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Linear magnetotransport in monolayer MoS2
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A momentum balance equation is developed to investigate the magnetotransport properties in monolayer
molybdenum disulphide when a strong perpendicular magnetic field and a weak in-plane electric field are applied
simultaneously. At low temperature, in the presence of intravalley impurity scattering, Shubnikov–de Haas
oscillation shows up accompanied by a beating pattern arising from large spin splitting and its period may halve
due to the high-order oscillating term at large magnetic field for samples with ultrahigh mobility. In the case
of intervalley disorders, there exists a magnetic-field range where the magnetoresistivity almost vanishes. For a
low-mobility layer, a phase inversion of oscillating peaks is acquired in accordance with recent experiment. At
high temperature when Shubnikov–de Haas oscillation is suppressed, the magnetophonon resonances induced
by both optical phonons (mainly due to homopolar and Fröhlich modes) and acoustic phonons (mainly due to
intravalley transverse and longitudinal acoustic modes) emerge for a suspended system with high mobility. For
the single layer on a substrate, another resonance due to surface optical phonons may occur, resulting in a complex
behavior of the total magnetoresistance. The beating pattern of magnetophonon resonance due to optical phonons
can also be observed. However, for a nonsuspended layer with low mobility, the magnetoresistance oscillation
almost disappears and the resistivity increases with field monotonically.
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I. INTRODUCTION

The rise of graphene [1,2], showing outstanding mechanical
and electronic properties, launched the era of monolayer
material. However, pristine graphene does not have a band
gap, a property essential for electronic applications. Although
it is possible to open a small band gap in graphene by some
methods [3,4], it will inevitably lead to increased fabrica-
tion complexity and reduced performance of devices [5,6].
This produces great limitations on its becoming a perfect
candidate for the next-generation nanoelectronic material. In
contrast to graphene, the transition-metal dichalcogenides are
semiconductors with a naturally occurring band gap, which
overcomes this problem directly. A prominent representative in
this dichalcogenide family is molybdenum disulphide (MoS2).
Bulk MoS2 has an indirect gap, while monolayer MoS2, which
can be isolated by exfoliation techniques similar to graphene,
is a direct-gap semiconductor with a gap of 1.9 eV [7].
Due to the large carrier mobility [8], high current carrying
capacity [9], strong spin-orbit coupling, and coupling of
spin and valley degrees of freedom, monolayer MoS2 may
become a replacement of graphene or even a candidate for the
exploitation of novel valleytronic devices [10].

Regarding transport investigation of monolayer MoS2,
the linear mobility is close to 200 cm2/Vs at low temper-
ature where a high-κ gate dielectric was used to suppress
the charged-impurity scattering strongly [11]. This value
is still lower than the theoretical prediction, where the
highest phonon-limited mobility in n-type monolayer MoS2

is 410 cm2/Vs at room temperature [12]. On the other
hand, the single-layer MoS2 device grown by chemical vapor
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deposition shows low-temperature mobility up to 500 cm2/Vs,
where the leading scattering mechanism is believed to be the
short-range scatterers at high carrier density [13]. Hence, the
main scatterings determining the linear mobility is still an
open question. Further, looking at all theoretical studies on
electric transport [12,14,15], the strong spin-orbit coupling
in n-type monolayer MoS2, which can lead to interesting
coupled-spin-valley physics [10,16,17], is omitted completely
and the energy band is chosen to be a simple parabolic one.

Especially in magnetotransport the spin-orbit coupling
is important, which may result in the beating pattern of
Shubnikov–de Haas oscillation (SdHO) [18] and induce direct
magnetoresistance oscillation [19]. Due to the spin-valley
coupling, the magnetic control of the valley degree of freedom
in monolayer MoS2 in the presence of normal magnetic field
has been achieved [20]. The magneto-optical properties [21]
and magnetocapacitances [22] have been analyzed in this
system. However, even the basic SdHO considering all kinds
of scattering mechanisms in this single layer has not been
seriously involved either in theoretical or in experimental
works. Only recently, the SdHO was observed experimentally
for the first time in monolayer and few-layer MoS2 [23]. In this
paper, we apply a momentum balance equation to investigate
the linear magnetotransport at both low and high temperatures
including SdHO and the magnetophonon resonance (MPR)
effect induced by optical and acoustic phonons for both
suspended and nonsuspended samples.

II. BASIC FORMULATION

We consider a monolayer of transition-metal dichalco-
genide MoS2 having a large number N carriers in the x-y
plane. These carriers, in addition to interacting with each
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other, are scattered by the random impurities and coupled
with phonons in MoS2 and substrate. There exists an external
magnetic field B = (0,0,B) applied along the z direction and
a uniform electric field E in the monolayer plane. The total
Hamiltonian of the system is given by

H = He + Hph + Hei + Hep. (1)

Here the carrier partHe = ∑
j (hj + erj · E) + ∑

i<j Vc(r i −
rj ) with rj = (xj ,yj ) being the in-plane coordinate for the
j th carrier and −e denoting its charge, and Vc(r i − rj )
standing for the Coulomb coupling potential between the
ith and j th carriers, which, although it depends solely on
r i − rj for the thin-layer system, may vary with the spatial
(z direction) dielectric environment around the layer. The
single-carrier low-energy Hamiltonian near the K (−K) point
in the Brillouin zone for the j th carrier in the presence of
magnetic field is given by [10,17]

hj = at(τjπjxσjx + πjyσjy) + �

2
σjz − λτj ŝjz ⊗ σjz − 1

2
.

