5.6) and (5.7) for the propagators Ks and K̂t are
replaced by

K̂s,t (x1,x2)
∣∣
x1=±L/2 = 0, (5.18)

respectively. In this case one should remove the second term
in Eq. (5.8) and f (0)

s (x) = fL sinh (L/2 − x)/ sinh (κωL) +
fR sinh (L/2 + x)/ sinh (κωL).

Now the singlet propagator is given by

Ks(x1,x2) = cosh κω(x1 + x2) − cosh κω(L − |x1 − x2|)
2κω sinh κωL

.

(5.19)

In the short junction limit Ks is proportional to L and it is
temperature independent. From Eq. (5.11) K̂t ∼ Ks . Thus,
in this case the anomalous phase shift is also temperature
independent and proportional to

ϕ0 ∝ τL3

mD
Aa

0J
a
x. (5.20)

In contrast to the case of finite barrier resistance, Eq. (5.16),
the anomalous phase scale with L3. This means that in short
junctions a finite barrier resistance between the S and the
normal metal favors the growth of ϕ0. These results generalize
those presented recently in Ref. [92] for the particular case of
Rashba SOC.

We can then conclude that the anomalous phase, at
lowest order in the gauge potentials, is proportional to Aa

0J
a
x ,

independently of the type of interface.

VI. MAGNETOELECTRIC EFFECTS IN BALLISTIC
JOSEPHSON JUNCTIONS

In this section we consider a pure ballistic S-X-S junction;
i.e., we solve (3.8) in the limit τ → ∞. As before, the junction
is along the x axis and the two superconducting electrodes
at position x � −L/2 and x � L/2. The spin fields, both
exchange and SOC, are only finite in the X region. We assume

that the transverse dimensions of the junction are very large,
and therefore the GFs depend on x and only weakly on y,z. We
also assume that the interfaces between X and S are perfectly
transparent.

In the next subsection we first analyze the Josephson
current for temperatures close to the superconducting critical
temperature Tc, and make a connection with the diffusive
structures studied in the previous section. In the second
subsection we derive analytical expressions for the anomalous
current at arbitrary temperature for the case of small spin fields.

A. Ballistic junction at T → Tc

In the case of large enough temperatures we analyze the
linearized Eilenberger equation. The solutions for the singlet
and triplet components in Eqs. (3.22) and (3.23) can be written
as propagation in two directions fs,t (−L/2 � x � L/2) =
f >

s,t (x)�(ωn/nx) + f <
s,t (x)�(−ωn/nx) with

f <
s = �(L/2)

|ω| e−2ωn(x−L/2)/vF nx +
∫ x

L/2

dy

vF nx

× e−2ωn(x−y)/vF nx

(
iAa

0 + niF
a
ij

2m

∂

∂nj

)
f a<

t (y) (6.1)

and

f a<
t =

∫ x

L/2

dy

vF nx

e−2ωn(x−y)/vF nx
(
e−P̂ini (x−y)/nx

)ab

×
(

iAb
0 + niF

b
ij

2m

∂

∂nj

)
f <

s (y). (6.2)

In the opposite propagation direction f >
s,t are found from f <

s,t

by substituting L/2 → −L/2.
In analogy with the diffusive case (cf. Fig. 1), expressions

(6.1) and (6.2) show explicitly the effect of the SOC on the
condensate function. In the absence of SOC the exchange
field A0 is the only source for singlet-triplet conversion. The
manifestation of the triplet component in S-F-S junctions has
been extensively studied in the past (see [1,2] for reviews). As
discussed in Sec. II, the imaginary unit i in front of the A0 terms
leads to a π/2 phase shift. In the case of a finite SOC the gauge
field, Fij , is an additional source of triplet correlations. Notice
that in the ballistic case, Fij not only couples the singlet and
triplet components, but also the s-p-wave components of the
condensate [143]. Moreover, the term e−P̂inix/nx in (6.2) leads
to a momentum-dependent rotation of the triplet component
in the spin space.

The origin of the anomalous phase ϕ0 can be easily
understood in the lowest order in the spin fields. Assuming
a vanishing phase difference between the superconductors and
combining Eqs. (6.1) and (6.2) with the expression for the
current (3.19), one obtains for the first nontrivial contribu-
tion to the current Fa

ij ∂nj
(e−P̂inix/nx )abAb

0 ∝ Fa
ijP

ab
j Ab

0. This

correction is proportional to Jb
i A

b
0 and coincides with those

obtained in bulk superconductors with SOC (Sec. IV) and a
diffusive S-X-S junction (Sec. V).

