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Spontaneous emission from dipole-forbidden transitions in semiconductor quantum dots
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We theoretically investigate the multipolar effects on the dipole-forbidden transitions of a semiconductor
quantum dot. An approximated expression for the decay rate of these transitions is derived. Unlike the general
theory of the spontaneous emission beyond the dipole approximation, the distinct roles of the emitter and the
vacuum electric field in the transition rate are here clearly recognizable and can be separately optimized. We
illustrate the potential of this formalism by calculating the spontaneous emission decay rate of an InAs/GaAs
quantum dot embedded into two realistic nanostructures—an L3 photonic crystal cavity and a plasmonic dimer
antenna. The obtained results show that, although the two structures provide an enhancement of the same order
of magnitude, the plasmonic antenna constitutes a more promising candidate for the experimental observation of
the dipole-forbidden transitions of a quantum dot.
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I. INTRODUCTION

Semiconductor quantum dots (QDs) have become a subject
of intensive research [1] in the recent years for both fundamen-
tal and applicative purposes. The emission spectrum of these
heterostructures shows an atomiclike behavior, with sharp
lines in correspondence with the optically active transitions
between the discrete energy levels. The great advantage of
these emitters as compared to atoms or molecules is the
possibility of tuning their optical properties, either in a static
way by engineering the size, shape, and chemical composition,
or in a dynamic way by, e.g., varying the strain [2], controlling
the temperature [3], and applying an external electric [4]
or magnetic [5] field. These properties, together with the
compatibility with the existing semiconductor technology,
make the QDs promising light sources for novel devices, such
as QD lasers [6] and single photon sources.

When describing the light-matter interaction, one usually
assumes that the emitter can be considered pointlike with
respect to the spatial variation of the electromagnetic field. This
approach constitutes the well-known dipole approximation,
which is an excellent approximation for atoms emitting in the
visible part of the spectrum, since their dimensions are several
orders of magnitude smaller than the optical wavelength. This
assumption greatly simplifies the theoretical framework of the
spontaneous emission, and provides simple selection rules to
identify the optically active transitions.

Despite their atomiclike spectrum, QDs are inherently
different from atoms because of their mesoscopic size: the
excitation is distributed over the entire volume of the QD,
which usually includes up to 105 atoms. The large extent of
the exciton wave function makes the validity of the dipole
approximation questionable. In a bulk material, the vacuum
electromagnetic field can be described by plane waves and the
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typical criterion for the validity of the dipole approximation is
that |k|L � 1, where |k| = 2πn/λ is the modulus of the light
wave vector, λ is the optical wavelength, n is the refractive
index of the material, and L is the spatial extent of the
wave function of the emitter. The value of |k| is increased
in high-refractive-index semiconductors such that, for the
typical dimensions of a semiconductor QD, the value of |k|L
is not necessarily negligible, even in the visible or near-IR
range. As an example, for an InAs/GaAs QD emitting at a
wavelength of 1300 nm and with a characteristic dimension
of L = 10 nm, |k|L � 0.16. Moreover, in artificial photonic
nanostructures the aforementioned criterion is not applicable
anymore, since the electromagnetic field at a certain frequency
can feature spatial variations corresponding to |k| values larger
than the plane wave in a bulk material. These situations can
introduce non-negligible corrections, as recently demonstrated
in an experimental work [7] where the decay rate of QDs in
close proximity to a metallic mirror has been shown to differ
from the dipole approximation predictions. As the combination
of QDs with nanophotonic cavities is a key ingredient for
the realization of efficient single-photon sources [1] and
nanolasers [6], it is essential to understand the radiative
properties of these structures beyond the dipole approximation.

In the past years, there have been several proposals [8–11]
to include multipolar effects into the theory of the spontaneous
emission of a QD. In a recent paper by Stobbe et al. [12] it has
been shown how to calculate the decay rate of a semiconductor
QD when the electric field along the emitter wave functions
cannot be assumed constant. The authors showed that when
this theory is applied to the radiative transitions of a QD placed
in a strongly inhomogeneous field, substantial deviations from
the dipole approximation predictions are obtained.

Another interesting effect can be investigated with the
aid of this theory. When describing the QD states within
the envelope-function formalism [13], the selection rules
dictate that certain excitonic transitions, usually referred as
dipole-forbidden, cannot occur radiatively. The reason for this
is that, having assumed the electromagnetic field constant
over the QD, the matrix element of the transition is given
by the product of the overlap integral of the electron and
the hole envelope functions and the Bloch matrix element.
The former depends on the exciton involved in the transition
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while the latter depends, in a first approximation [13], only on
the materials used and not on the QD structural parameters.
The envelope functions feature different parities with respect
to the QD center, which affects the value of the overlap
integral. Excitonic states characterized by electron and hole
envelope functions with different parities will have a small
value of the overlap integral (zero if the QD is symmetric)
and therefore a negligible radiative decay rate (compared to
the one of the optically active transitions, usually referred
as dipole-allowed). However, when the spatial variation of
the field is not negligible anymore, the matrix element of the
transition can be sensitively altered.

Besides this fundamental interest, dipole-forbidden transi-
tions can play a role in the spectral properties and radiative
dynamics of QDs embedded in nanophotonic devices, which
makes their investigation relevant for their applications. The
purpose of this paper is to theoretically investigate these
effects, firstly by deriving a simplified formula for the decay
rate of the dipole-forbidden transitions and identifying the
figures of merit for its enhancement, and secondly by applying
this formalism to realistic nanostructures, in order to evaluate
the magnitude of these effects.

The paper is organized as follows. In Sec. II A, the theory
to calculate the spontaneous emission from QDs beyond the
dipole approximation is briefly summarized. In Sec. II B, we
apply this theory to the particular case of the dipole-forbidden
transitions, and we derive a simpler formula, which clarifies
the figure of merit for the spontaneous emission decay rate. In
Sec. III, we apply our formalism to the case of a QD interacting
with two possible photonic nanostructures, an L3 photonic
crystal cavity (Sec. III B), and a plasmonic antenna (Sec. III C).
In Sec. III D, we show how the enhancement of the decay
rate obtained in these two cases, although of the same order
of magnitude, is due to two different physical phenomena.
Finally, the conclusions are drawn in Sec. IV.