(2)

Here a is the lattice constant, t is the hopping integral, � is the
energy gap, λ is the spin-orbit coupling parameter, τj = ±1 is
the valley index of the j th carrier referring to ±K valley, π j ≡
pj + eA(rj ) = (πjx,πjy) is the canonical momentum with
pj = (pjx,pjy) being the momentum of the j th carrier and
the vector potential in the Landau gauge A(rj ) = (−Byj ,0),
σ j = (σjx,σjy,σjz) is its pseudospin operator acting on the
orbit {dz2 ,(dx2−y2 + iτj dxy)/

√
2}, and ŝjz is the z component

of its real spin operator. There are Q valleys located near the
halfway points along the �-K axes, which may introduce an
additional intervalley scattering process, and thus influence
the carrier transport [15]. However, the accurate value of
the energy separation between the K and Q points is still
unsettled [12,15,24] with the estimate larger than 50 meV.
In the present calculation, the Fermi energy of this discussed
system is far below Q valleys. Hence, we can safely neglect
the limited effect of Q valleys and assume the system to
be in the K-valley dominated carrier transport regime. Hph,
Hei, and Hep are phonon Hamiltonian, carrier-impurity, and
carrier-phonon interaction, whose forms can be found in the
textbook [25] and Refs. [26] and [27].

In terms of the center-of-mass (c.m.) momentum and
coordinate defined as P = ∑

j pj and R = N−1 ∑
j rj for the

whole system of N carriers and the relative-carrier momentum
and coordinate p′

j = pj − P/N and r ′
j = rj − R of the j th

carrier [27,28], the carrier Hamiltonian He of this coupled
many-body system can be written as the sum of a c.m. part
Hcm and a relative carrier part Her, He = Hcm + Her, with

Hcm = 1

N

∑
j

at(τjΠxσjx + Πyσjy) + NeE · R,

= V · Π + NeE · R, (3)

Her =
∑

j

[
at(τjπ

′
jxσjx + π ′

jyσjy) + �

2
σjz

− λτj ŝjz ⊗ σjz − 1

2

]
+

∑
i<j

Vc(r ′
i − r ′

j ). (4)

Here Π ≡ P + NeA(R) = (Πx,Πy) is the c.m. canonical mo-
mentum of the total system, π ′

j ≡ p′
j + eA(r ′

j ) = (π ′
jx,π

′
jy)

is the canonical momentum for the j th relative carrier, and

V = Ṙ = −i[R,H] = 1

N

∑
j

at(τjσjx î + σjy ĵ ) (5)

is the c.m. velocity operator of the carrier system.
Note that the commutation relation between the c.m. part

Hcm and the relative-carrier part Her is of order 1/N . Hence
for a macroscopically large N system the c.m. motion and
the relative motion of carriers are truly separated from each
other. A spatially uniform electric field E shows up only in the
c.m. part Hcm, and Her is just the Hamiltonian of a monolayer
MoS2 subject to a perpendicular magnetic field without the
electric field. The coupling of two parts appears only through
the carrier-impurity and carrier-phonon interactions.

To proceed with the calculation of transport properties in
monolayer MoS2 in the presence of a magnetic field, we can
write down all the physical quantities in the Landau represen-
tation. The Landau levels of the single-particle Hamiltonian h

is labeled by a band index α = ±1 for conduction and valence
band, valley index τ = ±1 for K and −K valley, and spin
index s = ±1 for spin up and spin down in addition to the
Landau index n with the form

εατns = τsλ̄ + α

√
(�̄ − τsλ̄)2 + nω2

c , (6)

for n = 1,2,3, . . ., while for n = 0

ετ0s = −τ (�̄ − sλ̄) + sλ̄, (7)

with �̄ = �/2, λ̄ = λ/2, and the cyclotron frequency ωc =√
2at/ lB = √

2|e|Bat . One should take notice of the fact that
the zero level (n = 0) for K valley (τ = +1) is in the valence
band, while the zero level (n = 0) for −K valley (τ = −1) is in
the conduction band. The corresponding eigenstates, including
zero levels (n = 0), are expressed as ατns = χs ⊗ ϕα,τ

n,s (r,kx),
with χs standing for the eigenstate of ŝz and

ϕα,+1
n,s (r,kx) = eikxx√

�
α,+1
n,s

(
�α,+1

n,s φn−1,kx
(y)

φn,kx
(y)

)
, (8)

ϕα,−1
n,s (r,kx) = eikxx√

�
α,−1
n,s

(
φn,kx

(y)

�α,−1
n,s φn−1,kx

(y)

)
. (9)

Here kx is the x component of wave vector k, the coefficient

�α,τ
n,s =

√
nωc

(�̄ − τsλ̄) − ατ
√

(�̄ − τsλ̄)2 + nω2
c

, (10)

and �α,τ
n,s = (�α,τ

n,s )2 + 1. Note that for K valley τ = +1 (−K

valley τ = −1), only the valence band α = −1 (conduction
band α = +1) is allowed when n = 0. φn,kx

(y) is the harmonic
oscillator eigenfunction given by

φn,kx
(y) = 1√

2nn!lB
√

π
exp

[
− (y − yc)2

2l2
B

]
Hn

(
y − yc

lB

)
,

(11)

with Hn(x) the Hermite polynomial, and yc = kx/(eB).
In the Landau representation, the carrier-impurity and
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carrier-phonon Hamiltonians including both intravalley and
intervalley interactions have the following forms:

Hei =
∑
q,a

∑
α,τ,n,s

α′,τ ′,n′,s ′

Uττ ′(q)J α′τ ′n′s ′
ατns (q)eiq·(R−ra )

× c†ατnscα′τ ′n′s ′ , (12)

Hep =
∑
q,ν

∑
α,τ,n,s

α′,τ ′,n′,s ′

Mττ ′(q,ν)J α′τ ′n′s ′
ατns (q)φqνe

iq·R

× c†ατnscα′τ ′n′s ′ . (13)

Here Uττ ′(q) and Mττ ′(q,ν) are the intravalley or intervalley
carrier-impurity scattering potential with ra being the impurity
position and carrier-phonon coupling matrix of the ν branch,
respectively; cατns and c

†
ατns are the annihilation and creation

operators of carrier; φqν = bqν + b
†
−qν is the phonon field

operator with bqν and b
†
qν being the annihilation and creation

operators for a two-dimensional (2D) phonon of wave vector
q in the branch ν having frequency �qν ; and the integral

