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Probing the extended-state width of disorder-broadened Landau levels in epitaxial graphene
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We experimentally investigate the width of extended states in disorder-broadened Landau levels (LLs) in
top-gated epitaxial graphene on silicon carbide using two different methods: gated transport spectroscopy and
activation gap measurements on integer quantum Hall states. The transport spectroscopy reveals that the widths
of the extended states in the zero-energy (N = 0) and first excited (N = 1) LLs are of similar magnitude over the
ranges of magnetic field (4–16 T) and temperature studied (1.6–150 K). Under certain assumptions we find that
the extended-state width follows a power-law temperature dependence with the exponent η ∼ 0.3 in the N = 0
(N = 1) LL, with almost no (very weak) magnetic-field dependence. Activation gap measurements at the filling
factors of ν = 2 and 6 give results consistent with transport spectroscopy for the N = 1 LL, but indicate a larger
broadening for the N = 0 LL than deduced from the spectroscopy.
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I. INTRODUCTION

Graphene, a single layer of carbon atoms arranged in
a honeycomb lattice, possesses unique electronic properties
that originate from its relativistic Dirac-cone band structure
with electron-hole symmetry. Under high magnetic fields B,
the energy spectrum splits into unequally spaced relativistic
Landau levels (LLs) with energies ∝√

B|N |, where N (=
0, ± 1, ± 2, . . . ) is the Landau orbital index. However, its
most salient feature is the existence of the zero-energy LL
with N = 0, equally shared by electronlike and holelike states,
which is responsible for the distinctive half-integer quantum
Hall (QH) effect [1,2] and is the hallmark of the Dirac nature
of charge carriers in graphene.

A further interesting feature of Dirac electrons in graphene
is brought about by the existence of two equivalent sublattices
in its honeycomb structure, which couple with the orbital
motion to form two Dirac cones located at K and K ′ points
in the momentum space. The sublattice pseudospin, which
encodes the amplitude of the wave function on the two
sublattices, is locked with the direction of motion, making
the chirality a good quantum number [3–5]. In the zero-energy
LL, the chirality is directly related to the sublattice symmetry,
which can make the N = 0 LL behave differently from other
LLs in the presence of disorder. Theory predicts that, when
disorder preserves the chiral symmetry in the zero-energy
states, the zeroth LL is protected from the broadening due to
disorder. The types of such disorder include bond disorder [6]
and hopping disorder with a correlation length of several
tens of nanometers, which can be induced by ripples in
graphene [7,8]. On the other hand, when the type of disorder
is such that the chiral symmetry is broken, as in a random
potential, the zeroth and first LLs are expected to be subject to
broadening of a similar magnitude [9,10].

In this paper we report on our measurements of the disorder
broadening of LLs in epitaxial graphene on SiC. Specifically,
we examine the behavior of the zeroth and first LLs to
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characterize the type of disorder present in epitaxial graphene.
We employ two different methods for the same sample, namely
gated transport spectroscopy and activation gap measurements
on the QH states. As reported in Ref. [11], gated transport
spectroscopy works in the presence of nearby interface states
with a known density of states (DOS), which provide the
conversion from gate voltage to the Fermi level. The method
allows the direct probing of the extended-state width, which
was demonstrated at 1.5 K in Ref. [11]. Here we systematically
investigate the temperature dependence of the extended-
state width. Under certain assumptions we find a power-law
temperature dependence with the exponent η ∼ 0.3 for both
the zeroth and first LLs. The obtained extended-state widths
are then compared with those deduced from the activation gap
measurements. While the transport spectroscopy shows similar
width for the zeroth and first LLs, the activation measurements
indicate a larger broadening of the zeroth LL. These results
indicate that random disorder [9] is dominant in our epitaxial
graphene sample, rather than the typical hopping disorder
caused by ripples [7].