II. THEORY

A. Spontaneous emission from semiconductor quantum dots
beyond the dipole approximation

The quantum state of an exciton in a semiconductor QD
can be described in a first approximation through a two-band
model. Although the upper valence bands in III-V semiconduc-
tors are degenerate in bulk materials, the presence of the strain
and confinement in a QD lifts the degeneracy; the electron-hole
interactions can therefore be restricted to the conduction
band and the heavy-hole valence band. By approximating the
periodic part of the Bloch function with its value at k = 0, the
wave function of the exciton can be written as

�(re,rh) = χ (re,rh)uc,0(re)uv,0(rh), (1)

where re (rh) is the electron (hole) position, uc,0 (uv,0) is
the periodic part of the conduction (valence) band Bloch
function at ke = kh = 0 and χ (re,rh) is the so-called
envelope function. This function is obtained as a solution of
an effective-mass Hamiltonian,

H (re,rh) = p̂2
e

2m∗
e

+ p̂2
h

2m∗
h

+ Ve(re) + Vh(rh) + HC(re,rh),

(2)

which contains the confinement potential for the electrons
(Ve) and the holes (Vh) and the mutual Coulomb interaction
HC(re,rh). In the strong-confinement limit, the Coulomb
energy is much smaller than the energy levels spacing induced
by the quantum confinement and can be neglected. Therefore,
in a first approximation, the effective-mass equation is
separable into the electron and hole coordinates and the
solution is given as a product of the single-particle envelope
functions, χ (re,rh) = χe(re) · χh(rh).

The spontaneous emission decay rate is not an intrinsic
property of an emitter but it depends on the vacuum electro-
magnetic field in which the emitter is embedded. In the dipole
approximation theory, this dependence is included through the
concept of the local density of states (LDOS) [14], which
gives, for each spatial point, the density of the photonic states
available for the exciton to decay into. The LDOS in a certain
point is proportional to the modulus square of the vacuum
electric field in that point. The knowledge of the electric field
in the center of the QD is therefore sufficient to calculate the
spontaneous decay rate. Instead, as shown by Stobbe et al. [12],
the mesoscopic nature of the QD requires the knowledge of
the electromagnetic Green tensor, G(r,r′,ω), which gives, up
to a constant factor, the electric field in a position r generated
by a dipolar source placed in r′ and emitting with frequency ω.

Once the emitter’s and electromagnetic field’s properties
are known (through the exciton wave function and the Green
tensor, respectively) the decay rate of a QD beyond the dipole
approximation (�BDA) can be calculated as [12]

�BDA(ω) = 2e2

�ε0m
2
0c

2
|pcv|2

∫
d3r

×
∫

d3r′χ (r,r)χ∗(r′,r′)Im[Gpp(r,r′,ω)], (3)

where e is the elementary charge, � is the reduced Planck
constant, ε0 is the vacuum permittivity, m0 is the free electron
mass, and c is the speed of light in vacuum. The vector
pcv = 〈uc,0| p̂ |uv,0〉, where p̂ is the momentum operator, is
the Bloch matrix element and it is a parameter of the material
used. Its direction affects the coupling of the exciton to the
different polarizations of the field. For the transitions between
the lowest energy states in typical self-assembled QDs, this
vector usually lies in the plane of growth [15]. The diagonal
component Gpp of the Green tensor is used, where p is the
direction parallel to pcv.

As already pointed out by the authors of the theory in
Ref. [12], Eq. (3) contains the dipole approximation as a
particular case: when the field is slowly varying over the
function χ (re,rh), the Green tensor can be calculated in the
center r0 of the emitter and taken out of the integral,

�0(ω) = 2e2

�ε0m
2
0c

2
|pcv|2Im[Gpp(r0,r0,ω)]

∣∣∣∣
∫

d3rχ (r,r)

∣∣∣∣2

.

(4)

Here and in what follows, �0 indicates the decay rate calculated
within the dipole approximation. The decay rate is given by
the product of a quantity that depends on the field (and which
can be shown to be proportional to the LDOS) [14] and a
quantity that depends on the exciton state and is proportional
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to the oscillator’s strength of the transition. This separation
of the degrees of freedom is the main result of the dipole
approximation theory. The decay rate is different from zero
only if the overlap integral of the electron and hole envelope
functions does not vanish (except for the particular case in
which the emitter is placed in a node of the electromagnetic
field, which makes the Green tensor null).

On the other hand, Eq. (3) shows a much more complicated
behavior, since the photonic and excitonic degrees of freedom
are not directly separable. An excitonic transition for which
the overlap integral of the envelope functions is zero (and thus
�0 = 0) can therefore have a finite �BDA if the Green tensor
features strong gradients along the QD.

B. Decay rate of dipole-forbidden transitions

Before going on, we want to elucidate the meaning of
the term dipole-forbidden transitions in this work. In the
theory of semiconductors, the terms dipole-allowed/forbidden
transitions is usually referred to the matrix element between
the Bloch parts of the electron and hole wave functions [16]. In
the framework of semiconductor QDs, excitons with a nonzero
(zero) value of the Bloch matrix element are usually called
bright (dark) excitons. The dark excitons are characterized by
much longer lifetimes, since a spin-flip process is required
before they can recombine radiatively. In this work, we still
assume that the dipole approximation is valid at the level of
the unit cell, and therefore the selection rules at the level of the
Bloch matrix element are unaltered. However, as explained
above, a secondary selection rule appears at the level of
the envelope function overlap, which can be affected by the
non-negligible variation of the electric field. The phenomena
discussed in this paper are explicitly referred to these effects,
i.e., a transition is called forbidden if the value of the envelope
function overlap would dictate a null radiative decay rate.

Despite its general validity, Eq. (3) is difficult to handle, for
two reasons. First, the structure of the six-dimensional integral
makes it difficult to recognize the distinct roles of the emitter
and the vacuum electromagnetic field in the decay rate. Dif-
ferently from the ordinary formula [Eq. (4)], an enhancement
of the LDOS in a certain point of the QD does not necessarily
lead to an increase of �BDA, since destructive interference
terms can appear in Eq. (3). Second, using Eq. (3) requires
very long computational time since the Green tensor must be
known over the entire QD, and after that, the six-dimensional
integral must be calculated with numerical techniques.

In order to overcome these problems and also to gain
more insight into the physics of the dipole-forbidden (DF)
transitions, we derive here a simplified version of Eq. (3). A
DF transition is defined by the requirement that �0 = 0. From
Eq. (4), this definition implies that the quantity

μ ≡
∫

d3r χ (r,r) (5)

is zero. This quantity is the term related to the envelope
function in the transition dipole moment (see Appendix A).