J α′τ ′n′s ′
ατns (q) =

∫
d r ′〈ϕα,τ

n,s (r ′,kx)
∣∣eiq·r ′ ∣∣ϕα′,τ ′

n′,s ′ (r ′,kx)
〉
. (14)

The derivation of the momentum balance equation starts
from the rate of change of the c.m. canonical momentum
Π̇ = −i[Π,H]. To linear order in the carrier-impurity and
carrier-phonon couplings [27–29], the statistical average of
this operator equation can be obtained by using the initial
density matrix ρ̂0 = Z−1e−(Hph+Her)/T at temperature T in the
case of weak in-plane electric field E. In the dc steady state,
〈Π̇〉 = 0, the momentum balance equation for a system of unit
area (N is thus understood as the carrier number density) reads

0 = −Nev × B − NeE + f ei + f ep, (15)

with v = 〈V 〉 being the averaged carrier drift velocity. The
frictional forces experienced by the center of mass due to
impurity and phonon scatterings, f ei and f ep, have the
following form:

f ei = ni

∑
q,τ,τ ′

|Uττ ′(q)|2q�ττ ′
2 (q,ω0), (16)

f ep =
∑

q,τ,τ ′,ν

|Mττ ′(q,ν)|2q�ττ ′
2 (q,�qν + ω0)

×
[
n

(
�qν

T

)
− n

(
�qν + ω0

T

)]
. (17)

In the above expressions, ni is an effective impurity density;
n(x) = (ex − 1)−1 is the Bose distribution function; ω0 ≡
q · v; �ττ ′

2 (q,ω) is the imaginary part of the Fourier spectrum
of the valley-dependent relative-carrier density correlation
function, defined by

�ττ ′
(q,t − t ′) = −iθ (t − t ′)

〈[
ρττ ′

q (t),ρτ ′τ
−q (t ′)

]〉
0, (18)

where ρττ ′
q (t) = eiHert ρττ ′

q e−iHert with

ρττ ′
q =

∑
α,n,s

α′,n′,s ′

J α′τ ′n′s ′
ατns (q)c†ατnscα′τ ′n′s ′ ,

and 〈· · · 〉0 stands for the statistical averaging with respect to
the initial density matrix ρ̂0 [27,28].

In most cases the electron density-correlation function
in the presence of intercarrier coupling, �ττ ′

2 (q,ω), can be
obtained in the random-phase approximation through the
density-correlation function �ττ ′

02 (q,ω) in the absence of
intercarrier coupling,

�ττ ′
2 (q,ω) = �ττ ′

02 (q,ω)

|εττ ′(q,ω)|2 , (19)

where εττ ′(q,ω) is the carrier-coupling related RPA screening
function or carrier screening function, which may vary with the
dielectric environment of two-dimensional (2D) monolayer.
Therefore, in Eqs. (16) and (17) the �ττ ′

2 (q,ω) function
can be replaced by the �ττ ′

02 (q,ω) function, as long as the
impurity and phonon scattering potentials are considered
screened by the intercarrier coupling: Uττ ′(q)/εττ ′(q,ω) and
Mττ ′(q,ν)/εττ ′ (q,ω).

The �ττ ′
02 (q,ω) function can be expressed as

�ττ ′
02 (q,ω) = 1

2πl2
B

∑
α,n,s

α′,n′,s ′

Cα′τ ′n′s ′
ατns (z)�ττ ′

02 (α,n,s; α′,n′,s ′; ω).

(20)

Here [30]

�ττ ′
02 (α,n,s; α′,n′,s ′; ω) = − 1

π

∫ +∞

−∞
dε[f (ε) − f (ε + ω)]

× ImGατns(ε + ω)ImGα′τ ′n′s ′ (ε),

(21)

with ImGατns(ε) standing for the imaginary part of retarded
Green’s function Gατns(ε) and the form factor for the intraval-
ley case is given by

Cα′τn′s ′
ατns (z) = δss ′

1

�
α,τ
n,s �

α′,τ
n′,s ′

zn2−n1e−z n1!

n2!

×
[
�α,τ

n,s �
α′,τ
n′,s ′

√
n2

n1
L

n2−n1
n1−1 (z) + Ln2−n1

n1
(z)

]2

, (22)

while for the intervalley case it has a more complex form

Cα′ τ̄ n′s ′
ατns (z) = δss ′

1

�
α,τ
n,s �

α′,τ̄
n′,s ′

× e−z

{(
�α,τ

n,s

)2
zm2−m1

m1!

m2!

[
Lm2−m1

m1
(z)

]2

+ (
�

α′,τ̄
n′,s ′

)2
zk2−k1

k1!

k2!

[
L

k2−k1
k1

(z)
]2

+ 2s
m2−m1
1 s

k2−k1
2 �α,τ

n,s �
α′,τ̄
n′,s ′z

(m2−m1+k2−k1)/2

×Lm2−m1
m1

(z)Lk2−k1
k1

(z) cos[s1(m2 − m1)

− s2(k2 − k1)]θq

}
, (23)

with Lm
n (z) being the associated Laguerre polynomi-

als, z = l2
Bq2/2, n1 = min(n,n′), n2 = max(n,n′), m1 =

min(n − 1,n′), m2 = max(n − 1,n′), k1 = min(n,n′ − 1),
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k2 = max(n,n′ − 1), θq is the polar angle of wave vector q,
τ̄ = −τ , and

s1 =
{

1, n − 1 < n′,
−1, n − 1 � n′,

s2 =
{

1, n < n′ − 1,

−1, n � n′ − 1.