This paper is organized as follows. Section II describes
the sample fabrication and measurement methods. Section III
presents the transport spectroscopy. Section IV presents acti-
vation gap measurements performed on the same sample. In
Sec. V the results obtained from the two methods are compared
and discussed. Our results obtained from epitaxial graphene
with adjacent interface states are compared with previous
reports on various graphene samples including exfoliated
graphene on SiO2. The last section provides a summary.

II. SAMPLE AND METHOD

Our device is a top-gated Hall bar 200 μm long and
40 μm wide, fabricated from graphene epitaxially grown
on 6H-SiC(0001). The graphene growth procedure is similar
to that reported in Ref. [12]. We chemically cleaned the
SiC surface, heated the SiC wafer in a furnace to around
2000 K in an Ar atmosphere (�100 torr), and then cooled
it to room temperature. The whole surface was then covered
with continuous regions of monolayers of graphene and
discontinuous narrow strips consisting of unintentionally
grown few-layer graphene. Since few-layer graphene is formed
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as flakes or islands less than several micrometers in size,
the charge transport measurements probe only the properties
of monolayer graphene in high magnetic fields [11]. Un-
der this growth condition, a 6

√
3 × 6

√
3 buffer layer with

dangling-bond states emerges under the monolayer graphene
[11,13–15].

On the graphene/SiC wafer, HSQ was deposited followed
by sputtered SiO2. The SiO2/HSQ gate insulator made with
the above method does not degrade the carrier mobility in
graphene, similarly to the polymer [15,16] or dielectrics with
high permittivity [17].

Transport measurements were performed using standard
lock-in techniques with a current of ∼10 nA at temperatures
of 1.6 to 150 K. We examined several devices and confirmed
that similar results are generally produced. For the quantitative
consistency of our analysis, we here present the results
obtained from one sample.

III. GATED TRANSPORT SPECTROSCOPY

A. Gate-voltage dependence of Fermi level

To explain how our transport spectroscopy works, we first
illustrate the impact of interface states near graphene on the
relation between gate voltage Vg and the Fermi level εF of
graphene. Figure 1(a) shows a two-dimensional plot of the
longitudinal resistance Rxx at 1.6 K as a function of Vg and B.
Integer QH states at a LL filling factor ν ≡ nGh/eB of ±2, +6,
and +10 are visible as dark regions separated by Rxx peaks at
ν = 0, 4, and 8. (nG is the electron density in graphene, h is
Planck’s constant, and e is the elementary charge.) The striking
feature of the data in Fig. 1(a) is that the Landau fan appears as
a set of unequally spaced parabolic curves, instead of equally
spaced straight lines as usually observed in graphene as well
as in conventional semiconductors. The similarity between
the trajectories of the Rxx peaks in Fig. 1(a) and the energy
diagram of the relativistic graphene LLs is obvious if we take
the Vg axis in Fig. 1(a) as the energy axis. This indicates that
the unusual relation εF ∝ Vg − VCNP holds in our sample, as
opposed to the normal behavior nG ∝ Vg − VCNP, where VCNP

is the gate voltage at the charge neutrality point.
As shown in Ref. [11], this unusual behavior is due to the

interplay between graphene quantum capacitance and interface
state density of states (DOS). Figure 1(b) illustrates the
essence of the model. When Vg is varied, charge redistribution
occurs among the top gate, graphene, and the interface states
immediately below and above the graphene with a constant
DOS γ1 and γ2, respectively [18]. When the DOS of the
interface states is large as compared to that of the graphene
LLs, most of the gate-induced charges are accommodated by
the interface states. In this case, the Fermi level of graphene,
which equals the electrochemical potentials of the interface
states, moves almost linearly with Vg. Consequently, gate
sweep measurements function as the energy spectroscopy of
graphene LLs. The model in Ref. [11] allows us to calculate
nG and hence ν as a function of Vg and B. The curves of
constant filling ν = 4N (N = 0, ± 1, ± 2, . . . ), calculated
with appropriate values of γ1 and γ2, match the trajectories
of the Rxx peaks, as shown by the dashed lines in Fig. 1(a).
The solid lines in Fig. 1(a) delineate the borders between
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FIG. 1. (Color online) (a) Rxx plotted vs Vg and B measured at
T = 1.6 K. The dashed and solid lines show the results of calculations
using the model in (b). The dashed lines represent the half-fillings
of the graphene LLs, i.e., ν = 4N . The solid lines indicate borders
separating regions with integer and noninteger fillings. (b) Schematic
energy diagram of graphene and the interface states above and below
graphene in the presence of magnetic fields. −en1 and −en2 are the
charge densities of the interface states below and above graphene,
respectively.

