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Influence of surface electronic structure on quantum friction between Ag(111) slabs
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The theoretical formulation developed in Phys. Rev. B 83, 205424 (2011) is applied to explore how surface
electronic structure modifies the noncontact friction force between two silver slabs. We find that the friction
shows three distinct regimes for different thicknesses. For very thin slabs N = 1-7 monolayers (ML) quantum
friction vs velocity shows oscillations which are due to the quantum size effect. At about 10M L friction rapidly
increases because the surface state energies fall below Er, which opens a new intraband electron-hole excitation
channel. And for N > 15 the friction is strongly enhanced due to the excitation of acoustic surface plasmons.
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I. INTRODUCTION

A charged or neutral object moving close to a dielectric
surface, e.g., parallel to a metallic slab, can excite electronic
(or other phonon) modes at the surface. This can cause it to lose
kinetic energy and slow down if no external driving force acts
on the object. This and related phenomena, known as energy
loss or stopping power, were extensively studied by many
authors [1-6]. Moreover, in the last decade much attention has
been paid to a similar dissipative phenomenon, the so-called
quantum or van der Waals friction, i.e., frictional forces
between two dielectrics without direct contact, moving with
parallel velocity, at zero or finite temperature. This is not only
an intriguing theoretical problem but also a potentially relevant
phenomenon, e.g., affecting the behavior of micromechanical
devices (MEMS) [7-13] of nanometer dimensions. In this
situation an obvious question can be posed: Is this process
physically feasible, since translation symmetry is not broken
and dielectrics are not in contact, and if it is, which mechanism
is responsible for friction? A number of authors approached
this question [14—19] with different and often contradictory
conclusions, even questioning the possibility of quantum
friction [20] as formulated by Pendry [16], in spite of several
extensive studies, e.g., by Persson and Volokitin [17,18,21—
23]. Another group of researchers investigated the impact of
a fluctuating electromagnetic field on attractive conservative
forces and heating rate, responsible for the dissipative force,
between a thick plate or a particle moving parallel to the
dielectric surface [24]. This research also resulted in some
disagreement with the previously cited work. Another study
of Casimir friction forces between dielectric plates moving
parallel to each other [25] provided formally the same
expressions as in the previous investigations.

In order to elucidate these intriguing questions, in a previous
paper [26] we have proposed an alternative formulation of
quantum friction (in the 7 = 0 and nonretarded limit) based
on the diagramatic perturbation expansion. The idea was to
evaluate the coupling between Doppler-shifted charge density
fluctuations in the slabs in relative parallel motion, which are
described by nonlocal surface response functions, derived,
e.g., within the random-phase approximation (RPA). The
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resulting expressions look formally the same as those in
Refs. [16-18,21-23] obtained using matching procedures, but
now surface response functions R;(Q,w) are derived from
nonlocal response functions of the slabs R;(Q,w,z,z’). This
enables us to take into account the details of the surface
electronic structure, including realistic surface density profiles,
and excitations in the slabs.

The main objective of this paper is to apply formula-
tion developed in Ref. [26] to investigate how microscopic
electronic structure, such as a series of intraband excitation
channels which are the consequence of quantum size effects
or acoustic surface plasmons (APS) (which are a consequence
of the existence of surface states) influence noncontact friction
force between two silver slabs in relative motion. We showed
that in some limit semilocal or even fully nonlocal (RPA)
descriptions of the surface response in a jellium model are not
sufficient to describe quantum friction. For example, in noble
metal surfaces the main contribution to quantum friction comes
from excitation of ASP. So even if R;(Q,w) are calculated fully
nonlocally if the model does not include ASP, the friction force
will be strongly underestimated. In Ref. [27] the influence of
surface electronic structure on the Casimir force between silver
slabs was investigated. It was shown that the changes from the
jellium to the Chulkov model enhance Casimir energy, but the
effects is much less visible than in the case of the friction force.

In this paper we find that the friction force vs relative
velocity for ultrathin films, up to 10M L thicknesses, shows
oscillations with the maxima that can be related to the Fermi
velocities in the quantum well states, for thicker slabs at
some point the intraband transitions within the surface states
suddenly enhance the friction force, and finally for thick slabs
or semi-infinite metals the main contribution to friction force
comes from the excitation of acoustic surface plasmons. We
conclude that the details of the electronic excitation spectra
and intensities, calculated for slabs of different thicknesses
in the jellium [28] and Chulkov [29] models, are crucial for
the correct interpretation of different features appearing in the
friction force.

