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Impurity-induced quantum phase transitions and magnetic order in conventional superconductors:
Competition between bound and quasiparticle states
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We theoretically study bound states generated by magnetic impurities within conventional s-wave supercon-
ductors, both analytically and numerically. In determining the effect of the hybridization of two such bound
states on the energy spectrum as a function of magnetic exchange coupling, relative angle of magnetization, and
distance between impurities, we find that quantum phase transitions can be modulated by each of these parameters.
Accompanying such transitions, there is a change in the preferred spin configuration of the impurities. Although
the interaction between the impurity spins is overwhelmingly dominated by the quasiparticle contribution,
the ground state of the system is determined by the bound-state energies. Self-consistently calculating the
superconducting order parameter, we find a discontinuity when the system undergoes a quantum phase transition
as indicated by the bound-state energies.
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I. INTRODUCTION

In a conventional s-wave superconductor, quasiparticle
excitation energies are separated from the chemical potential
due to the formation of the superconducting gap. When
magnetic impurities are present, the exchange interaction can
induce a bound state within the gap known as a Yu-Shiba-
Rusinov (YSR) state [1], which has been studied in detail
both experimentally and theoretically [2–15]. Recently, these
states have attracted much attention in the context of magnetic
impurity chains in which, when sufficiently close together,
individual YSR states can hybridize with adjacent bound states
to form a band within the superconducting gap that can host
Majorana fermions at its ends [16–27].

Two magnetic impurities interacting via quasiparticles
are well described by the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction [28–32] when the exchange interaction
between the impurity and quasiparticles is much smaller than
the Fermi energy. This results in a noncollinear orientation
between the impurities in three-dimensional superconduc-
tors [33,34]. Although for many parameters the contribution
to the interimpurity exchange mediated by the overlap of YSR
states is much smaller than that of the quasiparticles [34–36], it
has been shown that resonant YSR bound states can dominate
the exchange interaction and induce an antiferromagnetic
alignment of the impurities [11]. However, for the experi-
mentally relevant limit [24] when the exchange interaction is
of the order of the Fermi energy, a theoretical understanding
of the interaction between magnetic impurities including (1)
the quasiparticle contribution and (2) a self-consistent local
reduction of the gap is missing from the literature.

In this manuscript, we determine the interaction between
two magnetic impurities for arbitrary angles between their
spins wherein the strength of the exchange interaction is
unrestricted and, in general, unequal at the sites of the
impurities. In the following section, we detail the Hamiltonian
used to study the impurity interactions analytically and define
the ground-state energy, which determines the energetically fa-
vored magnetic configuration, of the superconductor-impurity
system. In Sec. III, by analytically calculating the bound-state

energy spectrum, we find that a quantum phase transition
(QPT) [4–9,14] can be tuned by changing the distance
between and relative magnetic orientation of the impurities. In
Sec. IV, we, numerically, include the bulk contribution to the
exchange interaction which we find quantitatively dominates
over the YSR contribution for many parameters [11,34–36].
Further, carrying out self-consistently calculations, we find a
discontinuity in the superconducting order parameter when the
system undergoes such a QPT as indicated by the bound-state
energies. This, in turn, gives rise to magnetic metastable states,
in addition to the lowest-energy magnetic configuration, for a
sufficiently large exchange interaction. In the final section, we
summarize our results.

II. MODEL

We consider two magnetic impurities embedded in a bulk
s-wave superconductor, see Fig. 1. The quasiparticles interact
with the impurity spins through the exchange interaction that
produces a local effective magnetic field. The corresponding
Bogoliubov-de Gennes (BdG) Hamiltonian density is given by

H = ξpτz + �(r)τx −
∑
i=1,2

JiSi · σ δ(ri − r) , (1)

where ξp is the dispersion of the quasiparticles with mo-
mentum p in the normal metal phase and �(r) is the local
superconducting pairing strength. The Pauli matrices τ (σ )
act in Nambu (spin) space. The exchange coupling strength
Ji of the spin impurity at ri can be positive or negative
corresponding to ferro- or antiferromagnetic interactions with
quasiparticles, respectively. Here, we focus on Ji > 0 without
loss of generality. We assume that Si are the classical spin
vectors of the impurity at ri , and θ is the angle between them.
The magnitude of the spins, Si = |Si |, are much larger than �

so that quantum mechanical spin fluctuations, e.g., the Kondo
effect, are negligible. In the following analytics, we assume
that �(r) = �0 is spatially uniform and neglect its suppression
due to the impurities [6,37], which we account for self-
consistently in the numerics following earlier work [4–9,14].
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FIG. 1. (Color online) Our setup of two magnetic impurities at
r1 and r2 in an s-wave superconductor with classical spins S1 and S2,
respectively, oriented at a relative angle θ . As a result of the magnetic
exchange couplings, J1 and J2, YSR bound states form within the
bulk gap �0. When the distance between the impurities, r , is larger
than the coherence length of the superconductor the energies are E1

and E2 but get changed to ε1 and ε2 as r decreases and the bound
states hybridize with each other.

