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Direct imaging of coherent quantum transport in graphene p-n- p junctions
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We use electrostatic lithography to fabricate a graphene p-n-p junction and exploit the coherence of weakly
confined Dirac quasiparticles to image the underlying scattering potential using low-temperature scanning gate
microscopy. The tip-induced perturbation to the junction potential modifies the condition for resonant scattering,
enabling us to detect localized Fabry-Pérot subcavities from the focal point of halos in scanning gate images. In
addition to halos over the bulk, we also observe ones spatially registered to the physical edge of the graphene.
Guided by quantum transport simulations, we attribute these to modified resonant scattering at the edges within
elongated cavities that form due to focusing of the electrostatic field.
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I. INTRODUCTION

Developing methods to characterize and preserve the coher-
ence of interacting quantum systems is essential for exploring
fundamental problems in quantum mechanics and for realizing
novel technologies which operate using entanglement and
superposition. In quantum devices based on semiconducting
two-dimensional electron gases, spatial coherence of the
electron field can be visualized directly by scanning a sharp
metallic tip over the surface while measuring the conductance,
in a technique known as scanning gate microscopy (SGM).
SGM images of interfering electron waves provide exquisite
real-space information that can be used to diagnose scattering
and decoherence mechanisms stemming from the underlying
material [1–4]. In the new breed of quasi-two-dimensional
Dirac materials such as graphene and the surface states
of topological insulators, where low-energy quasiparticle
excitations mimic a two-dimensional gas of relativistic chi-
ral charged neutrinos [5], signatures of coherence in bulk
transport measurements have unraveled the complex interplay
between this band structure and elastic-scattering rates [6].
However, while in graphene SGM has been used to image
mesoscopic doping inhomogeneities [7,8], edge effects [9],
localized states [10,11], and quantum interference [12,13],
coherent scattering within a tailored scattering potential has not
been characterized or exploited using local probes. Graphene
devices are now ripe for such probing techniques, especially
with the opportunity to image novel physical effects such
as Veselago lensing [14], cloaking [15], and superlattice
collimation [16].

In this study, we investigate how the spatial coherence of
Dirac quasiparticles within a p-n-p junction can be exploited
to resolve the scattering potential in a graphene monolayer by
SGM. Our solution is paradigmatically similar to experiments
where narrow nanofabricated gates enable the effects of
coherence and Klein tunneling to be explored, even in low-
mobility samples [17]. Due to interference between electron
waves scattered from its p-n interfaces, the conductance of
a p-n-p junction exhibits periodic oscillations as a function
of the local Fermi wavelength [17–21]. While imaging these
resonances in real space by SGM would provide information
about the potential landscape, the presence of metallic top

gates has so far prohibited this. Here we employ an in
situ electrostatic patterning technique [22,23] to fabricate
the junction and spatially resolve cavities in the scattering
potential through the presence of halos—spatially distinct
ring structures—where the resistance of the junction is higher
relative to the background. In addition to identifying a
sequence of Fabry-Pérot (FP) halos that stems from multiple
disorder-induced cavities in the bulk of the well, we image
narrow and highly periodic resonances that are registered to
the physical edges of the graphene flake. We attribute these
resonances to the enhanced electrostatic coupling at the edges,
which results from focusing of the electric field [24].

II. EXPERIMENTAL METHOD

Our graphene flakes are made by mechanically exfoliating
natural graphite onto degenerately doped Si substrate with
an oxide thickness of ≈300 nm. We identified monolayer
flakes by their optical contrast and confirmed the thickness
by measuring quantum Hall plateaus in a two-terminal con-
figuration. Two- and three-terminal differential conductance
measurements were taken using standard low-frequency ac
lock-in techniques, and a voltage VBG applied to the doped
Si substrate controlled the carrier density. To enable charge
writing, we spin coated a 100-nm-thick layer of polymethyl
methacrylate (PMMA) over the device.