In Sec. II we briefly present the derivation of the energy
dissipation rate and friction force, based on the nonlocal
dynamical response functions of the slabs [26]. We describe
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the system consisting of two sliver slabs of the same thickness,
separated by the distance d. The wave functions and response
functions calculation are briefly discussed.

In Sec. III we present the electronic band structure and
electronic excitation spectra calculated in the two models:
jellium, with the density corresponding to bulk silver, and
the Chulkov model, which includes lattice structure in the
perpendicular direction. The electronic excitation intensities
are shown, in both models, for slabs with different thicknesses
modelled on the results of Refs. [28—30]. We apply these results
to evaluate and discuss dissipation and friction between two
silver slabs moving with parallel relative velocity. We observe
three different regimes for the friction force with the increasing
slab thicknesses: quantum size effect regime, quantum friction
anomaly, and the acoustic surface plasmon regime. We explain
this interesting behavior by referring to the changes in the
electronic structure of the slabs with varying thicknesses.

In Sec. IV we present the conclusions.

II. THEORETICAL FORMULATION

Quantum friction between two nonoverlapping metallic
or dielectric slabs has been extensively studied by using
various approaches, in the retarded and nonretarded limits,
and for zero and finite temperature [16—-18,21-23]. Also the
surface electronic response was treated locally but also by
using approximate response functions which include nonlocal
corrections, e.g., electron-hole pair excitations [31,32]. An
alternative formulation developed in Ref. [26] is restricted
to T = 0 and the nonretarded limit; however, it is expressed
in terms of surface response and correlation functions which
reflect the quantum mechanical nature of friction force more
directly. Moreover, this formulation is easily adapted to
different levels of accuracy; e.g., surface response function
can be calculated in local approximation, but it can also be
calculated by using ab initio methods which include realistic
surface orbital and band structure [33]. Here we will briefly
present some crucial steps in this alternative formulation of
quantum friction.

The formulation is restricted to zero temperture (7 = 0) and
nonretarded (¢ — oo) limits. 7 = 0 limit is justified because
here we analyze how the electronic excitations contribute
to quantum friction. Electronic excitations responsible for
phenomena described below (intraband electron-hole exci-
tations) are in the 10-100 meV energy range and contribute
to friction for the relative velocities v < vy, where the vp
is the characteristic Fermi velocity, e.g., in the noble metals
considered here. Such electronic modes are still rigid, e.g., at
room temperature, and thermal fluctuations can be neglected.
However, optical or acoustic phonons which contribute to the
quantum friction at much lower velocities v < vr can be
multiply populated at room temperature and their inclusion
causes that quantum friction becomes temperature dependent.
Nonretarded limit is justified for small separations between
the slabs (d ~ L) when the evanescent modes (w < Qc)
dominantly contribute to the friction force. However, for
large separations (d > é) only the radiative modes (v > Qc)
contribute to quantum friction and the nonretarded limit
becomes inadequate. Here we shall restrict ourselves to small
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FIG. 1. (Color online) Process in which charge density fluctua-
tion is created in the slab 1 and induces a potential in slab 2.

separations (d = 1.5 nm) when the effects of retardation can
be safely neglected.

The geometry of the system is schematically shown in
Fig. 1, where slabs 1 and 2 represent metallic slabs with
nonoverlapping electronic densities and d is the distance
between their jellium edges. Suppose that the slab 1 is moving
parallel to slab 2 with relative velocity v and that a charge
density fluctuation is spontaneously created in slab 1 at the
moment #;, as sketched in Fig. 1.

Propagating in time between #; and ¢ it induces charge
density fluctuations in the right slab with which it can subse-
quently interact. In such a process slab 1 can be considered
as the source which is transferring energy to slab 2, and in
analogy with Egs. (3) and (4) of Ref. [26], the energy loss rate
operator in this process can be written as

o0
P = /dr/drlf dt, p(r,H)V(r,r3)
—00
d

X ERz(l's,I‘z,t,l1)V(l‘2,l’1)/5(l'1,tl), (D

where R, is the retarded response function of the right slab
and p(r,t) and p(r,t) are density operators which represent
quantum mechanical charge density fluctuations created and
annihilated at points (ry,?;) and (r,t), respectively. Energy
transfer rate from slabs 1 to 2 can be obtained by taking the
ground-state matrix element of Eq. (1):