In the presence of carrier-impurity, carrier-phonon, and
carrier-carrier scatterings, the Landau levels of monolayer
MoS2 are broadened. The imaginary part of the retarded
Green’s function ImGατns(ε) or the density of state of the
ατnsth Landau level is modeled using a Gaussian form [31]:

ImGατns(ε) = −
√

2π

Γατns

exp

[
− 2(ε − εατns)2

Γ 2
ατns

]
, (24)

with Γατns denoting the half width.
The chemical potential εf at temperature T is determined

by the carrier density (electron density N+ or hole density N−)
of the system by the following equation:{

N+
N−

}
= − 1

2π2l2
B

∑
τ,n,s

∫ +∞

−∞
dε

{
f (ε)ImG+τns(ε)

[1 − f (ε)]ImG−τns(ε)

}
.

(25)

Here f (ε) = {exp[(ε − εf )/T ] + 1}−1 is the Fermi distribu-
tion function. For electron conduction case, the summation
index n in the above equation is taken over 1,2,3, . . . for
K valley (τ = +1), but 0,1,2, . . . for −K valley (τ = −1).
However, for hole conduction, it is taken over 0,1,2, . . . for K

valley, but 1,2,3, . . . for −K valley.
The momentum balance equation (15) combining with

equation of carrier density (25) describes the steady-state
magnetotransport of monolayer MoS2, which can determine
either the drift velocity (charge current density) for given
electric field or the electric field for given current. In the Hall
configuration, e.g., with the charge current J (or drift velocity)
in the x direction, J = (J,0) = (−Nev,0), the momentum
balance equation (15) gives a transverse magnetoresistance
Rxy = −Ey/(Nev) = −B/(Ne) and a longitudinal magne-
toresistance Rxx = −(fei + fep)/(N2e2v).

III. NUMERICAL RESULTS AND DISCUSSION

For numerical calculation, we concentrate on the n-doped
case, i.e., carrier is electron, N = N+, and we only need to
consider α = α′ = +1. In the following, the index α or α′
will be omitted. The half-width Γτns should vary with the
band indices generally. However, for simplicity, we neglect the
effect of spin-orbit interaction, and take it with the form [32,33]

Γ =
√

eωc0α�

πm∗μ
. (26)

Here μ is the zero-field mobility at temperature T , ωc0 =
eB/m∗ is the cyclotron frequency with effective mass m∗ =
�/(a2t2), and α� is a phenomenological parameter to relate the
single-particle lifetime to the transport scattering time [32,33].
In the following numerical evaluation, we will set α� = 3,
except when otherwise specified.

The intravalley electron-impurity scattering potential is
considered due to charged impurities distributed at a distance
d from the layer [34]:

Uττ (q) = Zie
2

2ε0κq
e−qd , (27)

with Zi standing for the effective impurity charge number,
κ for the dielectric constant of MoS2. For the suspended
MoS2 monolayer, d = 0. The carrier screening is taken into
account with a static screening function of Thomas-Fermi
form [14,31,35]

ε(q,0) = ε(q) = 1 + qeff
TF

q
. (28)

For suspended MoS2, qeff
TF equals the zero-temperature

Thomas-Fermi wave vector qTF = m∗e2/(πε0κ); while for the
layer on a substrate, the value of qeff

TF , which could be a couple
of times larger or smaller than qTF depending on the dielectric
environment and carrier density, will be taken from Ref. [35].
Note that the main role of carrier screening is to enhance
or decrease the mobility with or without magnetic field. In
the present study, the effective impurity charge density niZ

2
i ,

which may be modified by the spatial dielectric environment
of the system, is determined by the zero-temperature carrier
mobility μ0 in the absence of the magnetic field under the same
screening condition; thus the major magnetic-field related
behaviors are not sensitive to the detailed form of the scattering
potential or screening.

In addition to above intravalley impurity scattering, we also
include intervalley disorder scattering, which can be induced
by lattice vacancy in a two-dimensional honeycomb lattice [36]
and by defects raised from ion irradiation as in graphene [37].
The scattering potential is usually modeled by a δ-function
form, i.e., a constant Uττ̄ (q) = u0.

For intrinsic electron-phonon couplings in a suspended
layer, we consider both intravalley and intervalley acoustic
deformation potential interactions. In the case of optical defor-
mation potential, both zero-order and first-order couplings are
taken into account and the homopolar mode is also included.
The relevant formulas can be found in Ref. [12]. The polar
longitudinal optical phonons are also important and their
coupling matrix element with 2D carriers can be written
as [12,38]

Mττ (q,Fr) = gFrerfc(qσ/2), (29)

where gFr is the Fröhlich coupling constant, erfc is the
complementary error function, and σ is the effective width
of the electronic envelope function.

For MoS2 on a substrate, the surface optical phonons
(SOPs) couple to the electrons via an effective electric field,
which may play an important role in transport [35,39] just like
graphene [34,40,41]. The coupling matrix element is expressed
as [40]

|Mττ (q,SO)|2 = e2��,so

2ε0κq

(
1

1 + κ∞
e

− 1

1 + κ0
e

)
e−2qd , (30)

with ��,so the frequency of SOP, and κ∞
e (κ0

e ) denoting the
high (low) frequency dielectric constant of substrate.
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TABLE I. Material parameters for monolayer MoS2 used for
calculation. The � and K subscripts represent intravalley and
intervalley phonons, respectively.

Parameter Symbol Value

Lattice constant [10] a 3.193 Å
Hopping integral [10] t 1.1 eV
Energy gap [7] � 1.9 eV
Spin splitting energy [10] λ 75 meV
Mass density [12] ρ 3.1 × 10−7g/cm2

Effective layer thickness [12] σ 4.41 Å
Dielectric constant of MoS2 [43] κ 7.6
Dielectric constant of ZrO2 [41]

Low frequency κ0
e 24

High frequency κ∞
e 4

Transverse sound velocity [12] vTA 4200 m/s
Longitudinal sound velocity [12] vLA 6700 m/s
Acoustic deformation potentials [12]

TA �TA 1.6 eV
LA �LA 2.8 eV
TA D1

K,TA 5.9 eV
LA D1

K,LA 3.9 eV
Optical deformation potentials [12]