Figure 1(a) shows a schematic of the configuration
used for our combined SGM/electrostatic lithography ex-
periments [22]. We fabricate a graphene junction at low
temperature (T ≈ 4.2 K) by depositing a line of charge into the
PMMA using triboelectrification [25]. An image of the surface
potential measured using Kelvin probe microscopy (KPM) is
shown in Fig. 1(b). The KPM line profile is well fitted, at
VBG = 0 V, by a Lorentzian with full width at half maximum
of ≈200 nm [right panel, Fig. 1(b)].

The device exhibited a Dirac point at VBG ≈ 20 V [red
curve, Fig. 2(a)] and a carrier mobility of ∼3000 cm2(Vs)−1 at
a carrier density of 2 × 1011 cm−2. Using the Einstein relation
σ = νe2D, where ν = 8πεF /(h2ν2

F ) is the density of states at
the Fermi level, εF ≈ 31 meV

√
VBG, and D ≈ 0.03 m2 s−1 is

the diffusion constant, we find an electron mean free path
le = 2D/vF ≈ 80 nm. The effect of the written charge is
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FIG. 1. (Color online) (a) Schematic setup of charge writing on a
graphene device. (b) Kelvin probe image (left) and line profile (right,
with blue points: experimental data; red line: Lorentzian fit) captured
at a lift height of 100 nm after charge writing. White dashed lines
indicate the edge of the flake.

similar to a conventional top gate and is revealed in transport
by an increase in the resistance at VBG ≈ 0 V, corresponding
to the local neutrality point under the deposited charge, and
a decrease around the original neutrality point [black curve,
Fig. 2(a)]. Superimposed on this broad background modulation
of the resistance are reproducible oscillations that develop
for back-gate voltages greater than ≈−10 V. To reveal their
microscopic origin, we fix the back-gate deep within the p-n-p
regime (VBG = 0 V) and monitor the resistance while the
static tip is scanned at a lift height of ≈130 nm over the
dielectric. A typical scanned gate image [Fig. 2(b)] shows a
nest of circular features with different focal points centered
over the junction with little contrast outside this region. Such
circular halos are frequently observed in SGM images and
their spatial registration to a specific area within a nanodevice
is typically attributed to tip-induced resonant tunneling of
individual charges through quantum dots [26], to interference
of electron waves at that point [27], or to FP resonance
between the tip and a scattering potential [2]. By identifying a
correlation between the resistance oscillations in Fig. 2(a) and

FIG. 2. (Color online) (a) Resistance as a function of back-gate
voltage before (R0) and after (RCW ) charge writing. The cartoon inset
illustrates the relation between the schematic potential landscape after
charge writing, and the Fermi level at a back-gate voltage in the
p-n-p regime. (b) Scanned gate micrograph over the region shown
in Fig. 1(b). The black dashed outline indicates the region used for
higher-resolution scans.

the halos in Fig. 2(b), we show that they are entirely consistent
with a tip-induced perturbation to the quantum interference of
electron waves scattered within the p-n-p cavity created by the
deposited charge.

III. QUANTUM TRANSPORT AND HALO FORMATION

The change in resistance �R(VBG) = RCW − R0, where
R0 and RCW are the resistance before and after charge writing,
respectively, is plotted as a function of back-gate voltage in
Fig. 3(a). To gain some insight into the overall shape of this
curve, we calculate the expected dependence using a simple
model based on the Drude approximation. In this model,
the resistance at each back-gate voltage is calculated using
the local carrier-dependent conductivity σ (n) and an estimate
for the position-dependent carrier density n(x,y) under the
junction. Following Ref. [20], we use the R(VBG) curve before
charge writing to calibrate σ (n) and a Poisson-Dirac solver
to estimate n(x,y). The green curve in Fig. 3(a) shows the
result of the calculation and the discrepancy �RM with the
measured data is shown in Fig. 3(b). The fact that �RM

assumes a roughly constant value of ≈170 � is consistent
with previous studies and suggests that the p-n interfaces
themselves are diffusive and add a roughly constant series