Pia = (Pia(1)) =/dl'/dl‘1/ dt; Si(x,ry,t,t)V(r,r3)
—00

d
X ERZ(r3’r2vtatl)V(r27rl)a (2)

where
S1(r,ry,t,0) = (p(r,0)p(r, 1)) + (p(ry,1)p,0))  (3)

is the correlation function of slab 1 which represents real
charge density fluctuations. We note that in the inertial system
of the right slab, the charge density in slab 1, apart from the
fluctuations, has an additional parallel component of motion,
so all parallel coordinates in slab 1 have to be transformed as

p—pL—>p—p—VE—1) (€]
Explicitly, the correlation function (3) then becomes
Sl(rvrlrt’tl) = Sl(Z’Zlvp - Vt’pl - that’tl)' (5)

After inserting Eq. (5) into Eq. (2) and the Fourier transforma-
tion in parallel coordinates p and in time ¢ we get the formula
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for energy transfer rate per unit area from slab 1 to slab 2:

P = —lh/ dZ/ dZI/(zﬂ)Z/ e

x ' 81(Q,lwl,z,21)V(Q,z,23)
X Ry(Q,0',23,22)V(Q,22,21). (6)
After using the definitions
V(Q,z,23) = vge 2@
V(Q.22,21) = vge @7, @)

2me?

0

the definition of the surface correlation

where vy =
function

51(Q, o)) = vo f dzdz1e2°51(Q,|wl,z,21)e?",  (8)

and the surface response function [34]

Ra(Q.0) = vg / dzrdzse 07 RyQ,20,20e %%, (9)

Eq. (6) can be written as

P2 = _’hf (27)? /

x o Ry (Q, ). (10)

e22P5,(Q,|wl)

Using the connection between the surface correlation function
S and the imaginary part of the surface response function R

$1(Q.|w|) = sgnwlmR; (Q,w) (11)
Eq. (10) can be written as

L dQ [ do
P12 = —ih W [oo Ee a)/sgna)
x ImR(Q,w)R>(Q, ). (12)

Finally, as the imaginary part of surface excitation propagator
(22) is an odd function of frequency, P;, given by Eq. (12) is
a real quantity

d d
Ph=nh Q 2Qdf @ w'sgnw
(271)2 27

x ImR(Q,w)ImR,(Q,w). (13)

We see that if the charge fluctuation is created in slab 1 with
the energy w it can create excitations in slab 2 with the energy
o' = w + vQ. This is expected, namely, w is the energy in the
inertial system of slab 1, but in the inertial system of the right
slab it is Doppler shifted by vQ.

In Eq. (13) we have calculated the energy transferred from
slab 1 to slab 2. However, part of this energy belongs to the
quantum mechanical (or thermal, at T # 0) fluctuations, the
energy which fluctuates between the slabs. So a certain amount
of energy transferred to slab 2 will be reversibly returned
back to slab 1. We can calculate this energy by going into
the inertial system of slab 1 and forget for the moment slab 2.
Sitting in the inertial system of slab 1 we know that it is in the
quantum mechanical (and thermodynamical) equilibrium with
the environment (in this case with the slab 2). So, the energy
just fluctuates between the slab 1 and the environment; i.e.,
all energy given to the environment (slab 2) will be reversibly
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returned to slab 1. The energy given to the environment (slab
2) can be calculated using exactly the same ideas as before,
except that now the slab 2 is moving with the velocity —v and
the slab 1 is at rest. Therefore, following the same procedure
(1-13) with the response functions of the slab 2 transformed as

Ry(r,ry,t,01) = Ro(z,z1,p + VI, 0y +vi1,t,11)  (14)

gives the energy that is reversibly given to the slab 2:

P/ =h/ 4Q _ZQd/oo d—wa)sgna)
2 (m)? oo 27

x ImR(Q,w)ImR,(Q,w"). 15)

This means that the energy which is irreversibly given to the
slab 2 or dissipated energy can be obtained by subtracting the
reversible contribution P;, from the total energy transfer Pj:

iss ’ dQ _
Pld =P12_P12:hv/(2n)2Qe 20d

* dw
X [ —sgnw ImR(Q,w)ImR,(Q,0).  (16)
oo 2TC
Expression (16) represents the dissipated energy if the charge
fluctuation is spontaneously created in the slab 1. However,
the charge fluctuation can also be spontaneously created in the
slab 2, and then the corresponding dissipated energy can be
obtained from Eq. (16) with 1 <> 2 and v <> —v. Therefore
the total dissipated energy can be written as