To determine the energy of the bound states ε1,2 and −ε1,2,
where the latter is due to the particle-hole symmetry of Eq. (1),
we apply a straightforward calculation along the lines of
Ref. [21] and obtain a coupled set of secular equations for
the BdG four-component spinors ψ(r) at r1 and r2,

ψ(r1) = Ĵ1s1 · σψ(r1) + 	̂2s2 · σψ(r2) ,

ψ(r2) = Ĵ2s2 · σψ(r2) + 	̂1s1 · σψ(r1) , (2)

where si = Si/Si and

Ĵi = αi(ε + τx�0)√
�2

0 − ε2
, (3)

	̂i = αi

(
(ε + τx�0) sin kF r√

�2
0 − ε2

+ τz

)
e−r/ξε

kF r
(4)

for i = 1,2. Here, αi = ν0πJiSi , where ν0 is the density of
states evaluated at the Fermi energy, r = |r1 − r2| is the
distance between the impurities, kF (vF ) is the Fermi wave
vector (Fermi velocity) and ξε = vF /

√
�2

0 − ε2.
When the distance between impurities is much greater than

the superconducting coherence length, r � ξ0, the impurities
effectively decouple, 	̂i → 0, and one finds that Eq. (2)
furnishes solutions of unhybridized YSR bound states at r1

and r2 with energies ±Ei = ±�0(1 − α2
i )/(1 + α2

i ) [1,21].
In this limit, for sufficiently large exchange interaction, Ji >

1/ν0πSi , the bound-state energy goes below the chemical
potential and the system undergoes a QPT wherein the parity of
the ground changes [4–6,38]. In order to determine the energies
of the hybridized bound states analytically from Eq. (2), we
focus on distances between impurities much smaller than
the coherence length, r � ξ0, so that e−r/ξε ≈ 1 so that the
hybridization is determined to leading order by 1/kF r .

To determine the total ground-state energy of our system,
we formally diagonalize the Hamiltonian and use a variational
wave function as an ansatz for the ground state by extending the

variational wave function from one impurity [6] to two impu-
rities. For sufficiently weak coupling, in both the exchange
interaction (α1, α2 � 1) and the bound-state hybridization
(kF r � 1), the ground state is given by the BCS-like wave
function |
0〉 ∼ ∏

n>0(un + vnψ
†
nψ

†
−n|0〉, where ψn furnish

a basis for the BdG Hamiltonian in the presence of the
impurities for a given magnetic alignment and un and vn are the
Bogoliubov coherence factors. The quasiparticle opera-
tors γn are defined as γ1 = u1ψ1 − v1ψ

†
−1, γ

†
−1 = u1ψ−1 +

v1ψ
†
1 , γ

†
1 = u1ψ

†
1 − v1ψ−1, and similarly for n > 1, so

that γn|
0〉 = 0 for all n. Let n = 1 correspond to the
lower-energy bound state and n = 2 to the higher one
while −n corresponds to a state with reversed spin.
When the lower-energy bound state is occupied, the
wave function is given by |
1〉 ∼ γ

†
1 |
0〉 = ψ

†
1

∏
n>1(un +

vnψ
†
nψ

†
−n)|0〉. When both states are occupied, the wave

function is |
1,2〉 ∼ γ
†
2 |
1〉 = γ

†
2 γ

†
1 |
0〉 = ψ

†
2ψ

†
1

∏
n>2(un +

vnψ
†
nψ

†
−n)|0〉. As the hybridization between the bound states

or the exchange coupling increases, the lower energy state
becomes occupied and the ground state is |
1〉. When
both states are below the chemical potential, the ground
state then becomes |
1,2〉. To determine the total energy of
the system, one can diagonalize the Hamiltonian using a
Bogoliubov transformation, H = ∑

n εn(θ )(γ †
n γn − 1

2 ) [11],
where εn is the energy of state n. The ground-state energies
are therefore [6,11]

Egr (θ ) = −1

2

∑
n

|εn(θ )|. (5)

In the following analytics, we focus on the bound states and
therefore only include the YSR contribution to the summation
in Eq. (5): E(θ ) = −(|ε1(θ )| + |ε2(θ )|)/2.