the regions where the Fermi level is in the gap between
LLs and those where it lies in a LL. The width of the latter
regions, which we denote by �Vφ , represents the change in Vg

necessary to fill an empty LL in the absence of disorder.
Our aim is to deduce the width �E of the extended states

from the measured width �Vg of the Rxx peaks. There are
two contributors to �Vg with different physical origins: one
is associated with the transfer of charge from the gate to the
graphene (and interface states), and the other with the shift
of the Fermi level by �E. The former can be expressed as
(�nG/nφ)�Vφ , where nφ ≡ 4eB/h is the LL degeneracy and
�nG is the change in carrier density that occurs when the gate
voltage is varied by �Vg. Thus, �E can be expressed as [19]

�E = βe

(
�Vg − �nG

nφ

�Vφ

)
, (1)
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where

β = Cox

Cs1 + Cs2

(
1 + Cγ 2

Cc2

)−1

(2)

is a dimensionless constant and

�Vφ =
(

1 + Cγ 2

Cc2

)
enφ

Cox
. (3)

(See Appendix for a more detailed derivation of these
equations and the parameters used in this paper.) In Eqs. (2)
and (3) Cox is the capacitance of the gate insulator, Cci

is the geometrical capacitance between graphene and the
interface states, Cγ i ≡ e2γi is the quantum capacitance [20] of
the interface states, and Csi = (1/Cci + 1/Cγ i)−1, where the
subscript i = 2 (1) refers to the upper (lower) interface states.
(Throughout this paper we use the term “capacitance” to refer
to the capacitance per unit area.) In the next subsection we
use Eq. (1) to deduce �E from �Vg measured at different
temperatures.

B. Experimental estimation of LL broadening

Figure 2 shows the traces of Rxx vs Vg (black solid lines)
at B = 4, 10, and 16 T, taken at T = 1.6 K. At a high B, the
Rxx peaks at ν = 0 and 4 are well separated from the others.
As shown by the dashed lines, these peaks can be nicely fitted
with Gaussian functions, from which we deduce the full width
at half maximum �Vg. We fitted the Rxx traces obtained at
different temperatures ranging from 1.6 to 150 K to deduce
�Vg for the N = 0 and N = 1 LLs. At an elevated T , Rxx

peaks become broader and adjacent peaks start to overlap.
Such an overlap between LLs becomes particularly relevant at
low fields and for high LLs, where the LL energy separation
becomes small. In such cases, peak decomposition was carried
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FIG. 2. (Color online) Rxx as a function of Vg at magnetic fields
of (a) 16, (b) 10, and (c) 4 T. The solid lines indicate experimental
data. The dashed lines are fits to the data with Gaussian functions. In
(c), only the Rxx peaks corresponding to the N � 2 LLs are fitted.
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FIG. 3. (Color online) Width �Vg of the Rxx peaks in the
(a) N = 0 and (b) N = 1 LLs at various T , plotted as a function
of B.

out using multiple Gaussian functions to extract the �Vg value
for each LL (see the B = 4 T data in Fig. 2). In the following
analysis we use only those data with the maximum overlap
occurring at tails lower than ∼10% of the peaks.