FIG. 3. (Color online) (a) Difference between the resistance be-
fore and after charge writing, measured (black curve) and modeled
(green curve). (b) Difference between measured and modeled resis-
tance change (constant value indicated by dashed red line). (c) Change
in resistance measured as a function of back-gate voltage, with a
smoothed background subtracted in order to emphasise the peaks
(circles) and troughs (triangles). Blue curve shows the smoothed
curve used to determine the position of the peaks and troughs.
(d) Cartoon showing the quasiparticle trajectories corresponding
to resonant forward (triangle) and backward (circle) scattering.
(e) Back-gate voltage of the peak positions in (c) as a function of
peak index. The solid line is a fit to the data and crosses are the result
of the quantum transport simulations.
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resistance that is not included in the simple Drude model.
More exact fitting and minimization of �RM is possible but
is complicated by the unknown distribution of charge in the
dielectric. In addition to the roughly constant contribution
from the p-n interfaces, quantum corrections to the diffusive
resistance manifest as resistance oscillations in Fig. 3(b). To
emphasize the resistance oscillations, we subtract a smoothed
background and obtain the �R(VBG) shown in Fig. 3(c).
A clear sequence of roughly 10 resonances emerges, with
amplitudes of ≈50 � and periodicity �VBG ≈ 1–4 V over
the range of back-gate voltage from −10 to 5 V, beyond
which they become indistinguishable from the aperiodic
conductance fluctuations. To estimate the back-gate voltage of
the resistance maxima, we apply successively more aggressive
adjacent averaging to the raw data [blue curve, Fig. 3(c)].
Once the oscillatory pattern is stable, we identify a regular
sequence of dominant peaks and troughs, indicated by the
circles and triangles in Fig. 3(c). Such periodic resistance
resonances are consistent with previous studies and point
to interference effects between electron waves scattered at
the p-n junctions that define the cavity [17]. Within this
framework, the troughs (peaks) in resistance occur when the
electrons bouncing between the first and second p-n interfaces
interfere constructively (destructively) [Fig. 3(d)]. Within the
Landauer-Büttiker formalism, the modulation in transmission
probability across the cavity causes a corresponding change
in conductance. We can estimate the expected period in the
linear regime by assuming that the p-n interfaces are separated
by a distance L and that the phase accumulated by an electron
ballistically traversing the cavity is φ = 2kxL, where kx is the
wave vector normal to the junction. In graphene, this leads to
the relationship �n = 2

√
πn/L, where n is the carrier density

within the cavity and is conventionally controlled by a top
gate [17]. Note that there is some uncertainty in the local Dirac
point of the cavity and our data are likely to depart from this
�n ∝ √

n dependence because the back gate also modifies the
global carrier density. Nonetheless, based on the assumption
that the local Dirac point is between VBG = −10 and −5 V,
and at VBG = 4 V we have n ≈ 0.5–1 × 1012 cm−2, we derive
a periodicity of the FP oscillations of �VBG = 2 V for a cavity
L ≈ 200 nm.

In order to correlate the SGM halos with the putative FP
resonances identified in Fig. 3(c), we choose y positions over
the edge (α) and middle (γ ) of the flake, and sweep the
back-gate voltage with the tip parked at x positions along
the lines α → β and γ → δ [Fig. 4(a)]. The resulting line
spectroscopy data are shown in Fig. 4(b), where the numerical
derivative d�R/dVBG has been plotted to add emphasis to
the location of the peaks. As the tip approaches the junction
at the edge of the flake (αβ), the back-gate voltage of the FP
resonances, indicated by their corresponding colored circles in
Fig. 4(b), shows little dependence on tip position. By contrast,
moving the tip over the middle of the junction (γ δ) causes the
FP resonances to undergo a shift to higher back-gate voltage.
The trajectory of the shift is well fitted by a Lorentzian with
half width at half maximum of ≈0.5 μm and peaks when the tip
is directly over the cavity. The origin of this is quite clear and
stems from the shape of the additional potential contributed
by the tip: a horizontal plane intersecting the spherical 1/r