Quantitatively, a compact analytical solution for the current
at zero phase difference can be obtained from Eqs. (6.1) and
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(6.2) in the short junction limit; i.e., for L � vF /2ωn,

jx(ϕ = 0) = −eπN0vF

EF

L3

3
�2TcF

a
xiF

a
i0

×
∑
ωn>0

〈
e−2ωnL/vF |nx |

ω2
n|nx |

(
1 + 2

n2
i

n2
x

)〉
, (6.3)

where Fa
xiF

a
i0 = Ja

xA
a
0. Thus the anomalous current is gener-

ated by the spin polarization Aa
0 via the spin current Ja

i . This
is the spin-galvanic effect, discussed in the previous sections,
for a ballistic S-X-S junction.

B. Arbitrary temperatures

The previous result for the current has been obtained at
temperatures close to the critical one. We now consider an
arbitrary temperature and calculate the current up to the lowest
order in the gauge field Fij . In order to calculate the current
from Eq. (3.10) to the lowest order in Fij we need to compute
the first two components’ matrix ǧ = ǧ(0) + ǧ(1) + · · · .

At zeroth order in Fij the ballistic equation reduces to

vF nx

∂ǧ(0)

∂x
= i[τ3(iωn + A0) + vF njAj + �̌,ǧ(0)], (6.4)

which admits for solution

ǧ(0) = ǔ(x)ǧ(0)
0 ǔ−1(x) + ǧ∞, (6.5)

with ǧ
(0)
0 a constant matrix found from the boundary condi-

tions. The propagator ǔ(x) in Eq. (6.5) is given by

ǔ(x) = exp

[
i
τ3(iωn + A0) + vF njAj + �̌

vF nx

x

]
, (6.6)

when we assume that neither A0 nor �̌ nor Aj depend on the
position. ǔ describes how the function ǧ0 “propagates” from
its value at x = 0, ǧ

(0)
0 , to any point x.

The constant ǧ∞ in (6.5) satisfies

[τ3(iωn + A0) + vF njAj + �̌,ǧ∞] = 0, (6.7)

and describes the bulk contribution deep inside the super-
conductor. Notice that according to Eqs. (6.7) and (6.6),
[ǧ∞,ǔ] = 0, hence ǧ∞ cannot be obtained by the application
of (6.6). As we will see below [see (6.13)], the solutions of ǔ

in a superconductor are evanescent waves, so the contribution
ǔǧ

(0)
0 ǔ−1 vanishes deep inside the superconductor, whereas the

contribution ǧ∞ remains finite.
The first-order correction with respect to the gauge-field

satisfies

vF nx

∂ǧ(1)

∂x
−

{
niFij

2m
,
∂ǧ(0)

∂nj

}

= i
[
τ3(iωn + A0) + vF njAj + �̌,ǧ(0)] (6.8)

and so

ǧ(1) = ǔ(x)ǧ(1)
0 (x)ǔ−1(x), (6.9)

with a position-dependent ǧ
(1)
0 matrix, which reads

ǧ
(1)
0 = ǧ1 +

∫ x

0

dz

vF nx

[
ǔ†(z)

{
niFij

2m
,
∂ǧ(0)

∂nj

}
ǔ(z)

]
, (6.10)

where ǧ1 is a constant matrix.
The current can be written in powers of Fij , jx = j (0)

x +
j (1)
x + · · · with [see (3.10)]

j (0)
x = ieπN0vF

2

∑
ωn

Tr
〈
nxǧ

(0)
0 τ3

〉
(6.11)

and the first-order correction

j (1)
x = ieπN0vF

2

∑
ωn

Tr 〈nxǧ1τ3〉. (6.12)

Notice that the second line in (6.10) vanishes after the angular
average. We then need to obtain ǧ

(0)
0 and ǧ1 to determine the

current through the S-X-S Josephson junction.
We separate the solution of the problem in the three regions:

the two superconductors (x � L/2 and x � −L/2) and the
normal region (−L/2 � x � L/2). One can check that in the
superconductors:

ǧ

(
x � −L

2

)
= e−iτ3

ϕ

4 [SLgLτ+S
†
L + ǧ∞]eiτ3

ϕ

4 ,

ǧ

(
x � L

2

)
= eiτ3

ϕ

4 [SRgRτ−S
†
R + ǧ∞]e−iτ3

ϕ

4 , (6.13)

with τ± = (τ1 ± iτ2)/2 and

ǧ∞ = τ3ωn + τ2�√
ω2

n + �2
= τ3 sinh η + τ2

cosh η
, (6.14)

SL,R = eη/2 + iτ1e
−η/2

√
2 cosh η

eτ3 cosh η(x±L/2)/ξ0 , (6.15)

where sinh η = �ωn/�, and ξ0 = �vF /� is the superconduct-
ing coherence length. The matrices gL,R ≈ g

(0)
L,R + g

(1)
L,R + · · ·

have been expanded in powers of Fij ; g
(0,1,··· )
L,R are constant

matrices found from boundary conditions order by order. ǧ∞
is present at the zeroth order only.