The Green tensor can be expanded in a Taylor series up to
the second-order terms,

G(r,r′) � G(r0,r0) + ∇rG|(r0,r0) · (r − r0)

+∇r′G|(r0,r0) · (r′ − r0) + 1
2ξT H [G]|(r0,r0)ξ, (6)

where r0 is the center of the QD, ∇r indicates the gradient
with respect to the first spatial variable r (and similarly for
∇r′), H [G]|(r0,r0) is the 6 × 6 Hessian matrix of the function
G, and ξ is a 6-dimensional vector defined as ξ = (r − r0,

r′ − r0). When this expansion is inserted in Eq. (3), the
following approximate expression for �BDA is obtained (the
complete derivation is given in Appendix C):

�BDA = 2e2

�ε0m
2
0c

2
|pcv|2

[
|μ|2 · G(r0,r0)

+ 2Re[μ∗�] · ∇rG|(r0,r0) +
3∑

i,j=1


i

∗
j ∂ri

∂r ′
j
G|(r0,r0)

+
3∑

i,j=1

Re[μ∗�ij ]∂ri
∂rj

G|(r0,r0)

]
. (7)

For the simplicity of notation, we defined the quantity
G(r,r′) ≡ Im[Gpp(r,r′)]. We also introduced the quantities


i ≡
∫

d3r (ri − ri0)χ (r,r), (8a)

�ij ≡
∫

d3r (ri − ri0) (rj − rj0)χ (r,r). (8b)


i is the term related to the envelope function in the
magnetic-dipole and electric-quadrupole moments. Similarly,
�ij contains the higher-order terms in the multipolar expansion
(see Appendix A). It is worth nothing that a similar result
has been recently used [17] to study the multipolar and
mesoscopic effects on the dipole-allowed (DA) transitions of
semiconductor QDs. In that case only, the first two terms of
the expansion were considered, since the other ones are much
smaller for a DA transition. In the case of a DF transition, the
first two terms and the last one disappear since μ = 0, and the
first nonzero term is

�DF
BDA = 2e2

�ε0m
2
0c

2
|pcv|2

3∑
i,j=1


i

∗
j ∂ri

∂r ′
j
G|(r0,r0). (9)

It is interesting to note that the decay rate is given by a
sum of products between a field-related quantity, the mixed
second derivatives of the Green tensor, and an exciton-related
quantity, the vector �. We thus obtained a simple multiplicative
rule which gives clear indications on how the emitter and
the vacuum field contribute to the decay rate of a DF
transition. Neglecting Coulomb interactions, � = ∫

d3r(r −
r0)χe(r)χh(r), which is proportional to the matrix element of
the dipole moment calculated between the envelope functions.
We note that this quantity is already known in the theory of
semiconductors nanostructures and it is used, for example, to
calculate the selection rules for the intraband transitions of a
quantum dot or a quantum well [13].

For what concerns the emitter, the figures of merit that
can increase the decay rate are the quantities 
i . From
their definition, it is clear that they can be enhanced by
increasing the overall size of the QD. The enhancement of
the spontaneous emission rate as the QD size increases must
not be confused with the so-called giant-oscillator-strength
(giant-OS) effect [18]. The giant-OS effect arises in large
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QDs when the Coulomb attraction has a non-negligible effect
(the so-called weak confinement regime) and the OS of the
optically active states becomes proportional to the volume of
the exciton [19]. The size dependence of the decay rate of
the DF transitions is not related to the Coulomb interaction,
but to the presence of the spatial coordinate in Eq. (8a). This,
in the strong coupling regime, makes the quantities 
i scale
with the QD dimensions. However, when the size of the QD
becomes comparable or bigger than the exciton Bohr radius
(i.e., the weak coupling regime), these effects are expected to
be reduced.

Moreover, the spatial distribution of the envelope function
will also affect the direction of the vector �, which couples
to the second derivatives of the Green tensor in Eq. (9).
Therefore, for a fixed electromagnetic field, the decay rate
has its maximum value when the vector � is parallel to the
direction of maximum variation of the field.

The figure of merit of the electromagnetic field is related to
the gradient of the field, through the mixed second derivatives
of the Green tensor. For a QD embedded in a bulk material,
the Green tensor can be computed analytically, and a direct
calculation gives

∂ri
∂r ′

j
G|(r0,r0) = δij (2 − δip)

k3

30π
, (10)

where p is the diagonal component of the Green tensor which
has been considered above (and which corresponds to the
direction of the Bloch vector pcv), and k is the optical wave
vector in the material. By assuming that � = (
x,0,0) the
bulk decay rate becomes

�DF
0 ∝ |
x |2∂x∂x ′G|(r0,r0) = |
x |2 k3

30π
(11)

and the ratio between the decay rate of a DF transition and a
DA one is given by

�DF
0

�DA
0

= |
x |2
|μ|2

k2

5
, (12)

where μ is the envelope function overlap [Eq. (5)] for the
DA transition, and we used the result G(r0,r0) = k

6π
valid for

homogeneous media [14].
In our derivation, we assumed that the Bloch vector pcv is

constant over the volume of the emitter. This corresponds to an
assumption that the Bloch functions are equal for each lattice
site and they are not influenced by the strain induced by the
interfaces. In a recent paper [20], it has been suggested that, for
the optically active transitions, these lattice inhomogeneities
(rather than the envelope-function dipole-moment) cause the
main effects beyond the dipole approximation. In Appendix B,
we discuss the influence of these effects on the decay rate of the
DF transitions and we show that, for this case, they constitute
a higher-order correction with respect to the term related to
the envelope function.

A common issue in the observation of transitions involving
excited states is the competition between the radiative decay
and the phonon-assisted intraband relaxation [21]. Indeed, at
low excitation levels and low temperatures, carriers quickly
relax to the lowest available states and transitions from
higher-energy states are not observed. This phenomenon,
which also affects the higher-energy DA transitions, is not

related with the calculation of the decay rate, but rather with
the probability that a certain state is occupied. In practice,
transitions from higher energy states (therefore potentially also
those corresponding to DF transitions) are easily observed
experimentally by increasing the excitation level and/or the
temperature, in order to ensure that the corresponding states
are populated. In this work, we therefore focus our attention
on the calculation of radiative decay rate and we ignore the
effects due to the occupation probability.

III. SPONTANEOUS EMISSION FROM
DIPOLE-FORBIDDEN TRANSITIONS IN REALISTIC

NANOSTRUCTURES

In this section, we illustrate some applications of the
formalism developed for the DF transitions. In Sec. III A, we
describe a simple model for a semiconductor QD—an InAs
cylinder embedded in a GaAs matrix. In the following sections,
we investigate the decay rate of the DF transitions of this QD
when it is placed in two different kinds of structures—an L3
photonic crystal cavity and a plasmonic antenna. In both cases,
a high enhancement of the DF transition decay rate is obtained.
However, as explained in Sec. III D, these enhancements have
different physical origins.

