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Valley currents and nonlocal resistances of graphene nanostructures with broken inversion
symmetry from the perspective of scattering theory
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Valley currents and nonlocal resistances of graphene nanostructures with broken inversion symmetry are
considered theoretically in the linear response regime. Scattering state wave functions of electrons entering the
nanostructure from the contacts represented by groups of ideal leads are calculated by solving the Lippmann-
Schwinger equation and are projected onto the valley state subspaces to obtain the valley velocity fields and total
valley currents in the nanostructures. In the tunneling regime when the Fermi energy is in the spectral gap around
the Dirac point energy, inversion symmetry breaking is found to result in strong enhancement of the nonlocal
four-terminal Büttiker-Landauer resistance and in valley currents several times stronger than the conventional
electric current. These strong valley currents are the direct result of the injection of electrons from a contact into
the graphene in the tunneling regime. They are chiral and occur near contacts from which electrons are injected
into the nanostructure whether or not a net electric current flows through the contact. It is also pointed out that
enhanced nonlocal resistances in the linear response regime are not a signature of valley currents arising from
the combined effect of the electric field and Berry curvature on the velocities of electrons.
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I. INTRODUCTION

Graphene is a single atomic layer of carbon atoms arranged
on a honeycomb lattice. Since the early work of Wallace [1], it
has been known that the electronic energy bands of graphene
near the Fermi energy take the form of a degenerate pair of
cones, also referred to as “valleys.” The electronic density of
states of graphene vanishes at the Dirac point energy which
coincides with the Fermi energy in pristine graphene. More
recently, it was recognized that the electronic structure of
graphene has topological properties that relate to the Berry
phase and Berry curvature [2]. Specifically, graphene has a
nonzero Berry phase associated with closed paths in reciprocal
space that enclose a valley apex [3]. If the inversion symmetry
of the graphene lattice is broken, for example, by a staggered
potential at the two atoms of the unit cell, then the Berry
curvature �k becomes nonvanishing near the apex of each
valley [4]. In semiclassical theories of electron transport in
graphene, the electron velocity vk is related to the Berry
curvature by [2,5–8]

vk = 1

�

∂εk

∂k
+ k̇ × �k, (1)

where εk is the energy of a Bloch state with wave vector k and,
in the absence of magnetic fields,

�k̇ = qeE, (2)

where qe is the electron charge and E is the electric field.
Since �k points in opposite directions in the two valleys,
Eqs. (1) and (2) imply that, in the presence of an electric
field E, electrons in the two valleys of graphene with
broken inversion symmetry will have differing velocities.
This difference in velocity might, in principle, be used to
separate electrons belonging to the different valleys spatially,
and thus be employed in future valleytronic devices in which
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the valley index of electrons plays a role somewhat analogous
to that of the electron-spin quantum number in spintronic
devices.

Recently, Gorbachev et al. [9] carried out nonlocal four-
terminal resistance measurements on graphene placed on a
hexagonal boron nitride (hBN) substrate, varying the graphene
Fermi level by the application of a gate voltage. They found
a striking enhancement of the measured nonlocal resistance
when the Fermi level passed through Dirac points for samples
with the crystallographic axes of the graphene aligned with
those of the hBN. They interpreted the enhanced nonlocal
resistance as a signature of valley currents in their samples
based on the following intuitive picture [9]: The aligned hBN
substrate breaks the inversion symmetry of graphene [10–13].
This results in nonzero Berry curvatures for states close in
energy to Dirac points. Then, according to Eqs. (1) and (2), an
electric field E that drives electric current through the sample
would result in differing electron velocities in the two graphene
valleys. This would imply a net valley current transverse to the
electric current when the Fermi level is close to a Dirac point
energy [9]. It was further argued [9] that this valley current
flows into the region of the sample between the voltage probes
and induces an electric field there, resulting in a potential
difference between the voltage probes and an enhancement of
the nonlocal resistance, consistent with the experiment [9].