In the normal region, the solution reads

ǧ

(
−L

2
� x � L

2

)

= ǔ0(x)ǧ0ǔ
†
0(x) + ǔ0(x)ǧ(1)

0 (x)ǔ†
0(x) + · · · , (6.16)

where

ǧ
(1)
0 (x) = ǧ1 +

∫ x

0
Ǧ(z)dz,

Ǧ(z) = 1

vF nx

ǔ
†
0(z)

{
niFij

2m
,
∂ǔ0(z)ǧ0ǔ

†
0(z)

∂nj

}
ǔ0(z), (6.17)
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where ǔ0 = ǔ(� = 0) [see (6.6)] is a unitary matrix that can
be written as

ǔ0(x) = e−ωnτ3x/vF nx

(
u 0

0 ū

)
.

The spin matrices u and ū are defined as

u(x,n) = exp

[
i
A0 + vF njAj

vF nx

x

]
,

(6.18)

ū(x,n) = σyu∗(x, − n)σy = exp

[
i
−A0 + vF njAj

vF nx

x

]
.

The matrices ǧ0 and ǧ1 in Eq. (6.16) are obtained from the
boundary conditions, assuming continuity of the GFs at the
left and right boundaries. At zeroth order we obtain

ǧ0 =
(

g0 f0

−f̄0 −ḡ0

)
, (6.19)

g0 = U
(−L

2

)
Ū

(
L
2

) − U
(

L
2

)
Ū

(−L
2

) + 2 sinh 2χ

2 cosh 2χ + Tr {U (L)} , (6.20)

f0 = −2i
eχU

(
L
2

) + e−χU
(−L

2

)
2 cosh 2χ + Tr {U (L)} , (6.21)

χ = ωnL

vF nx

+ arcsinh
ωn

�
+ i

ϕ

2
, (6.22)

U (x) = u(x)ū(−x), (6.23)

whereas Ū (x) = ū(x)u(−x) is its time-reversal conjugate. We
here give only the contribution corresponding to the positive
projection of the Fermi velocity; the negative projection can
be found straightforwardly.

The matrices entering the first-order correction, Eq. (6.17),
have the following form in Nambu space:

ǧ1 =
(

g1 f1

−f̄1 −ḡ1

)
and Ǧ =

(
G F

−F̄ −Ḡ

)
, (6.24)

with

g1 = −1

2

[∫ −L/2

0
+

∫ L/2

0

]
Gdz

+1

2

∫ L/2

−L/2
G · g0dz − 1

2

∫ L/2

−L/2
F · f̄0dz. (6.25)

After multiplication by nx and taking the angular average the
first line of this equation vanishes. The second line of (6.25) can
be simplified using the normalization condition g2

0 − f0f̄0 = 1
available for the zeroth-order correction. We obtain

j (1)
x = i

eπN0T vF

2

∑
ωn>0

∫ L/2

−L/2
dz

∑
α=±

× Tr

〈
niFij

2m

(
fα

∂ f̄α

∂nj

− f̄α
∂fα

∂nj

)
sgn (nx)

〉
, (6.26)

with

f±(z) = −2i
e±χ±U

(
z + L

2

) + e∓χ±U
(
z − L

2

)
2 cosh 2χ± + Tr {U (L)} ,

(6.27)

χ± = ωnL

vF |nx | + arcsinh
ωn

�
± i

ϕ

2
,

and f̄±(z,n) = σyf∗±(z, − n)σy its time-reversal conjugate.
If A0 commutes with Ai , then u(x)ū(−x) =

exp [iA0x/vF nx] becomes independent of the SOC
[see the definitions (6.18)], and the contribution (6.26)
vanishes. Therefore we expect (6.26) to be proportional to
Fij [A0,Aj ] ∝ FijF0j at the smallest order in the gauge fields.