A. The disk-shaped QD with infinite barrier

A cylindrical InAs QD with radius R = 10 nm and height
L = 10 nm embedded in a GaAs matrix is considered as a
model for our calculations. We notice that, while the value
assumed for the height is larger than the average values of
3–5 nm normally measured for semiconductor InAs/GaAs
QDs [22], higher values of the QD height, consistent with
our assumption, have been reported for structures emitting in
the near infrared [23].

The axis of the cylinder is along the z direction. An
infinite potential barrier is assumed and the Coulomb inter-
action is neglected because of the small dimensions of the
QD. Although this simplified model is far from a realistic
description of the QD (in which the strain and the real potential
barrier play an important role), they can still qualitatively
describe the behavior of a confined exciton. Under these
simplifying assumptions, the effective-mass equation can
be solved analytically. The single-particle wave function is
described by three quantum numbers:

�n,p,m(r) ∝ eimφJm

(
jmp

ρ

R

)
sin

[
nπ

(
z

L
+ 1

2

)]
, (13a)

n = 1,2, . . . , m = 0, ± 1, ± 2, . . . , p = 1,2, . . . ,

(13b)

where (ρ,φ) are the polar coordinates in the plane xy, Jm is
the mth-order Bessel function, and jmp is the pth zero of the
Bessel function Jm. The origin is chosen in the center of the
cylinder. The exciton envelope function is given by the product
of the electron’s and hole’s wave functions, and the excitonic
state is thus described by six quantum numbers,

χnemepenhmhph
(re,rh) = χe

nemepe
(re)χh

nhmhph
(rh). (14)
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It is trivial to verify that the optically active states are the
ones for which the electron’s and hole’s quantum numbers
are equal, (ne,me,pe) = (nh,mh,ph). The envelope function
overlap μ of all these transitions is equal to 1, since in this
simple model, the electron and hole envelope functions are
identical. The first dipole-allowed transition is the one with
(ne,me,pe,nh,mh,ph) = (1,0,1,1,0,1). In the following, we
will refer to it as the DA transition.

A DF transition is obtained when one of the quantum
numbers is different. The different excitonic states feature
different symmetries of the envelope functions along different
directions. For the transition described by the quantum
numbers (1,0,1,2,0,1), the vector � is oriented along the z

direction and is equal to � = (0,0,0.18) × L, while for the
DF transition (1,0,1,1,1,1) the vector lies in the xy plane and
is equal to � = 0.23 × (1,i,0) × R. By using Eq. (12), the
ratio between the decay rates of these transitions and that of
the DA one can be found to be, for an emission wavelength of
λ = 1300 nm in bulk GaAs, of the order of 10−4.

The linear dependence of � with respect to the dimensions
of the QD confirms the qualitative analysis of the previous
section. In the recent years, the growth of QDs with higher
aspect ratio—the so-called columnar QDs—has been demon-
strated [24–26]. The height of these structures can be one
order of magnitude higher with respect to ordinary InAs/GaAs
self-assembled QDs. Because of the quadratic dependence on
the components of � [see Eq. (9)], the decay rate of the DF
transitions is expected to be approximately 102 higher in these
structures, making them a good candidate for the observation
of the DF transitions.

B. Photonic crystal cavity

The first optical nanostructure investigated is an L3 pho-
tonic crystal cavity (PCC). The PCC is formed by a triangular
pattern of air holes etched in a 320-nm-thick GaAs membrane.
The lattice parameter is a = 320 nm and the radius hole is
r = 0.3a. By removing three collinear holes, an L3 cavity is
formed, as showed in the inset of Fig. 1(c). The fundamental
mode of this single cavity has a wavelength of λPCC = 1287 nm
and a Q factor of 4477 (much higher Q factors can be obtained
by a fine tuning of the position and the size of the holes close to
the cavity) [27]. It is well-known that the in-plane electric field
components of a PCC mode feature several oscillations in the
plane of the membrane, while along the out-of-plane direction
the variation of the field is weaker. These observations suggest
to choose a DF transition for which the vector � lies in the
plane of the cavity as, for example, the transition described by
(ne,me,pe,nh,mh,ph) = (1,0,1,1,1,1). We, moreover, assume
that both the DF and DA transitions are resonant with the
fundamental mode of the cavity. Even if this is not the case for
a given QD and cavity, it gives us the possibility to compare the
maximum enhancements experienced by the two transitions
when the cavity and/or the QD energies are tuned. As explained
above, the Bloch vector pcv lies in the xy plane and therefore
both the orthogonal in-plane polarizations of the electric field
should be considered. For simplicity, we consider here only
the case of a y-polarized exciton since the fundamental mode
of the L3 cavity is mainly polarized along the y direction.

FIG. 1. (Color online) Decay rate enhancement of the DA and DF
transitions as the QD is moved inside the cavity. Both the transitions
are assumed to be in resonance with the PCC fundamental mode
(λPCC = 1287 nm) and polarized along the y direction. (a) and (b)
Decay rates enhancement (as compared to their values in bulk GaAs)
for the DA and DF transitions, respectively. The black dashed circles
indicate the position of the holes that have been removed to create the
cavity. (c) Absolute value of the decay rate for both the transitions
along the line y = 0. The inset shows the geometry of the structure
and the reference frame.

However, the calculations can be straightforwardly extended
to the general case.

When dealing with a dielectric structure (i.e., a real-valued
dielectric function), the Green tensor can be directly calculated
from the normal modes of the electromagnetic field. The
imaginary part of the Green tensor is given by [14]

Im[G(r,r′,ω)αβ] = πc2

2ω

∑
k

E∗
k,α(r)Ek,β(r′)δ(ω − ωk), (15)

where Ek,α denotes the α component of the vacuum electric
field of the kth mode. The electric field has been normalized
through

∫
d3r εr (r)E∗(r) · E(r) = 1, where εr (r) is the relative

dielectric permittivity. Given the very small linewidth of a
PCC resonance, we can safely assume that only one mode will
contribute for each frequency (the leaky modes of the PCC
are neglected). For realistic cavities, the delta function can be
replaced by a Lorentzian function, and at resonance (ω = ωk),
we obtain

Im[G(r,r′,ω)αβ] = Q
c2

ω2
E∗

α(r)Eβ(r′), (16)

where Q is the Q factor of the cavity.
In our calculations, the QD is placed in the center of

the GaAs slab and moved in the xy plane inside the cavity.
The electric field of the fundamental mode is calculated
numerically with a commercial FDTD software [28] by
exciting the structure with a dipolar source and recording the
resonant field with a temporal filter. For the GaAs, we assume
a refractive index of nGaAs = 3.40, while the value of |pcv|2 for
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InAs is available in literature [29]. The DA and DF decay rates
are calculated by using the ordinary dipole approximation and
our formalism, respectively. The calculation shows that the
decay rate of the DF transition [Fig. 1(b)] can be enhanced by
a factor up to 800 with respect to its value in bulk GaAs. The
enhancement experienced by the DA transition is of the same
order of magnitude [Fig. 1(a)], although the positions of the
maxima are different.