—20d

__ pdiss diss __
Py = P 4 P = hv/ o

x /00 ;Z—: sgn(a))[Ile(Q,a))ImRz(Q,w,)

+ImR(Q,0")ImR>(Q,w)]. a7

Changing the arguments @ + vQ — w and Q — —Q in the
second term of Eq. (20) the frequency integration becomes

*®d
hvQ / %[sgn(w) —sgn(w + vQ)]
X ImR1(Q,w)ImR,(Q,w + vQ)

Qv
= 2FLVQ/ z—:Ile(Q,w)ImRZ(Q,VQ —w), (18)
0

which leads to a more compact expression for the dissipated

energy,
dQ X dw

P iss — 2h —2Qd / —_—

diss v/ (271)26 Q 0 2w

x ImR1(Q,w)ImR,(Q,vQ — w). (19)

After inclusion of the higher order terms (multiple processes
where the charge density fluctuations in slabs 1 and 2
successively induce each other several times before the energy
is being dissipated, as described in detail in Ref. [26]) the
dissipated energy can be written as

dQ - oy [ do
Pdiss = 2hV/ WQE /0 E X

Ile (va) ImRZ(QaVQ - C())
X .
|1 — e224ImR, (Q, ) ImR,(Q,vQ — w)|?

(20)
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This expression formally agrees with the quantum friction
formulas developed in Refs. [16-20,22,23] except that in
these formulas instead of surface excitation propagators
R; enter reflectivity amplitudes (reflection coefficients)
R; and R! for s and p polarized electromagnetic fields.
However, considering that in the nonretarded limit (¢ — o0)
the reflection coefficient R"; =0, and Rj) becomes equal to
surface response functions R;, as briefly derived in Sec. IV of
Ref. [35], this expression becomes exactly equal to quantum
friction formulas presented in other publications.

In our case, for larger slab separations d we shall be
able to neglect these higher order contributions, since, e.g.,
in the n-th order, they decrease as (e22?)". If we use the
expression which relates the friction force and dissipated
power P = —Fv, and suppose that v = vx, the friction force
formula becomes

h ) 0 vQy
F, = —3/ QdeX/ do, e_ZQd/ dw
b4 0 0

X Im[R(Q,@)| Im[R>(Q,v Q0 — w)]. ey

If we use the connection between the surface spectral function
and the imaginary part of the surface response function (22),
which is for v > 0 given by

$i(Q.w) =Im[R;(Q.w)]; i = 1,2, (22)

the functions in the numerator of Eq. (21) can be replaced by
the surface spectral functions S;; i = 1,2.

In the following we shall consider two silver slabs with
the density defined by the bulk silver Fermi velocity vp =
1.4 x 10° m/s, separated by the distance d = 5 nm. The slab
thicknesses are given by the number N of monolayers, with
1 <N <10 and N = 17, with each monolayer thickness
corresponding to 4.434 a.u., which is the bulk silver (111)
atomic plane separation. We shall closely follow the methods
of Ref. [30] and obtain similar results.

The surface response functions R;(Q,w); i = 1,2 contain
the intensities of all (collective and single-particle) electronic
excitations in the metallic surfaces. Calculation of the func-
tions R;(Q,w) is described in detail in Refs. [28,36,37], and
here we shall only describe it briefly. First we suppose that
the metal slabs are translationally invariant in the direction
parallel to the surface, i.e., that the electron wave functions

in that direction are plane waves with energies n;:l, and
K = {K,,K,} is a two-dimensional (2D) wave vector. In
the z direction where the symmetry is broken, the wave
functions are calculated by using two different models. In
the first model the system is described by Kohn-Sham wave
functions ¢, (z) and energy levels E, which are self-consistent
solutions of the one-dimensional Kohn-Sham equation for the
Jjellium slabs of various thicknesses. The positive background
density is defined by Wigner-Seitz radius r; [38]. For the
exchange and correlation potential we use the Local Density
Approximation (LDA) Wigner formula. In the second model
the wave functions ¢,(z) and energy levels E, are solutions
of the Chulkov model potential, as described in Ref. [29].
From Kohn-Sham or Chulkov wave functions ¢,(z) and
energy levels E, we calculate the Fourier transforms of
noninteracting electron response functions X,-O(Q,a),z,z’); i=
1,2. Therefore, intraband n = m contributions to Xl.o’s are
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similar to quasi-2D Lindhard functions, but we also include the
interband n # m contributions. Screened response functions
xi(Q,w,z,7'); i = 1,2 are calculated from Xl.o’s by solving
matrix equations x; = x, + xV xi, where, at the RPA level of
approximation, V is the 2D Fourier transform of bare Coulomb
interaction V(Q) = %’e‘QV‘Z". Surface response functions
R;(Q,w) represent induced dynamically screened Coulomb
interaction at the metallic surface, which can be obtained from
the screened response functions y;(Q,w,z,7’) as

1 .
Ri(Q,0) = EWi’"d(Q,w,z =07 =0)

0
= UQ/ dzidzy 29T x,(0,0,21,22);
—L;

i=1,2.