III. HYBRIDIZATION BETWEEN BOUND STATES

For the moment, we consider the case of weak hybridization
(kF r � Ei/�0) for YSR states sufficiently far away from the
chemical potential, so that the occupation of the bound states,
and thus the ground state, is fixed by αi . That is, when αi < 1
(αi > 1), the energy is above (below) the chemical potential.
Calculating the full analytic solution and then expanding to
second order in 1/kF r , which is valid when |1 − αi |kF r � 1
and |α1 − α2|kF r � 1 [39], the spectrum has two solutions of
the form

εn(θ ) ≈ En + �0(An + Bn cos θ )/(kF r)2, (6)

where the coefficients An and Bn are functions of α1, α2,
and kF r (Appendix). The bound-state energy is extremized
when either θ = 0 or π , i.e., the ground state of impurities
is collinear. When ε1ε2 > 0, E(π ) is always smaller than
E(0) [11] and therefore the ground state is antiferromagnetic.
When ε1ε2 < 0, E(π ) > E(0) and a ferromagnetic orientation
is favored. See Appendix for a detailed derivation.

Although strong hybridization between impurities cannot
be addressed perturbatively, in the symmetric case of equal
exchange coupling, i.e., α1 = α2 ≡ α, Eq. (2) can be solved
directly. Because the analytic solution for arbitrary θ is
too involved, we focus here on collinear alignments. In the
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ferromagnetic configuration, the bound-state energy levels are
given by

εF
± ≡ ε1,2(0) = −�0(a ± b)/

√
(a ± b)2 + c2 , (7)

where

a = α

{
α2

[
1 +

(
1

kF r

)2

cos 2kF r

]
− 1

}
,

b = α
sin kF r

kF r

{
α2

[(
1

kF r

)2

− 1

]
− 1

}
, (8)

c = α2

[
2 +

(
1

kF r

)2

(cos 2kF r − 1)

]
.

The initially twofold degenerate energy levels of the bound
states are both split due to hybridization and shifted due to the
effective Zeeman splitting at both r1 and r2.

In the antiferromagnetic configuration, the energy level
stays twofold degenerate [8] and is given by

εA ≡ ε1,2(π ) = �0

√
(1 − α2)2 + 2(α/kF r)2 + d

(1 + α2)2 + 2(α/kF r)2 cos 2kF r + d
,

(9)

where

d = α4(1 + 2 cos 2kF r)

(
1

kF r

)4

. (10)

In this case, although there is no hybridization of the bound
states, the energies of the localized YSR states are shifted away
from the single impurity solutions due to the effective Zeeman
field of the second impurity.

To determine the favored collinear orientation of the mag-
netic impurities, it is convenient to define δE ≡ E(0) − E(π ) =
−(|ε+

F | + |ε−
F | − 2|εA|)/2, the difference between the ground-

state energies in the collinear configurations, so that when
δE > 0 the system prefers an antiferromagnetic orientation
while when δE < 0 the system prefers an ferromagnetic
orientation of the impurities.

When α = 0.5 [Fig. 2 (upper panel)], all the electronlike
energies in either configuration defined by Eqs. (7) and (9)
are greater than zero, in the displayed range, kF r � 1.
Furthermore, δE > 0 and therefore the exchange interaction
between impurities is antiferromagnetic, in agreement with
the weak coupling limit. If the impurity levels are close to the
chemical potential, e.g., α = 0.9 [Fig. 2 (lower panel)], the
ground state of the system depends on the distance between the
impurities. When r is sufficiently large, so that the condition
for weak hybridization is met, εF

± ,εA,δE > 0, and the preferred
ordering is antiferromagnetic. When kF r ≈ 8, ε−

F goes below
the chemical potential. Near this value of kF r , δE becomes
negative and therefore the preferred magnetic ground state is
ferromagnetic rather than antiferromagnetic. As the distance
between the impurities decreases further, the bound-state
energies oscillate about the chemical potential as a function of
r , thereby changing the ground state of the system. As a result,
δE also oscillates around zero implying a change between
ferromagnetic and antiferromagnetic configurations.
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FIG. 2. (Color online) Energy of the YSR bound states for the
identical magnetic impurities oriented ferromagnetically (solid and
dashed) and antiferromagnetically (dotted) as well as the energy
difference δE (thick solid lines) as a function of the distance r

between impurities. When α = 0.5 (top panel), the system remains
antiferromagnetic (δE > 0), while for α = 0.9 (lower panel), the
magnetic configuration oscillates between being antiferromagnetic
and ferromagnetic. For convenience, these two configurations are
separated by the vertical dotted lines.