Figure 1(c) shows an interesting phenomenon predicted
by our theory: intuitively, one would expect that the strongest
deviations from the dipole approximation theory would appear
where the square modulus of the electric field (and thus the
LDOS) has its maximum variation. Therefore the decay rate
of the DF transition (red curve) should have its maxima in
correspondence of the points of maximum variation of the DA
transition decay rate (blue curve). Instead, an inspection of the
data shows that these points do not coincide and are separated
by about 70 nm. The reason for this is that decay rate of the
DF transitions is not directly proportional to the derivative of
the electric field |E|2, but is related in a more complex way to
the Green tensor, as shown by our formula.

C. Plasmonic dimer antenna

The second structure investigated is a plasmonic dimer
antenna. Before going on, we note that the theory developed
by Stobbe et al. (from which the formalism presented here
is derived) is not rigorously valid for a plasmonic structure.
Indeed, the derivation of Eq. (3) is based on the possibility
of expressing the Green tensor through the normal modes of
the electromagnetic field (see Appendix C of Ref. [12]). For
a plasmonic structure, the electric field is not the solution
of a Hermitian problem, because of the complex-valued
dielectric function. Any derivation based on the normal modes
is, therefore, mathematically not well defined. This topic
has been subject of intensive theoretical research in the last
years [30–32]. Recently, it has been shown how the Green
tensor can be expressed through the quasinormal modes of
the system once they are properly renormalized [33]. With
the aid of these new theoretical tools it should be possible to
extend the derivation of Eq. (3) to the plasmonic case, but a
formal demonstration is beyond the scope of this paper. In the
following, we will assume, similarly to a recent work [17]
about the spontaneous decay rate of QDs interacting with
a metallic structure, that the concept of normal modes [and
therefore also Eq. (3)] can be applied also to a structure with
a complex dielectric permittivity.

The plasmonic structure that we consider consists of two
gold nanorods placed on a GaAs substrate and separated by a
gap of 30 nm. Each antenna has in-plane dimensions of 250 nm
× 50 nm and is 30-nm thick. This structure supports a localized
plasmonic mode at a wavelength of λpl = 1330 nm, as revealed
by a calculation of the power emitted by a dipole placed
nearby [Fig. 2(a)]. As mentioned before, for self-assembled
semiconductor QDs, the Bloch vector pcv lies in the growth
plane. We assume for simplicity that the exciton can interact
only with the x component of the plasmonic field, which is
depicted in Fig. 2(b) along a vertical plane in the middle of
the structure. The contribution from the y-polarized exciton
is negligible if the QD is placed in the gap between the

FIG. 2. (Color online) Plasmonic structure investigated. (a) Res-
onance spectrum of the structure obtained by calculating the enhance-
ment of the power emitted by a dipole (with respect to the power
emitted in bulk GaAs) placed nearby. The inset shows the geometry.
(b) Absolute value of the x component of the electric field along
the middle of the structure for a wavelength of 1330 nm. The red
solid lines indicate the edges of the structure. The dashed white circle
indicates one of the positions in which the decay rate of the QD has
been calculated.

antenna, since here the electric field is mainly x polarized.
Below the gap, a strong gradient of the field along the z

direction is visible. This suggests considering a DF transition
for which � is oriented along the z axis, as the one described
by (ne,me,pe,nh,mh,ph) = (1,0,1,2,0,1).

We evaluated (Fig. 3) the decay rate of the DA and the
DF transition when the QD is placed in the center of the

FIG. 3. (Color online) Decay rate of the DF and DA transitions as
a function of the vertical distance between the QD and the plasmonic
structure. The blue dashed line and the red dashed-dotted line indicate
the decay rate in bulk GaAs of the DA and DF transition, respectively.
The red squares are calculated with Eq. (9), while the black triangles
are calculated with the full formula given by Eq. (3).
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structure and moved along the z direction [see white dashed
circle in Fig. 2(b)]. The two transitions are assumed to be
both spectrally resonant with the plasmonic mode in order to
make a fair comparison of the decay rate enhancements. The
Green tensor of the structure is calculated numerically with a
commercial FDTD software [28] by evaluating the response of
the system to a dipolar excitation placed in different positions.
The parameters used for the numerical calculation are the ones
mentioned in the previous section, and the dielectric function
of the gold is an interpolation of tabulated data [34]. The
decay rate of the DA transition is calculated by using only the
dipolar part of Eq. (7), while the decay rate of the DF transition
is calculated with the formula (9). We have also evaluated, for
few positions, the decay rate of the DF transition predicted by
the general formula in Eq. (3) (black triangles in Fig. 3), to
show that our formalism allows obtaining precise results but
with a drastically reduced computational time. Specifically,
the computation of the decay rate with the exact theory has
required, on a personal computer, approximately five days
of calculations to obtain the Green tensor in all the volume
spanned by the QD in the z direction, plus several hours for
the numerical calculation of the integral in Eq. (3). By using our
approximated formula, it is necessary to know the derivatives
of the Green tensor only in the center of the QDs, which reduces
the computational time to a couple of hours (for each of the
red squares in Fig. 3). After that, the computation of the decay
rate through Eq. (9) requires a negligible amount of time.

Figure 3 shows the enhancement of the radiative decay rate
for the DA and DF transitions as the distance between the QD
and the plasmonic antenna is changed from 65 to 10 nm. We
notice that, as the QD gets closer to the surface, the radiative
enhancement will compete with nonradiative processes, which
becomes dominant when the capping layer is reduced to few
tens of nanometers [35]. The influence of the nonradiative
decay rate can be reduced by passivating the surface, and
capping layers as thin as 18 nm have been demonstrated [36]
to be possible without a degradation of the optical properties
of the QDs. We therefore consider the distance of 15 nm as
a limit value for the position of the QD, below which the
radiative emission will be quenched by nonradiative effects. At
this position, the DA transition is enhanced by a factor of about
20 with respect to its value in bulk GaAs. This enhancement
is comparable to the ones commonly calculated for this kind
of structures, and it is due to the enhancement of the electric
field close to the plasmonic cavity. On the other hand, the DF
transition is enhanced by a factor larger than 370, which cannot
be explained only as an effect of the field enhancement. This
enhancement is due to the variation of the electromagnetic
field along the QD, which increases the quantity ∂z∂z′G|(r0,r0)

from its bulk value [given by Eq. (10)].