In Figs. 3(a) and 3(b) the �Vg values deduced for the N = 0
and 1 LLs at different temperatures are plotted as a function
of B, respectively. The N = 0 and 1 LLs share a similar
dependence of �Vg on B and T . �Vg is an increasing function
of both B and T , with the B dependence becoming stronger
at higher T . We attribute the observed T dependence of �Vg

to the increased fraction of the extended states at elevated
temperatures. This is reasonable, as the overall LL width
including both the extended and localized states is determined
mostly by a sample-dependent static disorder.

We assume that the disorder broadening of each LL is
described by a Gaussian-shaped DOS

D(E) ≡ nφ√
2πσ

exp

[
− (E − εc)2

2σ 2

]
, (4)

with the full width at half maximum W = 2
√

2 ln 2σ (σ is the
standard deviation of the DOS) and the level center εc. Then,
�nG and �E in Eq. (1) are linked to each other as

�nG =
∫

D(E)[f (E,εc + �E/2) − f (E,εc−�E/2)]dE,

(5)

where f (E,μ) ≡ 1/[1 + e(E−μ)/kBT ] is the Fermi-Dirac func-
tion (kB is the Boltzmann constant) [21]. Thus, �E can be
obtained by solving Eqs. (1) and (5) self-consistently. Note
that Eq. (5) includes finite-temperature effects, allowing us to
estimate �E over a broad temperature range. To analyze the
experimental data, we introduce a dimensionless parameter
r ≡ �E/W and use r , instead of W , as an input parameter.
We take r = 0.5 at T = 95 K independent of B. As we will
see later, this yields results consistent with the activation gap
measurements [22]. �E obtained in this way is used to deduce
W (= �E/r) at each B, and this W value is used to analyze
the data at different temperatures.

The results for the data at B = 8, 12, and 15 T are
compiled in Figs. 4(a) and 4(b), where �E for the N = 0
and N = 1 LLs is plotted as a function of T , respectively. In
the following we denote the extended-state width of the N th
LL by �E

sp
N . (The superscript indicates experimental values

deduced from transport spectroscopy.) We find that �E
sp
0 is
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FIG. 4. (Color online) T dependence of �E
sp
N at different B

deduced for the (a) N = 0 and (b) N = 1 LLs. The solid lines
represent power-law fits, �E

sp
N ∝ T η, yielding η = 0.30–0.31 for

N = 0 and η = 0.32–0.35 for N = 1.

nearly B independent; the data for different magnetic fields
collapse onto a single line in the log-log plot, indicating the
power-law behavior given by �E

sp
0 ∝ T η with η = 0.30–0.31.

On the other hand, �E
sp
1 shows a slight increase with B. Yet,

the temperature dependence of all the data fits nicely with the
power law with η = 0.32–0.35, except for those at the highest
T of 150 K [23].

It is interesting to compare the exponent η deduced above
and the critical exponent κ of the QH plateau-to-plateau transi-
tion. By performing magnetoconductivity measurements on an
exfoliated graphene sample, Giesbers et al. found a power-law
dependence with κ = 0.37 ± 0.05 for the width of dσxx/dν

and κ = 0.41 ± 0.04 for dσxy/dν in the N = 1 LL, where σxx

and σxy are diagonal and Hall conductivities, respectively. In
contrast, they observed essentially no temperature dependence
in the N = 0 LL [24]. (On the other hand, using an exfoliated
sample with an insulating behavior at ν = 0, Amado et al.
obtained κ = 0.58 ± 0.03 for the plateau-insulator transition
in the N = 0 LL [25].) A more recent study by Shen
et al. of epitaxial graphene samples found κ ∼ 0.42 for the
N = 1 LL [26], while the N = 0 LL was not accessed in their
top-gated epitaxial graphene. These values reported for the
N = 1 LL in graphene are consistent with the value κ ∼ 0.42
known for conventional two-dimensional systems with
short-range disorder [27–29]. Considering the difference in
the way η and κ are defined and deduced, the similarity
between the values, η = 0.32–0.35 and κ ∼ 0.42, is
noteworthy. However, we will not attempt a more quantitative
comparison as our analysis is based on many assumptions.
Nevertheless, our data clearly demonstrate that in our epitaxial
graphene device the N = 0 and N = 1 LLs behave similarly,
both qualitatively and quantitatively.