TO D1
�,TO 4.0 eV

TO D1
K,TO 1.9 eV

LO D0
K,LO 2.6 × 108 eV/cm

Homopolar D0
�,HP 4.1 × 108 eV/cm

Fröhlich coupling [38]
LO gFr 286 meV Å

Phonon energies [15]
TA �K,TA 23.1 meV
LA �K,LA 29.1 meV
TO ��,TO 48.6 meV
TO �K,TO 46.4 meV
LO ��,LO 48.0 meV
LO �K,LO 42.2 meV
Homopolar ��,HP 50.9 meV

SOP energies of ZrO2 [41]
1st mode �

(1)
�,so 25.02 meV

2nd mode �
(2)
�,so 70.8 meV

Unlike the case of the static impurity scattering, the carrier
screening for phonon scattering is dynamic; i.e., it is the screen-
ing function ε(q,�qν) at phonon frequency �qν rather than the
static function ε(q,0) that should be used in the equation with
phonon scattering. It has been shown [27,42] that optic (as
well as acoustic) phonon induced 2D resistivity with dynamic
screening is essentially equivalent to those without screening at
temperature T > 100 K, when phonon scatterings play impor-
tant roles. Therefore, in the numerical calculation of phonon-
related magnetotransport at higher temperatures we will not
include screening in the electron-phonon matrix element.

The relevant parameters used in the numerical calculation
are listed in Table I, except when otherwise specified.

A. Shubnikov–de Haas oscillation

In this subsection we consider the magnetotransport of sus-
pended MoS2 at low temperatures. First, the impurity scatter-
ing is assumed to be only the intravalley Coulombic scattering

FIG. 1. (Color online) Longitudinal magnetoresistance as a func-
tion of average filling factor ν0 at different lattice temperatures
T = 0.5,1.0,1.5,2.5,4.0 K. The inset shows the enlarged magne-
toresistance at T = 0.5 K for small filling. The linear mobility at
zero temperature [15] μ0 = 4000 cm2/V s and the electron density
N = 7 × 1012 cm−2.

(d = 0). In Fig. 1, the longitudinal magnetoresistance Rxx

is calculated versus average filling factor ν0 = ω−2
c [ε2

F − �̄2]
with εF denoting the Fermi energy. The electron density is set to
be N = 7 × 1012 cm−2 and the zero-field linear mobility μ0 =
4000 cm2/V s at zero temperature. This value of mobility,
though one order larger than those currently obtained experi-
mentally [11,13], is consistent with the theoretical work [15].
Higher linear mobility at low temperature can be achieved
via the gate dielectric engineering to effectively screen charge
impurities [44], and doping and strain modulations already
realized a mobility higher than 1000 cm2/V s at room
temperature [45]; we thus expect that this zero-temperature
mobility will be reached in the near future.

As can be seen from Fig. 1, the magnetoresistivity versus
filling factor ν0 or magnetic field B exhibits marked SdHO
with a beating pattern, having approximate period Δν0 
 1
at large fillings or low magnetic fields. The resistivity peaks
or valleys are located at integer fillings. There is a phase
inversion, i.e., a change from the integer fillings for peaks
to the ones for valleys. These features are in vivid contrast to
graphene [46,47], where the SdHO valleys are located in the
vicinity of half-integer filling factors without beating patterns,
but analogous to the behavior of conventional 2D electron gas
with spin-orbit coupling [18]. Further, at large magnetic fields
or small fillings, the period of oscillation in monolayer MoS2

halves, which can be seen clearly in the inset of Fig. 1. With
an increase of temperature, the amplitude of SdHO decreases
rapidly.

At the low temperatures shown, the contribution to the
frictional force mainly originates from electron-impurity scat-
tering, and thus resistivity Rxx 
 −fei/(N2e2v). For δ-form
intravalley short-range scattering potential Uττ (q) = u0, the
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zero-temperature magnetoresistivity Rxx can be expressed as

Rxx = − niu
2
0

N2e2

∑
qτ

q2
x

∂�ττ
02 (q,ω)

∂ω

∣∣∣∣
ω=0

= niπu2
0

N2e2l2
B

∑
τss ′

gτs(εF)gτs ′(εF)

[∫ +∞

0
dzzCτντs′ s ′

τντs s
(z)

]
,

in which the density of states of electrons in the
τ th valley with spin s at Fermi energy εF, gτs(εF) =
−∑

n ImGτns(εF)/(2π2l2
B), can be rewritten, by means of the

Poisson summation formula, as

gτs(εF) = εF

πl2
Bω2

c

{
1 + 2

∞∑
k=1

[cos(2πkντs)

− kβ sin(2πkντs)] exp

(
−2k2 β2ε2

F

Γ 2

)}
, (31)

where ντs = ω−2
c (εF − �̄)(εF + �̄ − τsλ̄) is the filling factor

of electrons in τ th valley with spin s, and β = πΓ 2/ω2
c . For

monolayer MoS2 even with low mobility μ ∼ 10 cm2/V s,
the coefficient β � 1; therefore, the term with sine function
could be omitted safely. In the case of high filling factor ντs ,
the integral ∫ +∞

0
dzzCτντs′ s ′

τντs s
(z) = 2ντsδss ′ ,

and the linear magnetoresistance can be written as

Rxx = niu
2
0

2πN2e2

ε2
F

l2
Ba4t4

∑
τs

ντs

[
1 + 2

kmax=∞∑
k=1

cos(2πkντs)

× exp

(
−2k2 β2ε2

F

Γ 2

)]2

. (32)

Usually, on account of the rapid decay of the exponential
function, one only needs to keep terms with k = 1 in the
summation, leading to

Rxx = niu
2
0

N2e2

ε2
F

(
ε2

F − �̄2
)

πa6t6

[
1 + 4 cos (2πν0)

× cos

(
2πν0

λ

εF + �̄

)
exp

(
−2

β2ε2
F

Γ 2

)]
. (33)