From Eq. (21) it is obvious that the contributions to the friction
force come from the overlap integral between two Doppler-
shifted spectral functions S;(Q,w) and $,(Q,Q0,v — w). As
the velocity v increases the overlap integral and the friction
force increase. However, the metallic slab surface spectral
functions contain a variety of different features, such as intra-
or interband electron hole transitions, surface and/or acoustic
plasmons, etc., which then lead to some interesting features in
the friction force, as discussed in detail in Sec. III.

III. RESULTS AND DISCUSSION

In order to have better insight on how the metallic electron
structure influences the friction forces we shall first briefly
present some important details of the electronic band structure
and excitation spectra. Figure 2 shows quantized electronic
bands for N = 7 with jellium results on the left and Chulkov
model results on the right side. In the latter case we observe
the appearance of two (even-odd) quantum-well states (shown
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FIG. 2. (Color online) Quantized electronic bands in a 7ML-
thick silver slab. Left (right) side presents bands obtained in the
jellium (Chulkov) model. Red (gray) lines highlight the even and
odd energy bands evolving, upon the slab thickness increase, into
a partially occupied s-p surface state of the semi-infinite Ag(111)
crystal.
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FIG. 3. (Color online) Energies at K = 0 of even surface state
(black dots) and odd surface state (red [gray] squares) in the Chulkov
model and topmost occupied state in the jellium model (blue [gray]

diamonds) as functions of metallic slab thickness.

by the red [gray] lines) evolving into the s-p surface state upon
increase of the slab thickness.

Figure 3 presents the energies of even (black dots) and odd
surface states (red [gray] squares) as functions of metallic slab
thickness. We can notice how the energy difference between
even and odd surface states decreases as the slab thickness
increases. We can also notice how the odd surface state,
approaching the Fermi level Er and for N = 9-10, becomes
partially occupied. At the same time energy of the highest
occupied state in the jellium model, shown by blue (gray)
diamonds, becomes unoccupied. We shall see that this effect
will be responsible for an unusual behavior of quantum friction
at N = 10, when friction force in the jellium model drops down
and in the Chulkov model becomes enhanced.

Calculated electron wave functions in these two models can
be used to obtain excitation spectra of individual slabs. The
overlap between these spectra, as formulated in Eq. (21), then
gives the friction force. As an example, the right-hand graph
in Fig. 4(a) shows the low-energy spectra of a 8 M L-thick
silver slab in the jellium model, and the left-hand graph
shows its mirror image. In the right-hand graph we see
a series of peaks corresponding to intraband electron-hole
transitions within discrete bands shown in Fig. 2. As the
velocity increases, the left-hand graphs translate to the right,
as shown in Figs. 4(b), 4(c), and 4(d), and the peaks start to
overlap. This leads to the oscillatory behavior in the friction
force, as will be discussed in detail in Sec. Il A. The origin
of this oscillatory behavior in the friction force can also be
easily understood by analyzing the intensities of the low-lying
electronic excitations in metallic slabs, reported in Fig. 5.
Equation (21) shows that only the overlap integral of the
two spectra contributes to the friction force. In terms of the
spectra shown in Fig. 5, this means that each spectrum should
be first reflected about the momentum axis and then, as the
velocity increases, rotated in a clockwise direction. Only the
cross section between the original and reflected-rotated spectra
contributes to the friction force. By observing the spectral
intensities we notice the bright linearly dispersive features

PHYSICAL REVIEW B 92, 125424 (2015)
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FIG. 4. Spectral function overlap for different relative velocities;
(@) v=0, (b) v=02vp, (c) v=0.4vf, and (d) v = 0.6vp. Film
thicknesses, in silver atomic monolayer units, are L; = L, = 8ML,
which corresponds to 1.5 nm. Parallel wave vector is Q = 0.02
a.u. Series of peaks correspond to intraband electron-hole transitions
within discrete bands.

which correspond to intraband electron-hole transitions within
discrete bands (which give rise to the peaks in Fig. 4). Exactly
for the velocity v at which these bright lines overlap, the
friction force shows a maximum.