D. Comparison between the plasmonic and PCC structure

In the previous sections, we calculated the decay rate of
the DF transitions for a cylindrical QD interacting with a
metallic structure and a dielectric cavity. In both cases, we
obtained an enhancement with respect to its bulk value of
about 102–103. With this enhancement factor, the DF decay
rate should be comparable with the bulk decay rate of a
DA transition, and thus experimentally observable. However,

despite the numerous experiments carried on in the last
years with semiconductor QDs embedded in PCC cavities,
no observation of the DF transitions has been reported. We
propose here an explanation for this apparently contradictory
result.

Although the DF decay rates for the plasmonic and PCC
structures are of the same order of magnitude, their ratio with
the (maximum) Purcell factor of the respective DA transition
is very different; in the case of the plasmonic structure, the
DF transition experiences a decay rate enhancement, which is
almost 20 times greater than the one of the corresponding DA
transition. For the PCC cavity, this ratio is about 1.5. This large
difference suggests a different origin of the two enhancements.

The enhancement of the DF decay rate can be separated
into two contributions; first, the decay rate is increased by the
multipolar effects, which are relevant when the field cannot be
assumed constant; these effects do not depend on the absolute
value of the field but only on its variation. Once the decay
rate is increased (from the null value that it would have in
the dipole approximation to a finite value) the Purcell effect,
which depends on the square of the vacuum electromagnetic
field, provides a further enhancement.

For the case of a dielectric structure, this factorization can be
shown analytically. The effective mode volume of the normal
mode E(r) is given by

V =
∫

d3r εr (r)E∗(r) · E(r)

[εr (r)|E(r)|2]Max
= 1

[εr (r)|E(r)|2]Max
, (17)

where the normalization shown in Sec. III B has been used.
By multiplying and dividing the right term of Eq. (16) for the
mode volume, the Green tensor can be rewritten as

Im[G(r,r′,ω)αβ] = n3

3λ0

E∗
α(r)Eβ(r′)

[εr (r)|E(r)|2]Max
(18)

×
[

3

4π2

(
λ0

n

)3
Q

V

]
, (19)

where λ0 is the vacuum wavelength and n is the refractive index
of the material. The well-known expression for the Purcell
factor is retrieved in the second factor of the right term. The
first factor, which contains the spatial dependence of the field
(but does not depends on its absolute value), is responsible for
the enhancement due to the multipolar effects.

The Purcell factor can be obtained by looking at the
maximum enhancement of the DA transition, which is not
affected by the multipolar effects. For the PCC structure, this
value is about 500 [Fig. 1(c)]. This means that the contribution
of the multipolar effects to the DF decay rate enhancement is
about 1.5. The enhancement of the DF transitions is, therefore,
almost entirely due to the Purcell effect. However, despite
the high values of the Purcell factor calculated for a PCC,
the experimentally measured decay rate enhancements are
systematically much lower. The current record for the Purcell
factor in a PCC slab containing QDs is about 10 [37]. The
origin of this huge mismatch between the theoretical and
experimental values is usually attributed to the poor spatial
matching between the QD and the cavity field, but this has not
yet been proved. If we assume a realistic value for the Purcell
factor, it is clear how the expected enhancement of the DF
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transitions is drastically reduced with respect to the theoretical
values calculated in Fig. 1(c).

On the other hand, for the plasmonic structure, the contribu-
tions from the Purcell effect and from the field inhomogeneities
are of the same order of magnitude. Moreover, the experi-
mental values of the Purcell factor for this kind of metallic
structures are usually not far from the calculated ones [36].
We conclude therefore that a metallic structure constitutes a
more promising candidate to experimentally observe the DF
transitions of a QD.

IV. CONCLUSIONS

We have theoretically investigated the multipolar effects
on the DF transitions of a semiconductor QD. We obtained a
simplified expression for the decay rate of these transitions that
allows us to identify the figures of merit for its enhancement.
The figure of merit of the emitter is given by the dipole
moment over the envelope functions, �, which can be
increased either by increasing the overall dimension of the
QD or by engineering the exciton envelope functions, in
order to increase their asymmetry. Moreover, the direction
of this vector must coincide with the direction along which
the vacuum electric field features the maximum variation.
This variation is quantified analytically by the mixed second
derivatives of the imaginary part of the Green tensor.

We have applied our formalism to the case of a cylindrical
InAs/GaAs QD interacting with two different nanocavities, a
plasmonic dimer antenna and an L3 photonic crystal cavity.
The decay rate of the DF transition is enhanced, in both cases,
by a factor of about 102–103 with respect to its bulk value.
We showed, however, that in the case of the PCC the decay
rate enhancement is mainly due to the Purcell effect and not
to the multipolar effects. This could represent a problem for
the experimental observation of these transitions, since the
measured values of the Purcell factor in PCC structures are
usually much lower than the calculated ones. On the other
hand, for the plasmonic structure, the contribution of the
multipolar effects is higher, because of the high gradient of
the field close to the metallic surface. We therefore conclude
that this kind of structure represents a more promising choice
to observe experimentally the DF transitions of a QD.
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APPENDIX A: MULTIPOLAR MOMENTS

In the main text, we introduced the quantities μ, 
i , and
�ij to describe the multipolar effects on the dipole-forbidden
transitions of a semiconductor QD. Here, we want to show the
link between these quantities and the ones that are usually
introduced in the multipolar expansion of the light-matter
interaction. When describing the interaction of a general

quantum system (such as an atom or a molecule) with light,
the decay rate can be expressed as a sum of infinite terms [38];
the first three terms contain the quantities

μ̃i = 〈g| p̂i |e〉, (A1a)


̃ij = 〈g| r̂i p̂j |e〉, (A1b)

�̃ijk = 〈g| r̂i r̂j p̂k |e〉, (A1c)

where r̂i and p̂i are the components of the position and
momentum operators of the system along the ith direction,
and |g〉 and |e〉 are the ground and the excited states of the
quantum system. For an exciton in a low-energy state of a
semiconductor QD, the electron wave function can usually be
approximated by the product |e〉 = |u〉 |χ〉 of a periodic Bloch
function, which oscillates on the length scale of the lattice
parameter, and a slowly varying envelope function. A good
approximation is thus to assume that the envelope function
does not vary along a unit cell. This allows us to rewrite the
dipole moment μ̃i as

μ̃i � 〈ug| p̂i |ue〉 · 〈χg|χe〉 = (pcv)iμ, (A2)

where the definitions introduced in the main text have been
used. The derivation of Eq. (A2) can be found in standard
textbooks [13], and a similar approach (assuming that also the
derivatives of the envelope function do not vary along a unit
cell) can be used to show that


̃ij � 〈ug| p̂j |ue〉 〈χg| r̂i |χe〉 + 〈ug| p̂j r̂i |ue〉 〈χg|χe〉
+ 〈ug|ue〉 〈χg| p̂j r̂i |χe〉 + 〈ug| r̂i |ue〉 〈χg| p̂j |χe〉 .