As we have seen, for some values of r (|Ei |/�0 � kF r),
the bound-state energies are on opposite sides of the chemical
potential in the ferromagnetic configuration due to hybridiza-
tion, while in the antiferromagnetic configuration the energies
are always degenerate. Therefore, quite remarkably, one may
drive a QPT by changing the relative angle of the impurities.
To illustrate this, we exactly solve Eq. (2) for generally α1, α2,
r , and θ . The solution, although straightforward, is physically
opaque. We therefore plot ε1, ε2, and E as a function of θ ,
fixing kF r = 1, α1 = 0.5, and α2 = 1 in Fig. 3. At θ ≈ π/2,
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FIG. 3. (Color online) The energy of the bound states (ε1, ε2) and
the total YSR state energy [E(θ )] as a function of relative angle θ for
kF r = 1, α1 = 0.5, and α2 = 1. The change of quantum ground state
at θ ≈ ±π/2 is indicated by vertical dotted lines.
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ε2 goes from positive to negative, i.e., one of the YSR bound
states passes through the chemical potential, signaling a QPT.
Accompanying this change in the ground state of the system is
a kink in E . As a result, although the energy is minimized
in the antiferromagnetic configuration, θ = π , there is a
local minimum in energy when the impurities are oriented
ferromagnetically. Therefore, while the parameters chosen
favor an antiferromagnetic configuration as an absolute ground
state, they additionally support a metastable ferromagnetic
configuration [40].

IV. BULK CONTRIBUTION TO TOTAL ENERGY

To address the contributions coming from the bulk,
we follow earlier work [4–9,14] and numerically study
a two-dimensional system with two magnetic impurities,
determining self-consistently the renormalization of the gap
which cannot be addressed analytically [14,37] for large
exchange interaction. We use the tight-binding Hamiltonian

H̄ = − t
∑
〈i,i ′〉

∑
σ=±1

c
†
iσ ci ′σ +

∑
i

(�ici1ci1̄ + H.c.)

+
∑

i

∑
σ=±1

([μ − 4t + (δi1 + δi2)J̄iσ cos θi]c
†
iσ ciσ

+ (δi1 + δi2)J̄i sin θi c
†
iσ ciσ̄ ), (11)

where ciσ is the annihilation operator acting on an electron
with spin σ at lattice site i, and the first sum runs over
neighboring sites i and i ′ located in a two-dimensional square
lattice of size Nx × Ny with lattice constant a. The chemical
potential μ is taken from the bottom of the energy band, and
the local order parameter �i is determined self-consistently in
an iterative fashion for fixed values of the exchange coupling
J̄i at site i starting from the uniform superconducting order
parameter �0. To compare to the analytics, we consider two
impurities located at i = 1 and i = 2 (which are not necessarily
adjacent) with equal exchange coupling, J̄ = J̄1 = J̄2, and
fixing the difference in magnetic orientation to be θ , mirroring
the schematics of Fig. 1. After numerically diagonalizing
Eq. (11), we find two types of energies in the spectrum: in-gap
YSR bound states, analogous to those found analytically in the
previous section, and supragap energies corresponding to the
quasiparticle spectrum. In order to directly compare with the
results of the previous section, we calculateE by summing only
the energies of the in gap states. However, to calculate the full
ground state including both quasiparticle and YSR energies,
we use Egr as define by Eq. (5), summing all energies below
the chemical potential.