However, valley currents were not observed directly in the
experiment of Gorbachev et al. [9]. Also, the interaction be-
tween the hBN and graphene is expected theoretically [10–13]
to open an energy gap in the electronic density of states of
graphene around the Dirac point energy, where the Fermi
level is located when the observed [9] enhanced nonlocal
resistance has its maximum value. The presence of this gap
is supported by the observation of activated transport by
Gorbachev et al. [9] in some of their samples. Within the gap
the transport mechanism is quantum tunneling, a phenomenon
that has no classical analog. Therefore, the applicability of the
semiclassical Eqs. (1) and (2) to this regime is unclear and a
fully quantum mechanical theory of transport is necessary.
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A rigorous, fully quantum mechanical approach to calcula-
tions of multiterminal transport coefficients of nanostructures
is provided by Büttiker-Landauer theory [14]. However, the
conceptual framework of Büttiker-Landauer theory differs
from that of the topological arguments [9] that have been
outlined above. For example, within Büttiker-Landauer theory,
in the linear response regime (i.e., in the limit where the applied
bias voltages and currents approach zero), the four-terminal
resistances depend only on the set of quantum electron
transmission probabilities {Ti,j } between all pairs of contacts
{i,j} and the reflection probabilities {Ri,i} at contacts {i}
evaluated at the Fermi energy (or, at finite temperatures, at
energies near the Fermi energy). In this limit, the electric field
E that appears in Eq. (2) goes to zero, and therefore in this
limit it has no effect on {Ti,j } and {Ri,i}. Therefore, according
to Büttiker-Landauer theory, the topological mechanism of
valley currents that is embodied in the term k̇ × �k in
Eq. (1) has no effect on four-terminal resistances (or, more
generally, on two-, three-, or other multiterminal resistances,
including nonlocal resistances) in the linear response regime.
Thus it follows from Büttiker-Landauer theory that nonlocal
resistance measurements in the linear response regime cannot
provide experimental evidence of topological effects arising
from the electric field in Eq. (2).

In other words, Büttiker-Landauer theory shows that non-
local (and other) resistances measured in the linear response
regime do not depend on whether electrons travel through
the sample under the influence of an electric field due to
applied bias voltages or simply scatter through the sample
freely in the energy window between the highest and lowest
contact electrochemical potentials without being subjected to
any driving electric field. This means that the effects of the
topological term k̇ × �k in Eq. (1) that arise from the driving
electric field cannot be detected by local or nonlocal resistance
measurements in the linear response regime.

It is therefore of interest to explore theoretically the
multiterminal resistances and valley currents in fully quantum
mechanical models of graphene devices with broken inversion
symmetry from the perspective of Büttiker-Landauer theory.
This is done in the present paper for transport in graphene
nanostructures subjected to staggered potentials in the linear
response regime. It will be shown here that the application
of a staggered potential results in strong enhancement of
the nonlocal four-terminal resistance when the Fermi level is
close to the Dirac point energy, in qualitative agreement with
the experimental findings of Gorbachev et al. [9]. Despite the
studied nanostructures having atomically abrupt boundaries
where electrons scatter strongly and crystal momentum is not
conserved, valley currents, up to several times larger than
the conventional electric current, will be shown to appear
in response to electrochemical potential differences between
the electrodes when the Fermi level is near the Dirac point
of graphene nanostructures with broken inversion symmetry.
These large valley currents are not generated by the topological
mechanism embodied in Eqs. (1) and (2) since the present
calculations are in the linear response limit where the driving
electric field E in Eq. (2) tends to zero and therefore it
does not appear in the Hamiltonian of the system in these
Büttiker-Landauer-theory-based calculations. Because these
strong valley currents occur in a gap in the energy spectrum

of the nanostructure, they require electron tunneling and
consequently their strength decays rapidly as the distance from
a contact that injects electrons into the graphene nanostructure
increases. These valley currents will be seen to be chiral and to
travel along the edge of the graphene that is in contact with an
electrode that injects electrons into the graphene. If electrons
are injected into the graphene nanostructure with broken
inversion symmetry from a scanning tunneling microscope
(STM) tip, the valley currents will be shown to form a vortex
circulating around the location at which the electron injection
occurs. At Fermi energies further from the Dirac point and
outside of the gap in the density of states of the nanostructure,
valley currents are also induced by bias voltages applied to
the nanostructure. However, in this regime they are found
to be weaker, not to require inversion symmetry breaking,
and to extend into regions of the nanostructure that are not
close to the contacts.