(A3)

As explained in the main text, for semiconductor QDs, the
periodic Bloch function ug is the one of the heavy hole band,
which has the symmetry of the px or py orbital [13]. The
electron Bloch function ue is instead spherically symmetric. It
is therefore trivial to verify that the second and third terms
vanish for any choice of i and j . The fourth term scales
with the size of the unit cell, and is thus negligible compared
to the first one, which scales with the size of the QD. We
conclude therefore that 
̃ij � (pcv)j 〈χg| r̂i |χe〉 = (pcv)j
i .
The tensor 
̃ij , which in the general theory of the light-matter
interaction describes the electric-quadrupole and magnetic-
dipole moments, is here related to the dipole moment over the
envelope functions and to the microscopic dipole moment pcv.
Similar considerations can be done for the electric-octupole
and magnetic-quadrupole moments �̃ij .

APPENDIX B: QUANTITATIVE ESTIMATION OF THE
INFLUENCE OF LATTICE INHOMOGENEITIES

In our derivation, we neglected the effects of the variation
of the lattice constant and/or the material composition on the
exciton’s wave function. We assumed, in particular, that the
Bloch vector pcv = 〈uc,0| p̂ |uv,0〉 lies in the plane xy (i.e., the
growth plane) and that it is constant along the QD. The absence
of a vertical component pz is due to the symmetry of the heavy
hole’s and electron’s Bloch functions in a bulk semiconductor.
These assumptions lead to a simplification of the dipolar and
multipolar terms, as explained in Appendix A. In particular,
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once the component of the Bloch vector is fixed and assumed
constant (e.g., pcv = px êx), the dipolar and multipolar terms
become

μ̃x = 〈χh|χe〉 px = μ px,
(B1)


̃ix = 〈χh| r̂i |χe〉 px = 
i px,

where μ and 
i are defined in the main text.
When considering a heterostructure where the lattice

constant and/or composition are not uniform, as commonly
encountered in self-assembled QDs, both assumptions are in
principle not correct. The in-plane component of the Bloch
vector px can vary along the QD, and the vertical component
pz can have a local nonzero value in correspondence of the
strained unit cells. In a recent paper [20] by Tighineanu
et al., it has been suggested that, for the optically active
transitions, these lattice inhomogeneities (rather than the
envelope-function dipole-moment) cause the main effects
beyond the dipole approximation. The reason is that for these
transitions the equal parity of the envelope functions makes
the value of 
i [as calculated with Eq. (8a)] small compared
to the value of μ, and it cannot explain the high value of 
/μ

found experimentally [7]. Nevertheless, for the DF transitions,
the different parity of the envelope function leads to smaller
values of μ and larger values of 
, which suggests that the
contribution from the envelope functions to the multipolar
moment 
 can overcome the one due to the strain, as assumed
in the derivation of Eq. (9). In this appendix, we justify this
assumption by providing a quantitative estimation of these
effects for two different cases.

First, we assume that the in-plane component of the Bloch
vector has a slow linear variation across the QD height. We
consider only the component px for the sake of clarity. The
calculation of μ̃x must be generalized to take into account the
position dependence of px , giving

μ̃x =
∑
N

χ∗
h (RN )χe(RN )px(RN ), (B2)

where the sum is over all the unit cells and RN is the position
of the N th cell. In this case, μ̃x can be different from zero
even if 〈χh|χe〉 = 0. Therefore the first term of the Taylor
expansion in Eq. (7) (from now on called �0) may not be
negligible compared to the third term (from now on called �2).
By assuming a linear variation of px(RN ) across the height
of the QD, we can obtain a simple formula to estimate the
magnitude of the two terms,

�0

�2
=

∣∣∣∣�px/px

L

∣∣∣∣2 Im[Gxx(r0,r0)]

∂z∂ ′
zIm[Gxx(r0,r0)]

, (B3)

where �px/px is the relative variation of px , with respect to
its average value, across the height L of the QD. In Fig. 4(a),
we show the results of this calculation for a QD with L = 10
nm interacting with the plasmonic structure discussed in the
main text, and for different values of �px/px . For reasonable
values of �px/px < 10%, the contribution �0 to the decay
rate constitutes a negligible fraction of the total decay rate.
Although a more detailed knowledge of the distribution of
px would be necessary to make a precise estimation, this
analysis provides a good indication of the order of magnitude

FIG. 4. (Color online) Influence of the strain on the decay rate of
a DF transition. (a) Ratio between the strain-induced dipolar term of
the decay rate (�0) and the decay rate due to the envelope-function
multipolar moment (�2) as a function of the relative variation of the
Bloch vector �px for a QD interacting with the plasmonic structure
discussed in the main text. (b) Values of |
̃xz/
̃zx |2 for different
values of the parameter α and for different positions of the strained
layer across the QD height (L = 10 nm). α represents the HWHM
of the normal distribution, which describes the local change of the
lattice vector. For these calculations, we considered the DF transition
discussed in Sec. III C.

of the effects due to the dipole moment μ̃x induced by lattice
inhomogeneities.

A second case to take into account is a possible nonzero
value of the z component of the Bloch vector in correspondence
to high-strained unit cells. This is indeed the case studied in the
work mentioned above [20]. For the optically active transition
discussed there, the only nonzero elements of the multipolar
tensor 
̃ are 
̃zx and 
̃xz. The first one is very small for
the transition considered by the authors, because of the equal
parity of the envelope functions of a DA transition along the
z direction. The second term, which would be zero in absence
of strain since pz = 0, gives in fact the main contribution to
the multipolar decay rate when a strained layer is assumed to
exist in the QD [20]. We notice that the term 
̃zx corresponds
to the effects discussed in this paper for the DF transitions, i.e.,
a constant in-plane Bloch vector px multiplied by a dominant
contribution from the envelope functions integral. One could
therefore wonder if also for a DF transition the term 
̃xz

can become important in presence of strain. We define the
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following two contributions to the multipolar decay rate:

�Inhom
2 ∝ |
̃xz|2∂x∂

′
xIm[Gzz(r0,r0)],

(B4)
�Env

2 ∝ |
̃zx |2∂z∂
′
zIm[Gxx(r0,r0)].