Focusing first on the YSR states, we plot δE as a function
of r in Fig. 4. When J̄ /t = 1 [Fig. 4(a)], δE is positive
for nearly all values of r indicating an antiferromagnetic
configuration is preferred. However, for J̄ /t = 2.5 [Fig. 4(b)],
δE oscillates between positive and negative values. Although
in the numerics we have taken into account the position-
dependent renormalization of the gap, the results are in good
agreement with the analytics of the previous section (Fig. 2).
When the exchange interaction strength is further increased
to J̄ /t = 4 [Fig. 4(c)], the difference between the YSR state
energies in the collinear magnetic configurations is positive

FIG. 4. (Color online) The difference in the energy δEgr between
ferro- and antiferromagnetic configurations of the system consisting
of two identical impurities of coupling strength J̄ as a function of
the distance between impurities, r/a, for (a) J̄ /t = 1 and (b) J̄ /t =
2.5 found self-consistently (red dots) and not self-consistently (blue
dots), respectively. Inset: enlarged area of (a) for large distances. The
difference in the energy δE between ferro- and antiferromagnetic
configurations including only the YSR bound state (green dots) is
found self-consistently. The parameters used are Nx × Ny = 33 ×
25, μ/t = 1, and �0/t = 0.1.

for nearly all values of r , indicating that the antiferromagnetic
orientation is preferred, again in good agreement with the
analytics.

In order to distinguish the effect of gap renormalization
from the quasiparticle contribution, we first plot δEgr =
E(0) − E(π ), without self-consistent renormalization of the
gap, i.e., �i = �0, as a function of r in Fig. 4. Interestingly,
δEgr is changed only slightly for all values of J̄ , keeping the
δEgr at the same order of magnitude as δE . Upon including
renormalization of the gap, δEgr is increased drastically and
the ground-state magnetic orientation becomes very sensitive
to the distance between the impurities. Although the exact
functional dependence is unclear, this emphasizes the impor-
tance of a self-consistent renormalization of the gap when
calculating the energies of such a system, particularly when
close to the QPT.

Fixing the distance between the impurities to r/a = 6,
we calculate Egr and E as a function of relative angle and
observe that away from the phase transition, Egr and E
change monotonically for θ ∈ [0,π ], and, thus, the ground
state is either ferromagnetic or antiferromagnetic, consistent
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FIG. 5. (Color online) The total energy of the ground state for
two identical impurities (J̄ = J̄1 = J̄2) as a function of the angle
θ between magnetic moments found numerically for (a) J̄ /t =
2.17 (ferromagnetic ordering) and (b) J̄ /t = 2 (antiferromagnetic
ordering) at the distance r/a = 6. We additionally plot (c) E(θ ) for
J̄ /t = 2.17 also at r/a = 6. Other parameters are the same as in
Fig. 4.

with the analytical results. For instance, when J̄ /t = 2,
before the QPT, the system prefers an antiferromagnetic
configuration [Fig. 5(b)], similar to the analytics. Close to the
phase transition, the bound-state energies cross the chemical
potential as a function of θ . As a result, there is a jump
in the ground-state energy at the QPT so that Egr (θ ) is a
nonmonotonic function of θ in the range [0,π ]. As such, when
the ground state is ferromagnetic (antiferromagnetic), there
is an additional metastable antiferromagnetic (ferromagnetic)
state. For instance, when J̄ /t = 2.17 [Fig. 5(a)], the ground

state is ferromagnetic but there is an additional metastable
antiferromagnetic configuration. Considering only the YSR
contributions to the energy, we plot E(θ ) [Fig. 5(c)] and find
a ground state and a metastable state at the collinear configu-
rations of the magnetizations, in agreement with the analytics.
However, because of the self-consistent renormalization of the
gap, there is a jump in E at θ ≈ π/6 where the QPT occurs. We
note that the jump in E is several orders of magnitude smaller
than Egr . Thus the magnitude of the interaction is dominated
by the quasiparticle contribution to the ground-state energy.
However, the QPT is determined by the position of the bound
states with respect to the chemical potential which, in turn,
introduces a metastable state.

V. CONCLUSIONS

We have studied how the orientation of two spin impurities
coupled via overlap of the YSR bound states induced by
them depends on the distance between impurities and the
strength of the exchange interaction. We have also demon-
strated that a QPT can be controlled by changing relative
magnetic orientation. Generally, the bulk contribution to the
total ground-state energy dominates over the bound-state
contribution, especially if the superconducting order parameter
is determined self-consistently. The proposed effects could be
measured with STM [46] or NV-center [47,48] techniques.
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APPENDIX: HYBRIDIZATION IN WEAK
COUPLING LIMIT

To obtain the energetically favorable magnetic orientation
in the weak coupling limit, we solve Eq. (2) of the main text
for the in-gap energies and expand to second order in 1/kF r .
We find the bound-state energies are