The remainder of this paper is organized as follows. In
Sec. II, the model of graphene nanostructures with broken in-
version symmetry coupled to current and voltage contacts that
is studied in this work is presented. Büttiker-Landauer theory
and the Lippmann-Schwinger equation and how they apply to
this model are outlined. Valley currents, valley velocity fields,
and nonlocal resistances are defined and the methodology
used to calculate them is described. The numerical results
obtained from these calculations are presented in Sec. III. The
significance of the present findings is discussed in Sec. IV.

II. MODEL AND FORMALISM

In this paper, the graphene nanostructures will be described
by the standard nearest-neighbor tight-binding Hamiltonian on
a honeycomb lattice,

HGN =
∑

n

εna
†
nan −

∑
〈n,m〉

tnm(a†
nam + H.c.), (3)

where εn is the on-site energy, tnm = t = 2.7 eV defines the
matrix element between pz orbitals on nearest-neighbor atoms,
and the spin index is suppressed. This Hamiltonian with εn =
0 is known to describe the π -band dispersion of graphene
well at low energies [15], and has been used in numerous
studies of electron transport in graphene nanostructures [16].
In order to introduce inversion symmetry breaking into the
model, the simple choice εn = ±� is made so that εn is positive
on one atom of the graphene unit cell and negative on the other.
The amplitude of the symmetry-breaking energy is chosen to
be � = 0.0602 eV, consistent with estimates for graphene on
hBN reported in Ref. [11].

This idealized model has been chosen since the purpose of
this paper is to investigate the fundamental effects of inversion
symmetry breaking in its simplest form on multiterminal
transport coefficients and valley currents within the fully
quantum mechanical Büttiker-Landauer framework. It should
be noted that the graphene on the hBN system is more involved
since the lattice parameters of hBN and graphene have a 2%
mismatch and local configurations with N atoms under the
centers of graphene hexagons and B atoms under C atoms
have the lowest energy [11]. However, these complications
will not be considered here.
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FIG. 1. (Color online) Graphene nanostructure with armchair
edges. The size of the nanostructure in the y direction is 9.838 nm.
Electron stream is injected through current contact 1 and exits through
current contact 2. There is no net electric current entering or leaving
through the voltage contacts 1 and 2; the potential difference between
them is measured. Wavy lines represent ideal semi-infinite 1D leads
connecting graphene C atoms to electron reservoirs. Upper right inset:
The graphene sublattices A (B) = open (filled) circles. Lower right
inset: Hexagonal (solid) and rhombic (dotted) Brillouin zones of
graphene. K and K′ are the two Dirac points.

In Büttiker-Landauer theory [14], at zero temperature and in
the linear response regime, the currents Ii flowing towards the
nanostructure in contacts i are related to the electrochemical
potentials μi of the contacts by

Ii = qe

h

⎛
⎝Niμi −

∑
j

Ti,jμj

⎞
⎠, (4)

where Ni is the number of electronic modes incident on the
nanostructure from contact i and Ti,j is the multichannel
electron transmission probability from contact j to contact i.
Ti,i = Ri,i is the multichannel electron reflection probability
from the nanostructure in contact i.

The coefficients Ti,j that enter the Büttiker-Landauer theory
are calculated in this paper as in many previous theoretical
studies of quantum transport in nanostructures [17–30] with
semiconducting [19–21,23,29], molecular [17–28,30], metal-
lic [17–30], magnetic [23,25,28,29], and carbon-based [28]
constituents. Each contact is represented by a set of ideal semi-
infinite one-dimensional (1D) tight-binding leads (the wavy
lines in Fig. 1) with one orbital per site and nearest-neighbor
hopping. One such ideal lead is attached to each peripheral
site of the graphene nanostructure that is adjacent to a contact.
The Hamiltonian of lead n is

HLn =
∑

r

εnb
†
rbr −

∑
〈r,s〉

t(b†rbs + H.c.), (5)

where t is the same as in HGN [Eq. (3)]. The site energy
εn in Eq. (5) is the same as that of the site of the graphene
nanostructure to which the lead is connected. The coupling
Hamiltonian between lead n and the edge site of the graphene
nanostructure is