This represents that the amplitude of oscillation is modulated
by the second cosine function due to the spin splitting and
there are nodes at λν0/(εF + �̄) = l ± 1/4 with l being an
integer. Note that the three smallest nodes in the positive
regime correspond to λν0/(εF + �̄) = 0.25,0.75,1.25 or ν0 =
6.4,19.1,31.9, in agreement with the numerical calculation
(see Fig. 1). However, the oscillating peaks at large magnetic
field or small filling factor obey Δ(ν0) 
 0.5 in the figure,
which cannot be explained by the above equation and is due
to terms of higher frequency. Because of the small value of
β, the product (βεF/Γ )2 may not be considerably larger than
1 and the oscillating terms with k > 1 also may somewhat
contribute to the total resistivity. Figure 2 demonstrates the
results from the approximate expression (33) and from (32)
with k summing up to 2. It is clear that the oscillation part
of high frequency comes from the terms with k = 2. It is

FIG. 2. (Color online) Curves of analytical expressions for mag-
netoresistance versus average filling factor ν0. The blue solid line is
obtained from Eq. (33), while the red solid line is directly calculated
from Eq. (32) for the maximum kmax = 2. The other parameters are
the same as in Fig. 1.

noteworthy that this feature is irrespective of the half-integer
filling in graphene due to the electron-hole symmetry of zero
Landau level for massless electrons. In the absence of magnetic
field, the resistivity Rxx reduces to

R0 = niu
2
0

N2e2

ε2
F

(
ε2

F − �̄2
)

πa6t6
= niu

2
0

Ne2

πa2t2N + �̄2

a4t4
. (34)

Despite the linear dispersion on momentum, this resistivity
depends on the electron density owing to its massive property,
in contrast to the result of graphene [48]. The corresponding
density N is 58 × 1012 cm−2 when πa2t2N equals �̄2 for
the present parameters. Hence, for small density resistivity
R0 is inversely proportional to density similar to the case of
conventional 2D electron gas, while for very large density R0

becomes independent of electron density.
To compare our theoretical result with recent experimental

observation [23], Fig. 3 presents the normalized resistiv-
ity versus filling factor for another monolayer MoS2 with
electron density N = 9.69 × 1012 cm−2 and linear mobility
μ0 = 600 cm2/Vs at T = 0.3 K. The curves for the cases
with spin-orbit coupling λ = 54 meV and without spin-orbit
coupling are plotted, respectively, as solid and dashed lines.
Here the factor α� = 8. In the inset, we replot the experimental
result taken from Fig. 4(b) in Ref. [23] as a function of average
filling factor. For the experimental sample having low mobility,
the Landau level broadening is so large that the beating
pattern cannot be observed. Nevertheless, the phase inversion
of SdHO peaks still shows clearly. As can be seen, ν0 = 5
corresponds to a position of SdHO peak, while ν0 = 12 is for
valley. The numerical calculation agrees with the experimental
observation well. The red dashed line for the case of λ = 0,
where the peaks always locate at integer filling factors, is also
plotted for comparison. We can see that the spin-orbit splitting
is very important for magnetotransport in monolayer MoS2,
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FIG. 3. (Color online) Normalized magnetoresistance versus fill-
ing factor ν0 for the case λ = 54 meV (black solid line) and λ = 0 (red
dashed line) at temperature T = 0.3 K. Here electron density N =
9.69 × 1012 cm−2, linear mobility μ0 = 600 cm2/V s, and α� = 8.
The inset shows the corresponding experimental results, which are
replotted as a function of ν0.

even for the low-mobility sample in which the full beating
pattern of SdHO is not easy to observe.

To investigate the intervalley scattering effect on the SdHO,
in Fig. 4 we plot the oscillating magnetoresistance induced
solely by the short-range intervalley disorder at various lattice
temperatures T = 0.5,1.0,1.5,2.0,8.0 K. Here the relaxation
time τs = 1/(m∗niu

2
0) is set to be 1 ps. For the purpose of com-

parison, the SdHO induced by intravalley short-range electron-
impurity scattering is also plotted in the inset of Fig. 4(a) for the
same value of relaxation time at T = 0.5 K. It is seen that the
magnetoresistance induced by the intervalley collision, though
almost two orders smaller than the intravalley one, also exhibits
SdHO versus the average filling factor and the extrema show
up at integer fillings and the oscillation is also modulated by the
spin-orbit interaction with nodes locating at the same positions
as in the intrasubband case. But the modulation appears much
stronger than the intravalley one: with increasing temperature
the amplitude of SdHO decreases, while the envelope of
oscillation still exists even at T = 8.0 K when the intravalley
one disappears. Especially, in contrast to the intravalley case,
there exists a regime AB (3 < ν0 < 8 or 9 T < B < 24 T), in
which the magnetoresistance almost vanishes.

All these can be referred to the fact that, in contrast to the
intravalley case, the intervalley scattering hardly takes place
between two states having the same Landau index n > 0.
The Landau levels ετns expressed in (6) for n = 1,2,3, . . .

can be written as εn,ι with ι ≡ τs. As indicated in Eq. (21)
the resistivity is proportional to the product of DOSs of two
close (contributory) Landau levels around the Fermi energy.
In the vicinity of the Fermi energy, for a fixed Landau index
n the level separation of different ι is almost independent of
the magnetic field, while the distance between Landau levels
having the same ι but different Landau indexes n and n′ is
proportional to the magnetic field. Hence, at large magnetic

τ

ν

Ω

Ω

ν

τ

Ω

ν

FIG. 4. (Color online) (a) Intervalley electron-impurity scatter-
ing induced magnetoresistance vs the average filling factor ν0 at
different lattice temperatures T = 0.5,1.0,1.5,2.0,8.0 K when the
relaxation time τs = 1 ps. The inset shows the intravalley short-range
electron-impurity scattering induced magnetoresistance at T = 0.5 K
for the same relaxation time. (b) Magnetoresistance contributions
R(0)

xx , R(1)
xx , R(2)

xx , and R(3)
xx versus the average filling factor at T = 0.5 K.

