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Mean-field ansatz for topological phases with string tension
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We propose a simple mean-field ansatz to study phase transitions from a topological phase to a trivial phase.
We probe the efficiency of this approach by considering the string-net model in the presence of a string tension
for any anyon theory. Such a perturbation is known to be responsible for a deconfinement-confinement phase
transition which is well described by the present variational setup. We argue that mean-field results become exact
in the limit of large total quantum dimension.
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I. INTRODUCTION

The blend of quantum computation and of topological
phases of matter [1] have led to the idea of topological quantum
computation [2–4]. In this field, the essential ingredient is the
construction of physical systems sustaining exotic excitations
known as non-Abelian anyons (see Ref. [5] for a review).
Being genuinely nonlocal, these anyons allow for efficient
storage and manipulation of quantum information. Indeed,
topologically ordered systems [1] are stable under local per-
turbations [6] and hence protected against undesirable effects
such as decoherence. However, strong enough perturbations,
may drive the system to a nontopological phase. In recent
years, many works have been devoted to the study of this
robustness in microscopic models. Such an issue is difficult to
address since one has to deal with two-dimensional interacting
quantum systems and the complex nature of the anyonic
quasiparticles prevents one from using standard methods.

The goal of the present work is to propose a simple approach
that may be considered as a mean-field theory for topological
phases. To this end, we introduce a variational ansatz which
can describe topological as well as nontopological phases.
By construction, it also matches the exact ground state in
some limiting cases. Thus, it aims at qualitatively describing
phase diagrams while being quantitatively acceptable. Most
models hosting topological quantum order are built as a
sum of local commuting projectors (toric code [2], string
nets [7], . . . ). In lattice gauge theories, one often interprets
these projectors as operators measuring effective fluxes and
charges. The topologically ordered ground state (vacuum) is
then defined as the flux-free and charge-free state. Elementary
excitations are obtained by locally violating this constraint.
In two dimensions, excitations are pointlike anyons related
by strings and their energy does not depend on their relative
position so that topological phases are also called deconfined
phases. A natural way to destroy topological order consists in
adding a string tension that will drive the system to a confined
phase. The prototypical Hamiltonian of such a system can be
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written

H = −Jv

∑
v

Qv − Jp

∑
p

Bp − Jl

∑
l

Ll, (1)

where Qv (Bp) are projectors measuring charges (fluxes) on
vertices (plaquettes) of a two-dimensional graph and where Ll

is an operator acting on links which induces a string tension. In
the following, we consider a two-dimensional plane with open
boundary conditions so that the ground state is unique in the
thermodynamical limit. Assuming non-negative couplings, the
ground state of H is readily written in two limiting cases. On
one hand, in the trivial phase Jv = Jp = 0, the ground state is
a (polarized) product state denoted by |0〉, where all links are
in the same state. On the other hand, for Jl = 0, the ground
state is proportional to

∏
v Qv

∏
p Bp|0〉. The main idea of our

construction is to find a simple variational state that bridges
the gap between these two extreme cases.

In this paper, we focus on the string-net model in the
honeycomb lattice since it allows one to study a wide variety
of topological phases [7,8]. Interested readers that are not
familiar with this model can find a detailed study of this
variational approach in the simpler case of the toric code model
in Appendix B.

The string-net Hamiltonian [7] is a special case of Eq. (1)
where the operator Bp favors the zero-flux configuration in
plaquette p. Here, we only consider states without charge
excitation so that the Hilbert space is spanned by all link con-
figurations satisfying the so-called branching rules (stemming
from the fusion rules of the considered anyon theory). We thus
drop the −Jv

∑
v Qv term in the Hamiltonian. For simplicity,

we also restrict our discussion to the string tension term
introduced in Ref. [9] which involves Ll operators enforcing a
zero flux in link l of the lattice. Operators Bp and Ll commute
except if link l belongs to plaquette p.

II. ANSATZ STATE AND ITS BASIC PROPERTIES

To describe the phase transition separating the topological
phase from the trivial phase, we introduce the following single-
parameter variational state:

|α〉 = N
∏
p

(1 + αZp)|0〉, (2)
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where 0 � α � 1, and Zp = 2Bp − 1 is such that Z2
p = 1.