IV. ACTIVATION GAP MEASUREMENTS

Activation gap measurements of QH states have often been
used to estimate the width of disorder-broadened LLs [30,31].
When the Fermi level is located in the middle of a gap between
adjacent LLs, the thermal excitation of charge carriers across
the LL gap gives rise to finite bulk transport at elevated
temperatures. The temperature dependence of the longitudinal
resistance is described by the Arrhenius relation Rxx ∝
exp(−�/2kBT ), where � is the activation gap. In the absence
of disorder, and if the contribution of Coulomb interaction
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FIG. 5. (Color online) (a) Sketch of the DOS of disorder-
broadened graphene LLs. Extended and localized states are shown
in bright and dark colors, respectively. (b) and (c) Rxx as a function
of 1/T at (b) ν = 2 and (c) ν = 6, measured at different B. The
solid lines are fits to the data using the Arrhenius relation. (d) �ν=2

(top) and �ν=6 (bottom) vs B. �meas
ν=2(6), indicated by open symbols, is

the measured activation gap at ν = 2(6), while �bare
ν=2(6) is the energy

spacing between the relevant LLs. The dashed lines represent the
behavior expected for a constant gap reduction of 450 (300) K from
�bare

ν=2(6).

is negligible, � would equal the LL separation, which we
denote by �bare. Experimentally, however, the measured gaps
�meas are usually smaller than the LL separation, and their
difference � = �bare − �meas is attributed to the finite width
of the LLs. It is generally understood that �meas measures the
energy difference between the lower end of the extended states
in the upper LL and the upper end of the extended states in the
lower LL [Fig. 5(a)]. The width �EN of the extended states
in the N th LL can thus be deduced from the activation gaps at
ν = 4N + 2 using the following relation:

�meas
ν=4N+2 = �bare

ν=4N+2 − 1
2 (�EN + �EN+1), (6)

where �bare
ν=4N+2 = v

√
2�eB(

√
N + 1 − √

N ) with v the
Fermi velocity [32] and � = h/2π .
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We performed activation gap measurements of the QH
states at ν = 2 and 6 to estimate �E0 and �E1. Figures 5(b)
and 5(c) show the Arrhenius plots of Rxx at ν = 2 and 6,
respectively, measured at various magnetic fields. As the
solid lines indicate, Rxx vs 1/T can be fitted with Rxx ∝
exp(−�meas

ν /2kBT ) over the temperature ranges shown. The
values of �meas

ν=2 and �meas
ν=6 obtained from these fits are plotted

as a function of B in Fig. 5(d). The plots show that for both
ν = 2 and 6, the measured gap is significantly smaller than the
energy separation �bare

ν between the relevant LLs. As shown
in the figure, a gap reduction by � = 450 K for ν = 2 (300 K
for ν = 6) accounts for the measured gap at low fields (�4 T).
However, if we assume that � is constant and B independent, at
high fields we obtain �meas

ν values that are considerably larger
than those observed. This suggests that � is an increasing
function of B.

V. DISCUSSION

We estimate the width of the extended states in the N = 0
and 1 LLs from the measured activation gaps at ν = 2 and
6. An important assumption we used is that the broadening
of the N = 2 LL is identical to that of the N = 1 LL. This
assumption is reasonable as the N �= 0 LLs are not affected
by the presence of the particle/hole symmetry or the chiral
symmetry in graphene. It is also partially verified by the
transport data, which indicate similar �Vg values for the
N = 1 and N = 2 LLs. Hence, substituting �E2 = �E1 into
Eq. (6) with N = 1, we obtain �E1 from �meas

ν=6 . Then, using
this �E1 value along with Eq. (6) with N = 0, we obtain �E0

from �meas
ν=2 .