By expanding the expression (6.26) in the gauge potentials,
up to the term proportional to the electric-like field one obtains

f±(z) ≈ −ie±χ±

2 cosh2 χ±

{
1 + 2iA0

vx

(
z + L

2

)
+ 1

2

[
2iA0

vx

(
z + L

2

)]2

− (z + L/2)2

v2
x

vk[Ak,A0]

}

+ −ie∓χ±

2 cosh2 χ±

{
1 + 2iA0

vx

(
z − L

2

)
+ 1

2

[
2iA0

vx

(
z − L

2

)]2

− (z − L/2)2

v2
x

vk[Ak,A0]

}
+ · · · , (6.28)

where Tr {U (L)} ≈ 2 in the small gauge-field limit. Besides
the terms proportional to A0 only, responsible for the oscilla-
tions of the S/F proximity effect, the SOC Aj only appears in
the electric-field construction (the last term on each line), due
to symmetry with respect to the time reversal. After angular
averaging only the last contributions of the two lines are
nonzero. This leads to

j (0)
x

j0
= 4〈|nx |M〉, (6.29)

j (1)
x

j0
= −2

L3

3EF

× Tr{FxjFj0}
〈

1

|nx |

(
1 + 2

n2
j

n2
x

)
∂M

∂ϕ

〉

(6.30)

with j0 = πevF N0T and

M =
∑
ωn>0

�
{

tanh

(
ωnL

vF |nx | + arcsinh
ωn

�
+ i

ϕ

2

)}
(6.31)

(note that the sum over j applies inside the angular averaging
as well). As in all previous examples the anomalous current
is proportional to Tr {FxkFk0} = Ja

xA
a
0, where the later form

suggests our expressions are valid beyond the linear-in-
momentum-SOC approximation, given any spin current Ja

i

and paramagnetic interaction Aa
0.

Close to the critical temperature M ≈
�2 sin ϕ

∑
ωn�0 e−2ωL/vF |nx |/2ω2 and we recover (6.3).

Commonly, the concept of a ϕ0 junction is defined for
junctions with a sinusoidal current-phase relation. This is valid

125443-12



THEORY OF THE SPIN-GALVANIC EFFECT AND THE . . . PHYSICAL REVIEW B 92, 125443 (2015)

T/Tc

ln ϕ0
Φ0

0.01

0.06

0.11

L/ξ0 = 0.16

FIG. 2. The temperature dependence of the averaged anoma-
lous phase shift (6.33) on a log scale ln (ϕ0(T )/�0), where
�0 = −�L3 Tr {FxyFy0}/6EF . We have approximated �(T ) ≈
1,764Tc tanh(1,74

√
Tc/T − 1), which is the usual interpolation for

the temperature dependence of the superconducting gap. The curves
are given for different ratios of L/ξ0 = {0.01, 0.06, 0.11, 0.16}, with
ξ0 = �vF /�0 and �0 = 1.764Tc the gap at zero temperature. Note
that ϕ0 does not vanish when T → Tc.

at temperatures close to the critical temperature or in the case
of a weak proximity effect between the S electrodes and the
X bridge. However, in several cases the current-phase relation
is more complex and higher harmonics are involved [132].
This is the case of the ballistic junction studied here with a
current-phase relation given by the sum of Eqs. (6.29) and
(6.30). In such cases the ϕ0 is defined as the phase difference
across the junction that minimize the energy, or equivalently,
as the phase difference imposed on the junction in order to get
a zero current state, i.e., j (ϕ0) = 0. In our perturbative analysis
ϕ0 is small and hence

ϕ0 = −j (ϕ = 0)

∂ϕj
∣∣
ϕ=0

. (6.32)

It is clear that j (ϕ = 0) = j (1)
x , whereas ∂ϕj |

ϕ=0 = ∂ϕj (0)
x |ϕ=0,

and from Eqs. (6.29) and (6.30) we obtain

ϕ0 = − �L3

6EF

Fa
xjF

a
j0

∂
∂ϕ

〈
M
|nx |

(
1 + 2

n2
j

n2
x

)〉∣∣
ϕ=0

∂
∂ϕ

〈|nx |M〉|ϕ=0
. (6.33)

In Fig. 2 we show the temperature dependence of ϕ0 for
the ballistic junction for a 2D system when only Fa

xyF
a
y0 is

nonzero. We assume a circular Fermi surface, nx = cos θ and
ny = sin θ . We plot the anomalous phase for different junction
lengths.