potential from the tip can be described by a Lorentzian function

FIG. 4. (Color online) (a) SGM micrograph captured over the
junction at a lift height of 130 nm. (b) Derivative of the detrended
resistance with respect to the back-gate voltage, plotted as a function
of back-gate voltage and tip position along α → β and γ → δ in
part (a). Colored circles correspond to the peaks indicated in Fig. 3(c).
(c) Higher resolution of the range highlighted by boxes in (b). The
blacked dashed lines border the resonance highlighted by the green
circle. The right panel shows the corresponding simulation for a
laterally partitioned junction with the tip stepped over the middle of
the junction.

of the in-plane position, where r is the distance from the tip.
Due to the cylindrical symmetry of the potential in the plane,
resonances which exhibit such shifts with tip position give rise
to halos in images [10], so from these data we deduce that
the FP resonances identified in Fig. 3(c) correlate with halos
centered over the middle of the flake (γ δ). We provide clear
evidence for this in the case of a particular resonance marked
by a green circle (VBG ≈ −3.5 V) in Fig. 4(c), which shows
a smaller range of VBG. Along the line αβ, this resonance is
only weakly affected by the tip, while along γ δ, it is fully
perturbed and gives rise to halos similar to the one visible
in Fig. 4(a). We note that despite the diffusive nature of
transport and the relatively high temperature, our interpretation
is consistent with phase-coherent effects as both the thermal
length LT = π1/2

�
2kF /4m∗kBT ≈ 1.1 μm, where kF is the

Fermi wave vector and m∗ is the graphene effective mass [28],
and the dephasing length Lφ ≈ 300 nm, measured via weak
localization, exceed the length of the cavity.

IV. DISCUSSION

While this pattern of behavior can be confirmed by inspec-
tion for the majority of peaks in Fig. 4(b), the nonuniform shift
in the FP fringes and the presence of smaller fluctuations betray
the influence of additional structure in the scattering potential.
Disordered potential fluctuations from absorbates and the
underlying Si/SiO2 substrates are well established in exfoliated
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FIG. 5. (Color online) (a) Comparison between experimental and
simulated back-gate sweeps for a single cavity with length 200 nm,
partitioned laterally into multiple subcavities, and with charge-
induced edge cavities (red and green dashed outlines highlight
structures that are observed in both the experimental and the simulated
data). (b) Potential profile U (x,y) representing a laterally partitioned
junction, with p-type (n-type) regions in red (blue). (c) Schematic
showing how a change in tip position by �y causes a shift in the
potential of a subcavity �U , taking it through a peak in resistance.
(d) Left: SGM micrograph captured over the junction at a lift height
of 30 nm, together with a line profile showing individual resonances.
Right: Spatially resolved simulation showing the appearance of halos
around each cavity of the potential shown in (b).

graphene and, around charge neutrality, are likely to partition
the junction into subcavities. It is important to note, however,
that in our system the longitudinal sizes of the subcavities
must remain sufficiently correlated to define a length for FP
resonances and thereby preserve the energy spectrum observed
in Fig. 3(e). To understand the interplay between coherence
and this type of potential disorder, we performed quantum
transport simulations based on a numerical solution of the
Dirac equation (see the Appendix). Due to the relatively
large size of the graphene flake, we employ a code [29]
based on a continuum envelope-function formulation [30]. In
order to easily examine many possible potential landscapes
and the outcome of scanning probe experiments, we also
adopt, under the hypothesis of a slow-varying potential, a
simplified procedure for the approximate evaluation of the
potential profile as a function of the bias voltages [31]. The nu-
merical results for a single FP cavity are shown alongside
the experimental results in Fig. 5(a) (upper two curves).
The amplitude of the resistance modulation is ≈50 �

and the extracted peak spacing is linear at high energy
[blue crosses, Fig. 3(e)], both in good agreement with the