εn(θ ) ≈ En + �0(An + Bn cos θ )

(
1

kF r

)2

, (A1)

with

A1 = −2α2
1α

2
2

(
1 − α4

2

) + 2α1α2
(
1 + α4

1 − 2α2
1α

2
2

)
cos 2kF r(

1 + α2
1

)2[
α2

2

(
1 + α4

1

) − α2
1

(
1 + α4

2

)] ,

B1 = −2α2α
3
1

(
1 + α2

1 − α2
2 − α2

1α
2
2

)(
1 − α2

2

) + 2α2α
3
1

(
1 − α2

1 + α2
2 − α2

1α
2
2

)
cos 2kF r(

1 + α2
1

)2[
α2

2

(
1 + α4

1

) − α2
1

(
1 + α4

2

)] ,

A2 = 2α2
1α

2
2

(
1 − α4

1

) − 2α1α2
(
1 + α4

2 − 2α2
1α

2
2

)
cos 2kF r(

1 + α2
2

)2[
α2

2

(
1 + α4

1

) − α2
1

(
1 + α4

2

)] ,

B2 = 2α1α
3
2

(
1 − α2

1 + α2
2 − α2

1α
2
2

)(
1 − α2

1

) − 2α1α
3
2

(
1 + α2

1 − α2
2 − α2

1α
2
2

)
cos 2kF r(

1 + α2
2

)2[
α2

2

(
1 + α4

1

) − α2
1

(
1 + α4

2

)] . (A2)
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We consider three cases: when the bare energies are both above the chemical potential, both below the chemical potential, or on
opposite sides of the chemical potential. The total energy of the system, according to Eq. (5) of the main text, is given by

E(θ ) =
⎧⎨
⎩

−[ε1(θ ) + ε2(θ )]/2 , ε1 > 0,ε2 > 0
[ε2(θ ) − ε1(θ )]/2 , ε1 < 0,ε2 > 0
[ε1(θ ) + ε2(θ )]/2 , ε1 < 0,ε2 < 0

. (A3)

In all cases, the total energy is extremized when θ = 0,π , and for no intermediate values of θ . To determine the energetically
favored magnetic configuration, we calculate δE ≡ E(0) − E(π ). When both energies are above the chemical potential,

δE
�0

= 2α1α2

(
1

kF r

)2
[

1 + α2
1 + α2

2 + 2α2
1α

2
2 + α4

1α
2
2 + α2

1α
4
1 + α4

1α
4
2(

1 + α2
1

)2(
1 + α2

2

)2(
1 − α2

1α
2
2

)
−1 − α2

1 − α2
2 − 6α2

1α
2
2 − α4

1α
2
2 − α2

1α
4
2 + α4

1α
4
2(

1 + α2
1

)2(
1 + α2

2

)2(
1 − α2

1α
2
2

) cos 2kF r

]

= 2α1α2

(
1

kF r

)2
[

1 + α4
1α

4
2(

1 + α2
1

)2(
1 + α2

2

)2(
1 − α2

1α
2
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because α1,α2 < 1. Analogously, when ε1,ε2 < 0,
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because α1,α2 > 1 so that the preferred magnetic orientation is antiferromagnetic when the energies are on the same side of the
chemical potential. Now suppose ε1, − ε2 > 0, then we get
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because α2 > α1. Therefore making a similar argument when ε1 < 0 and ε2 > 0, when the bare energies are on opposite sides of
the chemical potential and sufficiently well separated, the impurities prefer to be oriented ferromagnetically.
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In the special case when α1 = α2 ≡ α, the energy levels diverge according to Eq. (A2). The expansion of the bound-state
energies is instead given by

εn(θ ) ≈En + (−1)n4α2�0
| cos(θ/2)|

1 + α2

sin kF r

kF r

+ α2�0

[
2α2 1 − (1 − 2α2) cos 2kF r

(1 − α2)2(1 + α2)3
− 1 + α4 − (1 − 4α2 + α4) cos 2kF r

(1 − α2)2(1 + α2)3
cos θ

](
1

kF r

)2

. (A7)

Although the leading order term contribution is of order exp(−r/ξ )/kF r and oscillates with 2π periodicity in θ , the difference
in total energy between the parallel and antiparallel configurations, when α < 1 (α > 1), again reduces to Eq. (A4) [Eq. (A5)]
upon taking α1,α2 → α.
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