The open circles in Figs. 6(a) and 6(b) represent the
obtained �Eac

0 and �Eac
1 , respectively, plotted as a function

of B. (The superscript of �Eac
N indicates experimental values

deduced from the activation gap measurements.) For compar-
ison, �E

sp
0 and �E

sp
1 obtained from transport spectroscopy at

95 K are plotted together by filled triangles. The temperature
of 95 K was chosen so that it overlaps the temperature range
of the activation measurements. Note that �E

sp
0 and �E

sp
1

are calculated with r = 0.5. This r value was chosen because
it gives �E

sp
1 consistent with �Eac

1 over the entire range of
magnetic fields.

In contrast to the N = 1 LL, for which the transport
spectroscopy and activation measurements give consistent
results, for the N = 0 LL, the two methods give different
results: �Eac

0 is much larger than �E
sp
0 . Consequently, the

activation measurements indicate that �Eac
0 is more than twice

as large as �Eac
1 , whereas the transport spectroscopy indicates

�E
sp
0 ∼ �E

sp
1 . Nevertheless, it is fair to say that we found no

evidence that the N = 0 LL is narrower than the N = 1 LL in
either experiment. This indicates that random disorder [9,10]
is dominant in our sample, rather than the oriented-hopping
disorder that preserves the chiral symmetry [7,8].

The origin of the disagreement between the results of the
two experiments for the N = 0 LL is unclear at present.
If we consider the fact that transport spectroscopy seems
to probe the extended-state width more directly [33], the
disagreement is likely to be due to the overestimation of �Eac

0
or � = �bare − �meas. As shown in Fig. 5(d), for ν = 2 and
6, � grows with increasing B. This behavior is qualitatively
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FIG. 6. (Color online) �Eac
N (open circles) as a function of B for

(a) N = 0 and (b) N = 1. For comparison, �E
sp
N at 95 K (closed

triangles) deduced with r = 0.5 are shown. The error bars indicate
the range of values that �E

sp
N takes when r is varied from 0.3 to 0.7.

different from that in previous reports, where � is nearly B

independent [34], or decreases with increasing B [31,35].
� increasing with B was reported for bilayer graphene on
SiO2 [30], where the B dependence was attributed to the
inhomogeneous perpendicular component of B that could be
induced by ripples [36–38] in graphene. However, such a
scenario seems unrealistic for the present case. To account
for both the large � value and its B dependence, the ripple
angles must be as large as ∼30◦ with respect to the sample
normal [39]. This is much larger than the typical ripple angle of
a few degrees in epitaxial graphene [36]. In addition, such large
ripple angles would imply that the perpendicular B component
ranges from 1.0 to 0.87 times that of the applied B. In such a
situation the ν = 10 QH state would hardly be resolved.

Finally, we refer to previous studies on different
types of graphene samples using various experimental ap-
proaches [31,35,40–44]. Scanning tunneling microscopy per-
formed on graphene on graphite at 4 K showed that the width
of the zeroth LL (∼25 meV) was slightly larger than that
of higher LLs (∼15 meV) [40]. Transport measurements on
double layers of graphene separated by a thin dielectric layer
produced very similar results, namely 28 and 13 meV for
the zeroth and first LLs, respectively [41,42]. Capacitance
measurements on graphene on SiO2 revealed broadening of a
similar magnitude (30 meV) for the zeroth and first LLs [43]. In
contrast, activation gap measurements performed for graphene
on SiO2/Si at a very high magnetic field of 30 T revealed
different behavior [31,35]. The measurements show that, while
the broadening of the extended states in the first LL was around
35 meV, that of the zeroth LL was vanishingly small even at
T � 150 K. As shown in Fig. 6, our transport spectroscopy
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data at 95 K analyzed with r = 0.5 yield �E ∼ 30 meV for
both N = 0 and N = 1 LLs, which translates into the overall
LL width of W ∼ 60 meV. We emphasize that a direct compar-
ison between our results and previous reports is difficult, as the
interface states present in our epitaxial graphene sample may
provide an additional scattering mechanism. Nevertheless, we
believe that our results will stimulate further work to gain
deeper understanding of the disorder effects in graphene and
other types of two-dimensional electron systems.