experimental spectrum. We simulate disorder by partitioning
the Lorentzian-shaped cavity laterally into several subcavities
in parallel by narrow longitudinal walls with a height corre-
sponding to about 10% of the cavity depth [Fig. 5(b)]. Owing
to the different doping and local Fermi wavelength, each cavity
resonates at a slightly different back-gate voltage. However,
as shown in the simulated back-gate sweeps in Fig. 5(a), the
dispersion in doping only leads to a broadening and amplitude
suppression of the peaks, as was also predicted in Ref. [18].
The influence of the tip on transport as it approaches a
partitioned junction is more complicated as the perturbation
depends on the lateral distance from the tip to each subcavity.
This is illustrated schematically in Fig. 5(c) which shows
how moving the tip by a small distance �y brings adjacent
subcavities into and out of resonance. In the theoretical line
spectroscopy plot over the middle of the junction in Fig. 4(c),
this manifests as a coexistence between shifted (black dashed
line) and unshifted (white dashed line) components of the
main FP resonances. We find support for this picture in SGM
images obtained 100 nm closer to the surface. A typical SGM
micrograph in Fig. 5(d) shows a denser set of halos, each
with different focal points. Since at this height the tip-induced
potential is sharper, inducing the same potential perturbation
requires a smaller change in position, �U = (dU/dr)�r ,
where the halos both narrow and increase in number, allowing
us to resolve the subcavities directly. We also confirmed this
theoretically in the right panel of Fig. 5(d), which shows the
resistance computed as a function of tip position over the
center of the simulated cavity, showing the appearance of halos
around each subcavity.

Another feature of our data not described within the simple
picture of a single FP cavity can be seen by close inspection
of the data in Fig. 4(b), which shows a striking sequence of
resonances that are strongly perturbed when the tip is over
the graphene edges [see white-dashed lines in Fig. 4(c)]. To
make them more pronounced, we stepped the tip parallel to
the junction, along the line ε → χ in Fig. 5(d), and displayed
a section of the spectroscopy data captured close to the top
edge in Fig. 6(a). The resonances are made more visible by
taking the numerical second derivative (d2R) of the raw data.
The succession of peaks and troughs is highly reproducible,
periodic over the full range of back-gate voltage, and shifts
uniformly as a function of tip position. Note that in the raw
data, the peaks in d2R actually correspond to small dips and
have an average period of ≈0.33 V in back-gate voltage
[Fig. 6(b)], a factor of three smaller than the main cavity
resonances. In order to locate the focal point of the finer
resonances in SGM images, we examine “difference” images
constructed by subtracting two images captured at two values
of VBG. Since the halos associated with the main FP peaks do
not change appreciably, they are effectively eliminated from
the image. Figure 6(c) shows clearly that the remaining image
contrast shows finer halos centered over the edges of the flake.

Our observations are consistent with the presence of
coherent transmission through cavities at the edges of the
flake. One possible mechanism for their formation involves the
extra charge that accumulates at the edge in order to maintain
equilibrium in the presence of electric-field focusing from the
back gate [Fig. 7 and Ref. [24]]. Following Ref. [32], this
effect can be quantified by supposing that the capacitance per
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FIG. 6. (Color online) (a) Second numerical derivative (d2R) of
the resistance as a function of back-gate voltage and tip position
along the direction ε → χ in Fig. 5(d). Solid black lines indicate
the uniform shift in position of the fringes. (b) Left: Plot showing
the relationship between the raw back-gate trace and the numerical
derivative. Peaks in d2R correspond to dips in the raw data. Right:
Plot showing the back-gate voltage of each peak in d2R. The solid
line is a linear fit to the data. (c) Difference image constructed by
subtracting two raw SGM images captured at two different back-gate
voltages.

unit area between the graphene and the back gate, normally
assumed uniform and given by αbulk = ε/d, where d = 300
nm is the oxide thickness and ε the dielectric constant of the
SiO2, can vary with lateral position and assume a value αedge =
n/VBG at the edge of the flake. Owing to the finite density of
states in graphene, the enhanced capacitance also accelerates
the movement of the Fermi energy through the quasi-bound-
energy levels. The resulting period in back-gate voltage of a