We notice that the derivatives and the components of the
Green tensor are different, since the different elements of the
tensor 
̃ couple to different components (and derivatives) of
the electromagnetic field. To make a fair comparison between
the two terms, we ignore the influence of the electromagnetic
field, since it can always be engineered in such a way to make
one of the two effects dominant. We therefore consider the
ratio |
̃xz/
̃zx |2 as a quantitative estimation of the influence
of the two effects. We then need to generalize the calculation
of the tensor 
̃ to take into account the position dependence
of the Bloch vector,


̃ij =
∑
N

χ∗
h (RN )χe(RN )RN,i pj (RN ), (B5)

where RN,i denotes the ith coordinate of the N th unit cell.
To calculate the components of the Bloch vector, we need
the functional expression of the electron’s and hole’s Bloch
function. In order to compare our results with the ones showed
in the work of Tighineanu et al. [20], we assume here the
same ansatz on the Bloch functions [Eq. (2) of Ref. [20]]:
the conduction and valence Bloch functions are expanded in a
sum of sinusoidal functions with a z-dependent period a(z). A
simple calculation leads to


̃xz


̃zx

= 〈χh|x2K ′(z)|χe〉
〈χh|zK(z)|χe〉 , (B6)

where K ′(z) denotes the derivative of lattice wave vector
K(z) = 2π/a(z) along the z direction. In their work, the
authors assumed K ′(z) = �Kδ(z − zt ), i.e., the periodicity of
the unit cells is broken only along an infinitely thin layer,
localized at the height zt in the QD and normal to the
growth direction. We consider a more general case where
the periodicity change is described by K ′(z) = �Kδα(z − zt ),

where δα(z − zt ) = (α
√

π )−1e
− (z−zt )2

α2 is a normal distribution
which tends to the delta function when the parameter α

approaches zero. This leads to


̃xz


̃zx

= �a

a

〈χh|x2δα(z − zt )|χe〉
〈χh|z|χe〉 , (B7)

where �a/a is the relative change of the lattice constant along
the strained layer at zt . According to the available experimental
data [39], we assume �a/a = 0.18. In Fig. 4(b), we report
the value of the ratio |
̃xz/
̃zx |2 for different values of the
parameter α and for different positions of the strained layer
across the QD height (L = 10 nm). Even for α � 0 (i.e.,
a delta-function-dependent lattice vector variation) and for
an optimal position along the QD, the effects due to the
inhomogeneities constitutes less than 3% of the envelope-
functions contribution.

In this appendix, we provided an explicit calculation of
the lattice inhomogeneities effects for two different cases. Of
course, other possible cases should be considered, and each of
them would require a dedicated analysis [e.g., in the second
term of Eq. (9) the simultaneous effect of a slow-varying px

and a local nonzero value of pz can be considered in evaluating
the product μ∗ · �]. However, we believe that the results shown
in this appendix constitute a valid quantitative estimation of the
order of magnitude of these effects, and the formulas provided
can be easily modified to take in account other cases of interest.

APPENDIX C: DERIVATION OF THE DECAY RATE
FOR THE DF TRANSITIONS

We derive here the formula for the decay rate of the DF
transition [Eq. (7)]. When the Taylor expansion of the Green
tensor [Eq. (6)] is inserted in Eq. (3), the following expansion
for the decay rate is obtained:

�BDA ∝ G(r0,r0)

∣∣∣∣
∫

d3r χ (r,r)

∣∣∣∣2

+∇rG|(r0,r0)

∫
d3rχ (r,r) (r − r0)

∫
d3r′ χ (r′,r′)

+∇r′G|(r0,r0)

∫
d3rχ (r,r)

∫
d3r′χ∗(r′,r′) (r′ − r0)

+ 1

2

∫
d3r

∫
d3r′χ (r,r)χ∗(r′,r′) ξT H [G]|(r0,r0)ξ,

(C1)

where all the notations have been already defined in the main
text. In the first three terms, the quantities μ and � can be
easily recognized. Moreover, because of the reciprocity of the
Green tensor, the equality ∇rG|(r0,r0) = ∇r′G|(r0,r0) holds, and
thus the second and third terms can be added together, resulting
in 2Re(μ∗�) · ∇rG|(r0,r0). Therefore we just need to show that
the last term of Eq. (C1) is equal to the last two terms of Eq. (7).
In order to do this, it is convenient to first write explicitly the
matrix product

ξT · H [G] · ξ =
3∑

i,j=1

rirj ∂ri
∂rj

G +
3∑

i,j=1

rir
′
j ∂ri

∂r ′
j
G

+
3∑

i,j=1

r ′
i rj ∂r ′

i
∂rj

G +
3∑

i,j=1

r ′
i r

′
j ∂r ′

i
∂r ′

j
G. (C2)

Here and in what follows, we assume that r0 = 0, and we omit
it in the derivatives for the simplicity of notation. When the
first term is inserted in the integral of the last term of Eq. (C1),
we obtain

1

2

∫
d3r

∫
d3r′χ (r,r)χ∗(r′,r′)

3∑
i,j=1

rirj ∂ri
∂rj

G

= 1

2

3∑
i,j=1

∂ri
∂rj

G
∫

d3r χ (r,r)rirj

∫
d3r′χ∗(r′,r′)

= 1

2

3∑
i,j=1

∂ri
∂rj

G �ij μ∗. (C3)

An analogous result can be obtained for the fourth term of
Eq. (C2), and by exploiting again the reciprocity of the Green
tensor, the two terms can be added together, resulting in∑3

i,j=1 Re[μ∗�ij ]∂ri
∂rj

G, which is the third term of Eq. (7).
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Finally, by inserting the second term of Eq. (C2) in the integral in the last term of Eq. (C1), we obtain

1

2

∫
d3r

∫
d3r′χ (r,r)χ∗(r′,r′)

3∑
i,j=1

rir
′
j ∂ri

∂r ′
j
G = 1

2

3∑
i,j=1

∂ri
∂r ′

j
G
[∫

d3rχ (r,r)ri

][∫
d3r′χ∗(r′,r′)r ′

j

]

= 1

2

3∑
i,j=1

∂ri
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j
G 
i 
∗

j . (C4)

The contribution of the third term of Eq. (C2) can be shown to be equal, and therefore when these two terms are summed together,
the last term of Eq. (7) is obtained.
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