In Figs. 6(a) and 6(b) we show electronic excitation
intensities for different slab thicknesses (7,8 and 9ML)
in both jellium and Chulkov models, respectively. Similar
spectral intensities were also presented in Ref. [30]. Jellium
spectra show series of linearly dispersive bright features
which correspond to intraband electron-hole transitions within
discrete bands shown in Fig. 2. However, in the Chulkov
model we can also notice almost horizontally dispersing
bright features which correspond to interband electron-hole
transitions between surface states. It is important to notice how
the lowest intraband branch disappears for the 10M L-thick
jellium slab. Exactly this effect will be responsible for a rapid
friction force reduction at this thickness, as will be described
in detail in Sec. III B.

A. Quantum size effect

In this section we shall use the previous conclusions to
analyze how the friction force between two metallic layers
of different thicknesses depends on their relative velocity. We
shall first consider slabs with thicknesses between 4M L and
9M L. The resulting friction forces are shown in Fig. 7. We
shall show that the observed oscillations can be interpreted
assuming that the friction arises from electron-hole excitations
within the quantized levels in Fig. 2.

In Fig. 7 we see that the force between 4 M L-thick slabs
shows a maximum slightly below vg. For thicker slabs this
maximum shifts to lower velocities, for 6M L a new maximum
appears which also shifts down as the velocity increases, and
for 7, 8, and 9M L there are three well-defined maxima.

The origin of these maxima can be easily understood by
analyzing the intensities of the low-lying electronic excitations
in metallic slabs, shown in Fig. 5. As already mentioned,
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FIG. 5. (Color online) Intensities of the low-lying electronic excitations in silver slabs of different thicknesses, in the jellium model. The
color intensity is in arbitrary units and scales linearly as 0, black; 0.2, light blue; 0.4, light green; 0.6, red; 0.8, yellow; and 1.0, white.

the transitions where spectral functions in Eq. (21) overlap
contribute mainly to the friction force. This was illustrated
in Fig. 4 which shows the overlaps between the spectra of
single-particle excitations calculated in the jellium model as
functions of the relative velocity v. Sharp peaks in Fig. 4
correspond to bright linearly dispersive features in Fig. 5 which
represent intraband electron-hole transitions within discrete
bands. Assuming that they originate from the level with the
Fermi velocity vp,, shown by blue (gray) dots in Fig. 2,
the dispersion relations of such single-particle transitions can
be approximated as

w,(Q) =vr, O, (23)

where the Fermi velocity in the discrete band n is

2
Ven = | —(Ep — En) (24)
mn

and E, is the bottom (K = 0 value) of the nrmth band.
Therefore, it is obvious from Eq. (21) that the friction force
will show a peak when the overlap between the two spectra is
maximum, and this is when the relative velocities satisfy the
resonant condition

Vpes = Vg + Vs nm = 1,2, .. .. (25)

Now we can check how the resonant condition (25) applies to
the results in Fig. 7. As can be noticed in Fig. 5, for 4M L-
thick silver slabs the Fermi velocity v is about half the bulk

Fermi velocity v, so according to Eq. (25) the friction force
shows a maximum near the Fermi velocity vy = 2vpg;, as we
indeed see in Fig. 7. As the film thickness increases the Fermi
velocity vp; decreases, so the first maximum at 2vg; should
also shift to lower values. Indeed, in Fig. 7 we can follow how
the position of the first maximum for 5,6,7,...,ML slabs
decreases. For the 6 M L slab we can notice the appearance of a
second maximum which corresponds to the resonant condition
Vr1 + vp2, and for 7M L there appears a third maximum which
corresponds to the resonant condition vg; + vp3. For 8M L and
9M L we observe the maxima which correspond to 2vp;.

In order to verify the validity of the resonant condition (25),
in Fig. 8 we plot the positions of the first (black squares) and
second (brown [dark gray] diamonds) maxima in the friction
force as functions of film thickness and compare them with
the positions of 2vp; (red [gray] dots) and vg; + vpy (blue
[gray] triangles), also shown as functions of film thickness.
We observe very good agreement which undoubtedly proves
that the proposed mechanism is responsible for the friction
maxima. Of course, these maxima are superimposed on the
continua arising from the transitions from the initial states
with velocities below vg,,.