Wn = −t(b†nan + H.c.). (6)

The quantum transmission amplitudes for an electron to scatter
at energy E via the nanostructure from one 1D ideal lead
to another are found by solving the Lippmann-Schwinger
equation,

|ψm〉 = ∣∣φm
0

〉 + G0(E)W |ψm〉 , (7)

where |φm
0 〉 is an electron eigenstate of the mth ideal semi-

infinite lead that is decoupled from the graphene nanostructure,
G0(E) is the Green’s function of the decoupled system of the
ideal leads and the graphene nanostructure, and W = ∑

n Wn is
the coupling between the graphene nanostructure and the ideal
leads. |ψm〉 is the scattering eigenstate of the complete coupled
system associated with the incident electron state |φm

0 〉. Then,

Ti,j (E) =
∑
n,m

∣∣t ijnm(E)
∣∣2

vi
n/v

j
m, (8)

where t
ij
nm(E) is the quantum transmission amplitude [obtained

from the scattering state |ψm〉 defined by Eq. (7)] for an
electron at energy E to scatter via the graphene nanostructure
from ideal 1D lead m of contact j to ideal 1D lead n of contact
i. The sum is over ideal leads n (m) in contact i (j ). v

i(j )
n(m) is

the electron velocity in ideal 1D lead n (m) of contact i (j ) at
energy E; vi

n = 1
�

∂ε
∂k

where ε are the energy eigenvalues of the
Hamiltonian HLn [Eq. (5)] of an infinite ideal 1D tight-binding
chain.

Having evaluated Ti,j at the Fermi energy in this way, the
Büttiker equations (4) are solved in the linear response regime
to find the nonlocal four-terminal resistance,

RNL = �V/I, (9)

where I is the current passing through the current contacts and
�V = �μ/qe is the potential difference between the voltage
contacts; see the contacts in Fig. 1.

The valley currents induced in the nanostructure in response
to to the electrochemical potential differences between the
various contacts in the linear response regime are estimated as
follows: The scattering state |ψm〉 of electrons injected into the
nanostructure from ideal 1D lead m is calculated at the Fermi
energy for every lead m by solving the Lippmann-Schwinger
equation (7). Then the scattering state |ψm〉 is projected onto
the subspaces of Bloch states of graphene that belong to the K
and K′ valleys. This yields the projected valley states, |ψm

K 〉 and
|ψm

K ′ 〉, respectively. For this purpose, a Bloch state is assigned
to the K (K′) valley if its wave vector lies within the upper
(lower) half of the rhombic Brillouin zone defined by the dotted
boundary in the lower right inset of Fig. 1.

The ξ component of the velocity operator for electrons
within the graphene nanostructure is

vξ = 1

i�
[ξ,HGN], (10)

where ξ = ∑
p ξpa

†
pap, and ξp is the ξ coordinate of atomic

site p of the graphene nanostructure. The expectation value of
vξ in the graphene nanostructure in the state |ψm〉 is then

〈ψm|vξ |ψm〉 = it

2�

∑
k,l

(ξk − ξl)
(
ψm∗

k ψm
l − ψm

k ψm∗
l

)
, (11)
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where k and l are nearest-neighbor sites of the graphene
nanostructure, ξl = xl or yl , ψm

l = 〈Zl|ψm〉, and |Zl〉 is the
2pz orbital of the carbon atom at site l.

For a graphene nanostructure with multiple contacts i

each at its own electrochemical potential μi , the electron
transport through the device is governed by a weighted average
over the velocities associated with the scattering states injected
by the various ideal leads mi that make up all of the contacts
i. The relevant weighted average will be defined here as

vξ =
∑
m,i

〈ψmi |vξ |ψmi 〉�μi

/ ∑
m,i

�μi, (12)

where �μi = μi − μmin, and μmin is the electrochemical
potential of the contact with the lowest electrochemical
potential.