fields two contributory Landau levels of different ι must have
the same Landau index n. At low magnetic fields, the Landau
indexes of two contributory Landau levels may not be equal
to each other and their difference increases with decreasing
magnetic field. In Fig. 4(b) the magnetoresistance R(m)

xx ,
contributed from electron transitions between two Landau
levels with Landau-index difference of m near Fermi energy,
are plotted as functions of average filling factor ν0 at 0.5 K.
At low filling factors or large magnetic fields, the energy
distance between levels with same Landau and spin indexes
but different valley indexes is smaller compared with that
between Landau levels with different Landau indexes, and
we only need to consider the transition between levels of
different valleys but having same Landau index ν0, leading
to R(0)

xx . For low magnetic fields, contributions of electron
transitions between levels having different Landau indexes
dominate. Here, R(1)

xx stands for the contribution from the
transitions between ν0 and ν0 − 1 levels and those between
ν0 and ν0 + 1 levels. R(2)

xx stands for the contribution from
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electron transitions between ν0 + 1 and ν0 − 1 levels, and
R(3)

xx for the contribution from transitions between ν0 + 2 and
ν0 − 1 levels and those between ν0 − 2 and ν0 + 1 levels. It
is found that R(0)

xx + R(1)
xx + R(2)

xx + R(3)
xx almost equals the total

magnetoresistance Rxx shown in Fig. 4(a).
R(0)

xx becomes quite small when εν0,+ − εF � � and/or
εF − εν0,− � �; i.e., it is almost zero for magnetic fields
lower than a certain value. On the other hand, with the
increase of the magnetic field, the level distance of different
Landau indexes enlarges, leading to R(1)

xx almost vanishing
for magnetic fields larger than a certain value, which is
determined by εν0,− − εν0−1,+ � � (the same for R(2)

xx and
R(3)

xx ). In the range between these two magnetic fields, the
total magnetoresistance appears very small. For the present
parameters (set εν0,+ − εF = 1.3�), this range is 8.8 T < B <

23.3 T or 3.1 < ν0 < 8.2, as indicated by AB in Fig. 4.

B. Magnetophonon resonance

Now we concentrate on the case of higher temperature
up to room temperature. First, we consider the suspended
MoS2. The total magnetoresistances Rxx induced by the
intravalley screened Coulombic electron-impurity scattering
(d = 0) and all the above-mentioned intravalley and in-
tervalley electron-phonon couplings except the SOP mode
are plotted as functions of magnetic field at various high
temperatures in Fig. 5(a). The Rxx increases with the increment
of magnetic field, accompanying an oscillation at large fields.
The behavior of resistivity increasing with increasing magnetic
field is due to impurity-induced resistivity Rim as shown in
Fig. 5(b). Since SdHO almost disappears at this temperature,
the small oscillation in Rxx originates from phonon scatterings.
With ascending temperature, Rim descends, while the total
Rxx increases because of the increasing contributions from
electron-phonon scatterings. It is found that, in addition
to the electron-impurity scattering, the contributions of the
intravalley transverse and longitudinal acoustic phonons, RTA

and RLA, and those of homopolar and Fröhlich coupling optical
phonons, RHP and RFR, play a dominant role in the total
resistivity. The inset of Fig. 5(a) shows that the oscillation
arises mainly from the optical contribution Rop = RHP + RFR.
The acoustic one Rac = RTA + RLA gives almost a constant
value at room temperature.

Actually, the acoustic contributions RTA, RLA also oscillate
with magnetic field, especially at relatively low tempera-
ture, exhibiting the so called MPR induced by acoustic
phonons [34,49–51]. The magnetoresistance peaks occur when
the energy of the optimum phonons ωa = 2kFvac equals an
integral multiple of the inter-Landau-level distance ωB near the
Fermi surface. Here vac = vTA or vLA is the sound velocity for
the transverse or longitudinal mode. The energy distance ωB

between two intravalley Landau levels with same spin around
Fermi energy εF is given by

ωB ≈ ω2
c

2
√

(�̄ − τsλ̄)2 + ντsω2
c

≈ ω2
c

�
. (35)

Figure 5(c) indeed shows the oscillation of magnetoresistance
for both RTA and RLA with inverse magnetic field having
period Δ(ωa/ωB) 
 1. With increasing temperature, the peaks
at high ratio ωa/ωB tend to disappear gradually. Further,

Ω

Ω Ω

Ω
ω ω

Ω

ω ω

FIG. 5. (Color online) (a) Total longitudinal magnetoresistance
Rxx in suspended MoS2 versus magnetic field B at high temperatures
T = 150,200,250,300 K. The inset shows the main contributions
from electron-phonon scattering, where Ros = Rac + Rop. (b) The
impurity-induced magnetoresistance Rim is plotted as a function of
magnetic field B. (c) The magnetoresistance induced by intravalley
transverse (longitudinal) acoustic phonons RTA (RLA) versus the ratio
ωa/ωB. (d) The magnetoresistance induced by intravalley homopolar
(Fröhlich coupling) optical phonons RHP (RFR) versus the ratio ωo/ωB

at temperatures T = 100,200,300 K. The other parameters are the
same as Fig. 1.

the peak slightly shifts to smaller ωa/ωB position and the
magnetoresistance due to longitudinal mode RLA becomes
larger than the transverse one RTA in view of enlarged phonon
energy with the rise of temperature. In the present case
with relatively low mobility, the MPR induced by acoustic
phonons has little influence on the total magnetoresistance.
However, for monolayer MoS2 having ultrahigh mobility, the
acoustic electron-phonon coupling contributes dominantly at
low temperature, hence this MPR could be observable.