FIG. 7. (Color online) (a) Schematic depiction of the inhomoge-
neous carrier density distribution induced by electric-field focusing
at the edges of the flake. For clarity, the field lines associated with the
charge in the dielectric coating and with the back gate have been drawn
separately. (b) Electric-field focusing enhances the charge induced
at the edges of the flake, leading to a greater change in local Fermi
wavelength for a given back-gate voltage. (c) Higher-resolution image
for the dashed box shown in Fig. 6(c), along with a simulated SGM
image showing a halo over the edge of the flake.

cavity with length L is consequently expected to be shorter
by a factor αedge/αbulk, which our data implies is ≈3. This
is in excellent agreement with our electrostatic simulations
as well as capacitance measurements in the quantum Hall
regime [32]. We also confirmed that the accumulated charge
leads to additional resonances in the back-gate sweeps [black
arrow, Fig. 5(a)], and that spatial simulations of the lower edge
of the flake exhibit halos centered on the charge-accumulation-
induced edge cavity [Fig. 7(c)].

In summary, we have directly imaged resonant quasiparticle
scattering in graphene. We have described how coherent
scattering in disordered junctions can be understood at a micro-
scopic level by inspecting different halo structures in scanning
gate images. We have identified an important type of edge
cavity effect induced by focusing of the electrostatic field. Our
work shows the power of scanning probes at revealing the de-
tailed behavior of graphene quantum devices and also paves the
way towards imaging of novel effects of quantum coherence
in ultrahigh mobility and more sophisticated heterostructure
devices based on two-dimensional atomic crystals.
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APPENDIX: QUANTUM TRANSPORT MODEL

In order to numerically study the properties of the device for
a large range of potential landscapes, gate voltages, and probe
positions, we have adopted a simplified simulation approach,
replacing a more exact, but time-consuming, self-consistent
calculation with an approximate calculation of the potential
profile within the device [31], which is then passed on to an
envelope-function-based code for transport simulation [29,33].

We start from the knowledge of the potential profile U0 in
the graphene layer for a particular set of voltages Vi0 applied
to the gates [31]. When the gate voltages are changed by
�Vi , a variation �U results in the potential profile (with
respect to U0), as well as a variation �ρ in the charge density
(with respect to the charge density ρ0 corresponding to the
profile U0). If the electrostatic coupling is modeled through
the capacitances Ci (per unit area) between the gates and the
flake, such variations are related by

�ρ =
∑

i

Ci

(
�U

−e
− �Vi

)
(A1)

(where e is the modulus of the electron charge). On the
other hand, the charge density ρ is directly related to the
number of occupied states, and thus to the local density of
states. While the exact local density of states depends on
the wave function in the device and thus on the solution
of the transport problem, in the hypothesis of slow-varying
potential it can be approximated by shifting the argument of
the density of states by the local value of the potential energy.
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Under the further hypotheses of low temperature (Fermi-Dirac
distribution approaching a step function), quasiequilibrium
(Fermi energy of the contacts nearly identical, equal to EF ),
and a sufficiently large graphene flake (density of states
approaching that of unconfined graphene), the charge density
can be expressed as

ρ = e

∫ U

EF

DOS(E − U ) dE

= sign(U − EF )
e

π (�vF )2
(U − EF )2 , (A2)

with U = U0 + �U and ρ = ρ0 + �ρ. Substituting Eq. (A1)
into Eq. (A2), a second-order equation is obtained, which can
be analytically solved in order to find the quantity �U and thus
the profile U = U0 + �U . Since, in general, the quantities U ,
U0, �U , ρ, ρ0, �ρ, and Ci are spatially varying, the calculation
has to be repeated for each point of the graphene flake.