Further studies are needed to explore the LL broadening
in differently fabricated epitaxial graphene devices, such as
those using a different gate insulator and a SiC substrate with
a different orientation [45] or a substrate modulated by N
doping [46,47].

VI. SUMMARY

In summary, we characterized the disorder broadening of
LLs in top-gated epitaxial graphene using two independent
methods applied to the same sample. Transport spectroscopy
indicates that the widths of the extended states in the N =
0 and 1 LLs are similar both in magnitude and in their
dependence on temperature and magnetic field. Activation
measurements gave results consistent with transport spec-
troscopy for the N = 1 LL, but indicated a considerably larger
broadening for the N = 0 LL. These results indicate that
the random potential disorder is dominant in our epitaxial
graphene.
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APPENDIX: DERIVATION OF EQUATIONS

In this Appendix we derive Eqs. (1)–(3) of the main text.
Suppose that the Fermi level of graphene moves from εF to
εF + δεF within a disorder-broadened LL as the gate voltage
is varied from Vg to Vg + δVg. The resultant change δnG

in nG is accompanied by additional charge transfers −eδn1

and −eδn2 from the gate to the lower and upper interface
states, respectively, where the electrochemical equilibrium
with graphene is given by

δn1(1/γ1 + e2/Cc1) = δεF, (A1)

δn2/γ2 − (δn1 + δnG)e2/Cc2 = δεF. (A2)

Here the term δn1(2)/γ1(2) represents the shift in the chemical
potential of the lower (upper) interface states. The remainder
on the left-hand sides represents the change in the electrostatic
potential caused by the net charge transfer from the upper
interface states to graphene −e(δn1 + δnG) and that from
graphene to the lower interface states −eδn1. Cc1(2) ≡
ε1(2)/d1(2) is the geometrical capacitance between graphene
and the lower (upper) interface states, where d1(2) and ε1(2) are
the relevant distance and effective permittivity. By substituting
these equations into e(δn1 + δn2 + δnG) = CoxδVg, where Cox

is the capacitance of the gate insulator, we have

δnG + Cs1 + Cs2

e2
δεF = Cox

e

(
1 + Cγ 2

Cc2

)−1

δVg. (A3)

Here Cγ 1(2) ≡ e2γ1(2) is the quantum capacitance [20] of
the lower (upper) interface states, and Cs1(2) ≡ [1/Cγ 1(2) +
1/Cc1(2)]−1.

The change in Vg necessary to fill an empty LL in the
absence of disorder is obtained by substituting δεF = 0, δnG =
4eB/h (≡ nφ), and δVg = �Vφ into Eq. (A3) as

�Vφ =
(

1 + Cγ 2

Cc2

)
enφ

Cox

[Eq. (3) of the main text]. The width �E of the extended
state in the presence of disorder is obtained by substituting
δnG = �nG, δεF = �E, and δVg = �Vg into Eq. (A3) as

�E = βe

(
�Vg − �nG

nφ

�Vφ

)
,

where

β = Cox

Cs1 + Cs2

(
1 + Cγ 2

Cc2

)−1

[Eqs. (1) and (2) of the main text]. For the analysis presented
in this paper, we used γ1 = 5.0 × 1012 eV−1 cm−2 [15], γ2 =
3.4 × 1013eV−1 cm−2, d1 = d2 = 0.3 nm, ε1 = ε0, and ε2 =
3ε0, where ε0 is the vacuum permittivity. These parameters
yield β = 0.0027.
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