The weighted valley velocities vKξ and vK ′ξ for electrons
in valleys K and K′ are defined similarly by replacing |ψm〉
and |ψmi 〉 in Eqs. (11) and (12) by their projections |ψm

K 〉
and |ψmi

K 〉, and |ψm
K ′ 〉 and |ψmi

K ′ 〉 onto the valleys K and K′,
respectively. The weighted valley velocity is then defined as

vval
ξ = (vKξ − vK ′ξ ). (13)

Equation (11) expresses the expectation value of the
electron velocity as a sum of terms evaluated at pairs (k,l)
of nearest-neighbor atoms of the graphene nanostructure.
This suggests that each such term be interpreted as the
value of the velocity field for the scattering state |ψm〉 at
the location of each nearest-neighbor pair. Assigning this
value of the velocity field vF

ξ arbitrarily to the midpoint
(x,y) = [(xk + xl)/2,(yk + yl)/2] of the atomic pair yields

〈ψm|vF
ξ (x,y)|ψm〉 = it

�
(ξk − ξl)

(
ψm∗

k ψm
l − ψm

k ψm∗
l

)
. (14)

The corresponding velocity field weighted by the contributions
of the states contributing to transport through the nanostructure
is then, as in Eq. (12), given by

vF
ξ (x,y) =

∑
m,i

〈ψmi |vF
ξ (x,y)|ψmi 〉�μi

/ ∑
m,i

�μi. (15)

Obtaining the weighted velocity fields vF
Kξ and vF

K ′ξ for the
valleys K and K′ similarly by replacing |ψm〉 by the projections
|ψm

K 〉 and |ψm
K ′ 〉, the valley velocity field is defined as

vval F
ξ (x,y) = vF

Kξ (x,y) − vF
K ′ξ (x,y). (16)

III. RESULTS

The results of Büttiker-Landauer calculations of the non-
local four-terminal resistance RNL defined by Eq. (9) for the
structure in Fig. 1 at zero temperature in the linear response
regime are shown in Fig. 2(a) as a function of the Fermi energy
EF. The Fermi level crosses the Dirac point energy at EF = 0.
Near the Dirac point, RNL for the model with � = 0.0602 eV
(orange line) exceeds RNL for � = 0 (black line) by a factor of
∼2.5. Thus, within Büttiker-Landauer theory, the breaking of
inversion symmetry of the graphene unit cell results in strong
enhancement of the nonlocal resistance near the Dirac point.
However, as can also be seen in Fig. 2(a), well away from the
Dirac point energy the inversion symmetry breaking has little
effect on the nonlocal resistance.

FIG. 2. (Color online) Calculated linear response properties vs
Fermi energy of the structure in Fig. 1 at zero temperature. Current
I flows through the current contacts with no net current through
either voltage contact. Results for symmetry-breaking parameter
� = 0.0602 (0.0) eV are orange (black). (a) Nonlocal resistance
RNL [Eq. (9)]. (b) Normalized valley velocities vval

x /vy and vval
y /vy

[Eqs. (12) and (13)] are solid and dashed lines, respectively.

Since the net electron flow in the structure in Fig. 1 is from
current contact 1 to current contact 2 (i.e., in the y direction),
the weighted velocity vector �v [Eq. (12)] is expected to point
in the y direction. Accordingly, vx in Eq. (12) is found to
be zero within numerical error in the present computations.
The computed normalized, weighted valley velocities vval

x /vy

and vval
y /vy are shown in Fig. 2(b). They are found to be

nonzero except at isolated values of the Fermi energy, both
in the presence and absence of symmetry breaking. Note
that vval

ξ /vy = I val
ξ /I , where I val

ξ is the ξ component of the
valley current and I is the total electric current through
the nanostructure. The most striking feature of Fig. 2(b) is the
strong peak near the Dirac point (EF = 0) of vval

x /vy = I val
x /I

for broken inversion symmetry (the solid orange curve). At
its maximum, the valley current in the x direction exceeds the
total conventional electric current through the nanostructure
by a factor of more than 4. This peak of the valley current is
in the gap (of width 0.264 eV) in the energy spectrum of the
broken symmetry nanostructure around the Dirac point. By
contrast, the x component of the valley current in the absence
of symmetry breaking (solid black curve) and the y component
of the valley current with (orange dashed curve) and without
(black dashed curve) symmetry breaking all vanish at the Dirac
point and are relatively weak elsewhere. As can also be seen
in Fig. 2(b), for EF well away from the Dirac point energy,
both vval