With further increase in lattice temperature, the electron-
optic phonon coupling becomes more and more important
in comparison with other scattering mechanisms. Due to the
large coupling coefficients, the resistivities induced by the
homopolar and Fröhlich interactions have largest values. It is
well known that the resistivity exhibits MPR when the energy
of optical phonons ωo equals the distance of Landau levels.
In monolayer MoS2 for εF − �̄ � �̄, the intravalley Landau
levels are almost evenly spaced and the level distance approx-
imately equals ωB. In Fig. 5(d) the magnetoresistance RHP or
RFR is plotted versus the ratio ωo/ωB, where ωo = ��,HP or
��,LO is respectively the frequency for homopolar or Fröhlich
coupling. It is true that the magnetoresistances show peaks or
valleys at ωo/ωB = l; i.e., magnetoresistance oscillates with
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Γ

Ω
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Ω
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FIG. 6. (Color online) Magnetoresistance in ZrO2/MoS2/air
structure at high temperature T = 200,300 K. Here the electron
density N = 7 × 1012 cm−2. In (a) and (b), the zero-field mobility
at zero temperature μ0 = 4000 cm2/V s and α� = 3, while in (c)
and (d) μ0 = 600 cm2/V s and α� = 8 for another sample. (a)
Total magnetoresistance Rxx and impurity-induced one Rim versus
magnetic field B. (b) The SOP-induced magnetoresistance R

(1)
SO is

plotted as a function of �
(1)
�,so/ωB. (c) The total magnetoresistance

for the sample with low mobility versus the magnetic field. (d)
The magnetoresistance induced by intravalley homopolar, Fröhlich
coupling optical phonons, and SOP RHP,RFR, and R

(1)
SO versus

magnetic field.

inverse magnetic field having period Δ(ωo/ωB) 
 1. However,
in contrast to the usual MPR induced by optical phonons
in two-dimensional electron gas, the oscillating resistivity in
MoS2 is modulated due to the spin splitting by an approximate
factor cos(2π ωo

ωB

λ

εF+�̄
) analogous to the SdHO. Hence, there

are nodes at ωo

ωB

λ

εF+�̄
= l ± 1

4 . This leads to the nodes appearing
at ωo/ωB = 19.1,31.9, in accordance with Fig. 5(d).

Now we study the MPR for MoS2 on a ZrO2 substrate. It is
found that the frequencies of SOPs for ZrO2 are so small that
they play an important role in electron transport [35]. Hence,
in Fig. 6 magnetoresistances for MoS2 on ZrO2 are plotted
versus magnetic field. In the calculation, the elastic scattering
is assumed to be the intravalley remote-impurity scattering
distributing at d = 1 nm from the single layer; the inelastic
scatterings are due to all the intrinsic modes mentioned above
and the intravalley SOPs. qeff

TF used in the screening of elastic
scattering is estimated to be 0.3qTF from Fig. 2 in Ref. [35].
Two samples with different zero-field mobilities are considered
for comparison. For the clean system, the remote impurity
scattering weakens the quick increase of impurity-induced
resistivity with magnetic field in contrast to the suspended case,

leading to more evident MPR in the total magnetoresistance.
On the other hand, in comparison to suspended MoS2, the
MPR behavior becomes more complex because of the crucial
influence of SOPs, especially the mode with low frequency
�

(1)
�,so. The resistivity R

(1)
SO induced by the first SOP mode is

plotted in Fig. 6(b) versus �
(1)
�,so/ωB. The resonant feature of

R
(1)
SO is similar to other intrinsic modes. However, for another

sample with low mobility in heavily overlapping-Landau-level
regime, the MPR almost disappears. The magnetoresistance
increases monotonically with magnetic field, and only a small
oscillation occurs at very large field. In Fig. 6(d), contributions
of three important optical modes are plotted.

The effect of a SiO2 substrate on the MPR of MoS2 is also
tested and it is found that this dielectric plays a negligible role
due to its large frequencies of SOPs.

IV. SUMMARY

In summary, we have studied linear magnetotransport in
single-layer MoS2 employing a balance equation analysis by
including spin-orbit coupling and all kinds of intravalley and
intervalley electron-impurity and electron-phonon scatterings.

The existence of an energy gap between the conduction and
valence bands, or lack of electron-hole symmetry of the zero
Landau level in MoS2, makes its magnetotransport behavior
more like a conventional 2D electron gas than graphene:
the resistivity peaks or valleys of its low-temperature SdHO,
resulting either from intravalley or from intervalley elastic
scatterings, are located at integers of filling factor ν0.

The large spin-orbit coupling in the system, however, gives
rise to a significant modulation or beating of the magnetore-
sistance oscillation, or a phase inversion of the oscillation
peaks. The agreement between theoretical prediction and
recent experiment on the phase inversion of SdHO peaks
demonstrates the importance of the spin-orbit splitting in
magnetotransport even for systems of low mobility. The clear
beating pattern of the oscillating magnetoresistance should
appear in the well-separated Landau-level regime in high-
mobility systems.

On the other hand, the behavior of magnetoresistance
oscillation at large magnetic fields or small filling factors
appears different for intravalley and intervalley scatterings:
the period of oscillation associated with intravalley scattering
may halve due to the weak decay of the second-order
oscillating term, while in the case of intervalley disorder
much stronger spin-orbit induced SdHO modulation shows
up such that there exists a magnetic-field range in which
the magnetoresistivity almost vanishes. Of course, intervalley
elastic scattering contributes only a much smaller part to the
total magnetoresistance than does intravalley elastic scattering.

At high temperatures, the magnetoresistance oscillation
arising from MPR may show up in the smooth impurity-
induced resistivity background both for suspended and
nonsuspended samples with high mobility. Both acoustic
phonons (mainly intravalley transverse and longitudinal acous-
tic modes) and optic phonons (mainly homopolar and Fröhlich
modes) can induce MPR. A beating pattern with the same
frequency as in the SdHO also appears in the optical-phonon-
induced MPR due to spin-orbit coupling. For the single layer

125303-9



C. M. WANG AND X. L. LEI PHYSICAL REVIEW B 92, 125303 (2015)

on a substrate, another resonance due to SOPs may occur,
resulting in a complex behavior of the total magnetoresis-
tance. However, for a nonsuspended layer with low mobility,
the magnetoresistance oscillation almost disappears and the
resistivity increases with field monotonically.
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