VII. DISCUSSION AND CONCLUSIONS

In order to verify our findings and prove the existence of the
anomalous ϕ0 phase one can design a superconducting ring in-
terrupted by a semiconducting link with a strong SOC, similar
to the one used recently in Ref. [144] for the characterization

FIG. 3. (Color online) One possible experimental setup to verify
the generation of a spontaneous current in S/X/S Josephson junction.
It consists of a truncated superconducting loop (in green) deposited
on top of a material exhibiting SOC (in gray). In order to isolate
electrically part of the S loop from the conducting substrate we assume
an insulating layer between them (in blue). By applying an in-plane
magnetic field a circulating supercurrent might be generated which in
turn induces a magnetic flux that can be measured via an extra pickup
coil (shaded gray). For more details see discussion in the main text.

of the current-phase relation of a Nb/3D-HgTe/Nb junction
or in [145] for the observation of a spontaneous supercurrent
induced by a ferromagnetic π junction. A schematic view
of the proposed setup is shown in Fig. 3: It consists of a
superconducting ring (green) grown on top of a semiconductor
or a metallic substrate with strong SOC (gray). In order to
isolate electrically the S ring from the semiconductor one can
for example add an insulating barrier (blue) under the ring.

If a magnetic field is applied in the plane of the ring, it will
act as a Zeeman field and hence, according to our previous
results, it will create a spontaneous circulating supercurrent;
see [7,146] for more details. This supercurrent will generate a
magnetic flux that in principle can be measured by a second
loop [144] or a micro-Hall sensor [145].

In the case when the bridge is made of a 2D semiconductor
with a generic SOC described by a combination of Rashba
and Dresselhaus terms, Ax = −ασy + βσx and Ay = ασx −
βσy , the generated supercurrent should be proportional to

js ∝ (α2 − β2)(hxβ + hyα).

Thus the current depends on the direction of the applied
magnetic field. In particular, for a field perpendicular to the
2D gas the effect should vanish. In addition by applying a
gate voltage one could modify the ratio between Dresselhaus
and Rashba interactions and hence control the supercurrent
flow. We thus expect that the dependency of the spontaneous
supercurrent with respect to the orientation of the magnetic
field and/or the gate voltage realizes a clear demonstration of
the spin-galvanic effect in Josephson systems.

Instead of using a semiconducting bridge one could grow
the superconducting loop on top of a metallic substrate. Metals
with strong SOC, such as Pt and Ta, are good candidates to
observe the ϕ0-junction behavior, but also an ultrathin layer of
Pb might be used [147]. In such a case probably one cannot
control the ϕ0 shift using a gate, but a spontaneous circulating
current might still be controlled by switching the in-plane
external field on and off.

Eventually, the existence of a magnetoelectric phase shift
ϕ0 can be probed by measuring the Shapiro steps in S-X-S
Josephson junctions as suggested in Ref. [148].

125443-13



KONSCHELLE, TOKATLY, AND BERGERET PHYSICAL REVIEW B 92, 125443 (2015)

In conclusion, we have demonstrated that the inverse
Edelstein effect, also called spin-galvanic effect, and the
appearance of an anomalous phase shift ϕ0 in Josephson
junctions are the two sides of the same coin. We presented
a full SU(2) covariant quasiclassical formalism that allows us
to study these magnetoelectric phenomena in bulk and hybrid
superconducting structures with arbitrary linear-in-momentum
SOC (Sec. III).

With the help of our quasiclassical transport formalism we
derived the Edelstein effect close to the critical temperature
of a bulk superconductor, recovering the Edelstein result in
a very compact way (Sec. IV) and generalizing it for the
case of an arbitrary linear-in-momentum SOC. We have shown
that the Edelstein effect and its inverse are reciprocal in the
sense of the Onsager relations, both in ballistic and diffusive
superconducting systems: A static supercurrent can induce
a finite magnetization due to the presence of a spin-orbit
coupling, and reciprocally a finite magnetization produces a
finite supercurrent in a bulk system. We have demonstrated
that the linear-response tensor is directly proportional to the
equilibrium spin current tensor Ja

i .
We have also generalized this result to inhomogeneous sys-

tems. In particular we have studied the current-phase relation
of a Josephson junction consisting of two superconductors
coupled via a normal metal with both SOC and spin-splitting
field. We have demonstrated that a supercurrent can flow
even if the phase difference between the S electrodes is zero.
This current is associated with an anomalous phase shift ϕ0.
This result holds for both ballistic (Sec. VI) and diffusive

systems (Sec. V), for arbitrary linear-in-momentum spin-orbit
coupling, and for arbitrary barrier resistance between the
superconductor and the normal metal. For all these situations
we have demonstrated that SU(2) gauge fields are the only
objects of relevance in the phenomenology of the ϕ0 shift, and
in particular we have shown that ϕ0 ∝ Aa

0J
a
i = Fa

0jF
a
ji ; i.e.,

the anomalous phase shift is proportional to the SU(2) electric
and magnetic fields, or equivalently to the spin current tensor.
We thus directly linked the anomalous phase shift in supercon-
ducting systems to the inverse Edelstein effect (also known
as the spin-galvanic effect) extensively studied in normal
systems.
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