B. Quantum friction anomaly

Until now we were investigating the friction force between
slabs using the jellium model, because up to the thickness
of 8M L even a more realistic Chulkov model does not give
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FIG. 6. (Color online) Intensities of the low-lying electronic excitations for different Ag(111) slab thicknesses (8, 9 and 10M L) in the
(a) jellium and (b) Chulkov models. The color intensity is in arbitrary units and scales linearly as 0, black; 0.2, light blue; 0.4, light green; 0.6,

red; 0.8, yellow; and 1.0, white.

qualitatively different results. However, friction forces in both
models for thicknesses above 8M L show a very different
behavior. Figure 9 shows the friction force between slabs
in relative motion as a function of slab thickness. Relative

50 50
[ " SML 2v..
0
0
20
10—
. L 0
0 02 04 06 038 1
20 v
8ML Vo 4V v 10 FOML
—_— Pl V2 v+
NE | P VR T
2 ok 2Vl—'1 2VF] T 2v,
E | f T
<5 o Ve TVEs | Ve Ve
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FIG. 7. (Color online) Friction force between jellium silver slabs
in relative motion as function of relative velocity v with parameters
given in the text. Red arrows show the position of corresponding
Fermi velocities sums vg, + Vpy,.

velocity is v = 0.1vp, and the separation between slabs is
d = 5nm. As can be noticed, for a 10M L-thick jellium slab
the friction force (black squares) suddenly drops to zero, but
at the same time the friction in the Chulkov model becomes
strongly enhanced. The explanation for this anomaly can be

\ \ \ \
0'24 5 6 7 8 9

Thickness [ML]

FIG. 8. (Color online) The positions of the first (black squares)
and second (brown [dark gray] diamonds) maxima in the friction
force as functions of metallic film thickness. Red (gray) dots show the
positions of 2v;, and blue (gray) triangles the position of vg; + vp2
as functions of film thickness.
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FIG. 9. (Color online) The friction force as function of silver

film thickness in jellium model (black squares) and Chulkov model

potential (red [gray] dots).Relative velocity is v = 0.1vp. Insert
presents in more details the data in the 1-10M L range.

found by analyzing the low-lying electronic excitations in both
models, shown in Fig. 6.

Figure 6(a) shows electronic excitation intensities in 8 M L-,
OML-, and 10M L-thick jellium slabs and Fig. 6(b) shows
electronic excitation intensities in the same slabs described
by the Chulkov model potential. White dashed lines denote
the linear dispersion vQ where, to be consistent with the
relative velocity in Fig. 9, we chose v = 0.1vg. Therefore
all excitations in the area below the vQ line contribute to
the friction force presented in Fig. 9. As the film thickness
increases, the highest occupied band gradually becomes empty,
as can be seen in Fig. 3. For TML-, 8ML-, and 9ML-
thick jellium slabs the highest occupied discrete band is
still slightly below the Fermi level and supports low-lying
intraband transitions with the dispersion approximately vg; Q,
also denoted by dashed lines in Fig. 6. In Fig. 6(a) we notice
that such intraband excitations, for 8M L and 9M L, lie below
the vQ line and contribute to the friction force. However,
for 10M L the highest occupied discrete band moves entirely
above the Fermi level and becomes unoccupied. This causes
the low-lying intraband transitions to disappear and the friction
force drops to zero. However, for the Chulkov model potential
we have a completely opposite effect. Namely, this potential
supports two surface states, where one of them is partially
occupied and another one is, for 7M L and 8M L, unoccupied.
However, for 9M L, the upper surface state becomes partially
occupied, as can be seen in Fig. 3, but enough to support
the intraband electron-hole excitations with the dispersion
below the v Q line. These excitations therefore now contribute
strongly to the friction force.

We may comment on related work on graphene where
electron-hole excitations can enhance quantum friction,
though this does not correspond to quantum size effect. The
phenomenon such as excitation of huge number of ultrasoft
o =~ ( intraband electron-hole pairs (the phenomenon which is
responsible, e.g., for Drude conductivity) enables the quantum
friction to become strongly enhanced and measurable. In

PHYSICAL REVIEW B 92, 125424 (2015)