x /vy and vval
y /vy are insensitive to the breaking of the

inversion symmetry of the graphene.
The full widths of the central peaks of both the nonlocal

resistance and the normalized valley velocity vval
x /vy for the

system with broken inversion symmetry [the orange curves
in Figs. 2(a) and 2(b), respectively] are close in size to the
0.264 eV gap in the energy spectrum of the broken-symmetry
nanostructure. Because the value of the symmetry-breaking
parameter is relatively small (� = 0.0602 eV), the size of the
spectral gap is determined mainly by the quantum confinement
of the electrons in the graphene nanostructure and the armchair
character of the nanostructure’s edges [16]. Thus for the same
nanostructure but with the symmetry breaking turned off (� =
0), the width of the energy gap has a similar value, 0.235 eV.
For this reason, the main nonlocal resistance peak in Fig. 2(a)
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FIG. 3. (Color online) Valley velocity field [Eq. (16)] in the lower part of the structure in Fig. 1 for electron flow from current contact 1 to
current contact 2 (shown in Fig. 1). For electron flow in this direction, the valley velocity field is much stronger in the vicinity of the contacts
shown here than elsewhere in the graphene nanostructure. � = 0.0602 eV. EF = 0.

has almost the same width for � = 0 (black curve) as for
� = 0.0602 eV (orange curve).

The valley velocity field �v val F(x,y) is shown in Fig. 3 for the
lower part of the nanostructure in Fig. 1. Inversion symmetry
is broken and the Fermi level is at the Dirac point. The valley
velocity is large near current contact 1 and voltage contact
1. Its magnitude initially increases, but then decreases rapidly
with increasing distance from the contacts. The valley velocity
is clearly chiral, pointing mainly from left to right near the
graphene boundary shown (its overall direction reverses if the
sign of �, the symmetry-breaking parameter, is changed), but
it does not extend along the boundary much beyond where a
contact ends.

In Fig. 3, the electron flow enters the graphene nanostruc-
ture through current contact 1 and exits through current contact
2 that is located outside of the region shown in Fig. 3; see Fig. 1
for its location. If the direction of the electron flow through
the graphene nanostructure is reversed, so that electrons flow
instead from current contact 2 to current contact 1 (in Fig. 1),
then the valley velocity field becomes strongest near current
contact 2 and voltage contact 2, i.e., near the opposite edge of
the sample to that where the valley velocity field is strongest
in Fig. 3. For electron flow from current contact 2 to current
contact 1, the direction of the valley velocity field is from
right to left, i.e., its direction is opposite to that in Fig. 3,
consistent with the chiral character of the valley current.

The chiral nature of the valley current is further clarified
in Fig. 4. Figure 4(a) shows the strongest part of the valley
velocity field associated with electron injection into a graphene
nanostructure with broken inversion symmetry via a single
interior carbon atom (colored orange) of the nanostructure, as

FIG. 4. (Color online) (a) Valley velocity field [Eq. (16)] and
(b) velocity field [Eq. (15)] for electrons injected into a graphene
nanostructure with broken inversion symmetry via a single carbon
atom (orange). Only a small part of the graphene nanostructure is
shown. � = 0.0602 eV. EF = 0.

in an idealized STM setup. The valley velocity field forms a
vortex circulating clockwise (counterclockwise if the sign of
� is changed) around the injection point, whereas the electron
flux travels outwards overall from the injection point, as shown
in Fig. 4(b).

In the vicinity of a contact, the valley current is due almost
entirely to electrons injected into the nanostructure from that
contact. This is true even for the voltage contact (Fig. 3)
through which no net electric current flows since the zero net
current is due to equal fluxes of electrons entering and leaving
the contact. The valley current of electrons leaving the contact
is much larger than that of those entering the contact. Thus a
contact through which no net electric current flows can be used
to create a valley current into a graphene nanostructure with
broken inversion symmetry, i.e., it can, in principle, generate
a pure valley current.