Then, the resulting approximate potential profile is passed
on to the code for transport simulation [29,33]. The structure
is partitioned into a series of thin cascaded sections, in such
a way that within each section the potential can be assumed
as approximately constant along the transport direction. As a
consequence, in each of these regions, the envelope functions
of graphene can be written as a confined transverse component
multiplied by a longitudinally propagating plane wave. After
some analytical manipulations, the resulting Dirac equation
with Dirichlet boundary conditions is recast into a differential
equation with periodic boundary conditions, which can be effi-
ciently solved in the reciprocal space [34,35]. Then we enforce
the continuity of the wave function at each interface between
adjacent sections, on each of the two graphene sublattices
and for all the possible modes impinging on the interface. By
projecting these continuity equations on a basis of transverse
functions and solving the resulting linear system, the scattering
matrix connecting the modes at the two sides of the interface is
obtained. Recursively composing all of the scattering matrices
and applying the Landauer-Büttiker formula, we obtain the
conductance of the overall structure.

With this approach, we have first simulated the transport
behavior of the graphene flake considering the effect of the
back gate, coupled to the sample through a 0.1151 mF/(m2)
capacitance, and assuming a smooth-cavity-shaped potential
U0 with different profiles and widths. Comparing the resistance
behavior, and in particular the VBG values for which the
Fabry-Pérot resonances appear in the numerical simulations
and in the experimental measurements, we have found a good
agreement assuming a Lorentzian profile U0 with a 210 meV
depth and a 180 nm width at half maximum for VBG = 0 V
[see Figs. 3(e) and the second curve from the top of Fig. 5(a)].

Simulations have also been performed including the effect
of potential disorder and other irregularities. In particular, we
have considered several longitudinal potential walls with a
height corresponding to about 10% of the total depth of the
cavity, which partition it into subcavities in parallel with an
average width of 400 nm [see the potential profile shown in
Fig. 5(b)]. A finite dispersion is introduced in the values of
the potential at the bottom and of the width of the subcavities,
as well as in the height of the walls separating the cavities.
The resulting behavior of the resistance as a function of the
back-gate voltage is reported with the third curve from the top
of Fig. 5(a), for a small range of VBG values. Even though the
disorder in the potential landscape introduces irregularities in
the resistance behavior, the Fabry-Pérot oscillations typical of
the original profile are still clearly visible.

We have then included the effect of electric-field focusing
at the edges, obtained by solving Eq. (A2) with the complete
Poisson equation for a set of reference configurations and
parametrizing the results as a function of the back-gate voltage.
For the resulting potential profile, we have first repeated the
calculation of the resistance as a function of the back-gate
voltage. The results are shown with the lowest curve in
Fig. 5(a), and are characterized by smaller and more rapid
oscillations (similar to those observed in the experiments),
superimposed to the Fabry-Pérot resonances already observed
when the electric-field focusing at the edges is neglected.

Then, for this profile, we have performed a simulation of
the resistance variation as the probe (located at a distance
of 130 nm from the 100-nm-thick dielectric coating and
biased with a voltage VT = −10 V) is scanned over the
whole device. To this end, we have included into Eq. (A1)
a capacitance CT between the probe and each point �r of
the graphene flake, with a Lorentzian dependence on the
distance d between �r and the graphene point right underneath
the probe: CT = CTM

/[1 + (d/d0)2], with CTM
= 34 μF/(m2)

and d0 = 230 nm. The resistance values we have obtained are
shown, as a function of the probe position, in the right panel of
Fig. 5(d): multiple halos appear, analogous to those observed
in the experimental data. These halos in the bulk of the flake
originate from the formation of the subcavities and, indeed,
disappear if the scanning probe simulation is performed on a
single cavity (without the separation into several subcavities
in parallel).

We have then repeated the scanning probe simulation
neglecting charge accumulation at the edges of the flake.
The difference between the resistance values obtained with
and without the effect of charge accumulation at the edges is
shown, for a small subset of probe positions near the edge, in
the lower panel of Fig. 7(c). From these results, it is apparent
that electric-field focusing leads to halos centered on the edges.
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