Ref. [32] it is shown how excitations of soft electron-hole
pairs enhance friction between two graphene sheets. Graphene
zero band gap and linear dispersion allow various mecha-
nisms which can enhance quantum friction. For example, in
pristine graphene interband m — 7* electron-hole transitions
at the Dirac point lead to the finite density of excitations
(JDOS) at w =0, so the friction force becomes finite for
small, measurable, relative velocities. In doped graphene the
interband excitations shift to higher energies, i.e., at w = 2Ep
for Q =0 (where Ef is a measure of doping relative to
the Dirac point), and do not contribute to quantum friction.
However, in doped graphene intraband 7 — 7 or 7" — 7*
excitations enhance quantum friction in a manner similar to
intraband transitions within the surface states bands, described
previously. The upper edge of intraband (7 — m or 7% — %)
excitations in doped graphene disperses as w = vg Q, so the
quantum friction will be strongly enhanced at v &~ 2vp, when
two intraband continua maximally overlap, as sketched in
Fig. 4. Ideas on how to measure quantum friction are proposed
in Ref. [31]. One idea consists of measuring the current-
voltage characteristic of graphene deposited on the SiO,
substrate. The charge carriers in graphene, beyond standard
losses in graphene (phonons, impuryties, etc.), lose energy
to excitations of optical phonons in the SiO, substrate which
manifests as extra resistivity which can be easily measured.
Another proposed option is to measure current drag between
two graphene sheets, which induces voltage high enough to be
easily detected experimentally.

C. Friction driven by acoustic surface plasmons

When the slab thickness increases further surface state
energies become degenerate but always partially occupied,
as can be seen in Fig. 3, which also shows the energies of
even-odd surface states for 17M L-thick silver slab. Therefore,
the surface of a thick silver slab supports surface states which
contain quasi-2D electron gas. At the same time, as can be
seen, e.g., in the surface projected band structure in Fig. 2 of
Ref. [30], there exists a continuum of bulk states which also
contribute to the surface electronic density. Surface plasmas
and projected bulk states hybridize at the surface and form
a so-called acoustic surface plasmon (ASP) [39], which is
characterized by a sound-like dispersion

w(Q) = vas5pQ,

where the dispersion slope is defined as vssp = avgs, with
o being close to unity and vgs being the surface state
group velocity [40]. By analyzing the low-energy excitation
spectra, e.g., spectra of 31M L-thick silver slab shown in
Fig. 5 of Ref. [30], we found that the ASP velocity is
vasp = 0.13vp, which is very close to the surface state
group velocity vsg = 0.11vp, as predicted in Refs. [39,40].
In accordance with the previous analysis, the friction force
between surfaces which support linearly dispersive modes has
maxima at velocities given by the resonant condition (25).
This suggests that the friction force between two silver
surfaces which support surface states should be strongly
enhanced, exactly at the velocity which is twice that of the
acoustic surface plasmon phase velocity v4gp. Although such
a mode still was not detected on the Ag(111) surface it was
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FIG. 10. (Color online) Friction force between two semi-infinite
silver slabs in the jellium model (black dashed line) and in the Chulkov
model potential (black solid line). Vertical red (gray) dashed line
denotes the position of v = 2 vsgp.

observed in the loss experiments on a variety of metal surfaces
supporting a similar partly occupied s-p surface state, like
Be(0001) [41,42], Cu(111) [43-45], Au(111) [46,47], and
Au(788) [48].

Figure 10 shows the friction force between two silver slabs
separated by 5 nm as a function of their relative velocity. We
see that if surfaces are described by the Chulkov potential
(black solid line) the friction force shows a maximum which
is placed exactly at 2vssp, denoted by the dashed vertical
line. However, friction force between jellium surfaces (black
dashed line), which do not support surface states, is negligible.

PHYSICAL REVIEW B 92, 125424 (2015)

IV. CONCLUSION

In this paper we demonstrate how a specific electronic
structure influences the noncontact friction force between
silver slabs. Depending on the slab thickness the friction force
behavior can be divided into three regimes. Between 1ML
and 8M L the quantum friction shows oscillations which are
the consequence of quantum size effects. Main contribution
to the friction comes from the soft intraband electron-hole
excitations in the discrete bulk bands. This has enabled us to
define resonant velocities (at which the friction force shows
maxima) which are the sums of the Fermi velocities in discrete
bands in the slabs 1 and 2. For 10M L the friction force
shows an anomaly. Namely, in the jellium model it drops
to zero while in the Chulkov model potential approach the
friction becomes strongly enhanced. The reason is that in the
jellium model the highest occupied band, exactly for IOM L,
becomes unoccupied while in the Chulkov model potential
the surface state becomes partially filled, which opens an
additional excitation channel. And finally, thick silver slabs
support acoustic surface plasmons which represent a strong
energy dissipation channel. This causes strong enhancement
of the friction force for the relative velocity which is exactly
equal to 2v45p.
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