The results presented above have been for a graphene
nanostructure with only armchair edges. Similar calculations
for a rectangular structure of similar size (dimensions 9.656 ×
9.838 nm) and similar contacts, but with two zigzag and two
armchair edges, were carried out and yielded qualitatively
similar results, but the effects of inversion symmetry breaking
were found to be much stronger in this case: The nonlocal
resistance for � = 0.0602 eV was found to exceed that for
� = 0 by more that a factor of 100 for EF near the Dirac
point energy. Also, at its maximum, the valley current in
the x direction was found to exceed the total conventional
electric current through the nanostructure by a factor of
more than 18. These large numbers are attributable to the
flat electronic dispersion at graphene zigzag edges [31] in
tight-binding models described by the noninteracting electron
Hamiltonian (3). However, theoretical studies have suggested
that electron-electron interactions may give rise to magnetism
at zigzag edges [32,33]. The potential implications of this for
valley currents and nonlocal resistances are beyond the scope
of the present paper.

Different approaches for realizing valley currents in
graphene have also been proposed based on electric fields
acting on electrons in the presence of Berry curvature [4],
graphene point contacts with zigzag edges [34], electron
scattering at the boundary between monolayer and bi-
layer graphene [35], electron scattering at a line defect in
graphene [36], illumination of monolayer [37] or bilayer [38]
graphene by circularly polarized radiation, optical injection
of a pure valley current in graphene [39], and gate-induced
valley filtering in bilayer graphene [40]. Strong valley
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current polarizations, comparable to those obtained with
the present approach for the structure having both zigzag
and armchair edges, have been estimated for some of these
approaches [34,36,38–40], albeit for models of infinite two-
dimensional graphene or infinite graphene ribbons. Also,
unlike in the present work, the spatial distribution of valley
currents was not reported in the previous studies [4,34–38,40],
and the effects of boundaries between the graphene and source
and drain electrodes were not taken into account.

IV. CONCLUSIONS

The present work suggests an approach for creating valley
currents in graphene with broken inversion symmetry that
differs fundamentally from previous proposals [2,4–9,34–41].
As has been explained above, it follows from Büttiker-
Landauer theory that in the linear response regime considered
here, the transport properties of nanostructures are determined
by electron scattering states calculated in the limit where the
driving electric field has been sent to zero. Consequently,
in the linear response regime, the acceleration of electrons
by the driving electric field has no effect on multiterminal
resistance coefficients or on �I val/I , i.e., the ratio of the valley
current �I val and the conventional electric current I passing
through the nanostructure. Thus the valley currents discussed
here are not due to electron acceleration in an electric field
in the presence of Berry curvature, but instead are a direct
consequence of nonadiabatic injection of electrons from a
contact into the graphene. They are strongest for graphene
with broken inversion symmetry in the tunneling regime when
the Fermi energy is in the spectral energy gap around the Dirac

point. Consequently, in this regime, these valley currents are
strongest close to the graphene/contact boundary. They are
chiral and can be very strong close to the Dirac point, i.e.,
several times larger than the conventional electric current even
after averaging over the entire graphene nanostructure. They
can appear even at a voltage contact through which no net
conventional electric current flows, provided that electrons
are being emitted (and absorbed) by that contact. They are
predicted to be realized whenever electrons cross into the
graphene at an abrupt boundary (which may be regular or
rough on the atomic scale) between a contact and graphene
with broken inversion symmetry at energies in the spectral gap
around the Dirac point. At Fermi energies well away from the
Dirac point (i.e., outside of the gap in the density of states
of the nanostructure), valley currents can still be induced by
bias voltages applied to the nanostructure, but in this regime
they are considerably weaker, are not sensitive to whether
or not the inversion symmetry of the graphene is broken,
and are not confined to regions of the nanostructure that are
close to contacts. The fact that valley currents can be induced
in graphene nanostructures even in the absence of inversion
symmetry breaking has been recognized previously [34], and
is a consequence of the fact that the Bloch state wave vector
need not be a conserved quantity in nanostructures whose
translational crystal symmetries are broken due to the presence
of boundaries.
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