The normalization constant N depends on the total quantum
dimension D of the theory considered, on α, and on the
system size (see Appendix A). Once again, the physical
insight underlying this ansatz is that |α = 0〉 = |0〉 is the exact
ground state for Jp = 0, while |α = 1〉 ∝ ∏

p Bp|0〉 is the
exact ground state for Jl = 0. Thus, one can expect that it
captures the physics, at least qualitatively, for nonvanishing
couplings.

Interestingly, the structure of |α〉 implies that for any set Pn

of n plaquettes, one has〈 ∏
p∈Pn

Bp

〉
α

=
∏
p∈Pn

〈Bp〉α =
[

(1 + α)2

D2(1 − α)2 + 4α

]n

, (3)

where 〈O〉α = 〈α|O|α〉 (see Appendix A for details). This
factorization property reveals the mean-field character of |α〉.
In addition, for Abelian theories, |α〉 can be rewritten as a
simple product state in the dual plaquette (flux) basis. For
illustration, let us consider the simplest Abelian theory, i.e.,
Z2 (D2 = 2). As shown in Ref. [10], for this theory, the
string-net model with a string tension can be mapped onto the
transverse-field Ising model on the triangular lattice by setting
XpXp′ = 2Ll − 1, where p and p′ are plaquettes sharing link
l. In this dual representation, degrees of freedom are defined
on plaquettes (instead of links) and operators Xp and Zp are
the usual Pauli matrices. One can then compute the following
expectation values in the link basis (see Appendix A)

〈2Bp − 1〉α = 2α

1 + α2
, 〈2Ll − 1〉α =

(
1 − α2

1 + α2

)2

, (4)

and in the plaquette basis

〈Zp〉θ = cos θ, 〈XpXp′ 〉θ = sin2 θ = 〈Xp〉θ 〈Xp′ 〉θ . (5)

Here, we set |θ〉 = ⊗p[ cos(θ/2)|↑〉p + sin(θ/2)|↓〉p] where
|↑〉p and |↓〉p are the eigenstates of Zp with eigenvalues +1
and −1. Clearly, expressions (4) and (5) coincide provided
α = tan(θ/2).

The ZN case can be treated similarly by mapping the
model onto the transverse-field N -state Potts model [10] (other
models withZ2 andZ3 topological order have also been treated
in the same vein [11–13]). Although no such mapping is known
for non-Abelian theories (because of the existence of multiple
fusion channels), the state |α〉 can still be considered as a mean-
field ansatz because of the factorization property (3). In other
words, the present approach generalizes the canonical mean-
field treatment (performed in the dual basis) implemented for
Abelian anyons, to non-Abelian theories.

III. RESULTS

For any theory with total quantum dimension D, one can
compute the variational energy per plaquette

e(α) = −Jpfp(α) + 3Jlfl(α)

g(α)
, (6)

FIG. 1. (Color online) Energy landscape as a function of α and
x = Jl/Jp for D2 = 2. The green line shows the position of the
absolute minimum α(x). In this case, the transition is found to be
continuous (second order).

where

g(α) = D2[D2(1 − α)2 + 4α]2, (7)

fp(α) = D2(1 + α)2[D2(1 − α)2 + 4α], (8)

fl(α) = D6(1 − α)4 + 8D4α(1 − α)3

+ 24D2α2(1 − α)2 + 16α3(2 − α). (9)

Details of the calculations are given in Appendix A. Setting
x = Jl/Jp, the study of e(α) indicates that the system under-
goes a phase transition at xc = D2−1

3D2 . Indeed, the minimum of
e is obtained for α− = 1 if x � xc and for α+ � 1 if x � xc (see
Figs. 1 and 2 for illustration). This transition is second order
for D2 = 2 only, and first order for D2 > 2. At the transition,
one has α+(xc) = D2

3D2−4 .
Interestingly, all these variational results only depend on D.

This is reminiscent of the intrinsically local character of the
ansatz that does not take into account subtle effects due to

FIG. 2. (Color online) Energy landscape as a function of α and
x = Jl/Jp for D2 = 100. The green (dotted) line shows the position
of the absolute (local) minimum α(x). For D2 > 2, the transition is
found to be discontinuous (first order).
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nontrivial braiding statistics. Within this mean-field approach
(single-plaquette approximation), two theories with the same
total quantum dimension D are thus treated on an equal
footing. Nevertheless, from high-order series expansions, we
know that, for instance, Z4 and Ising theories (D2 = 4) have
different ground-state energies [14].

Consequently, it is natural to wonder how these predictions
compare with exact results. First, it is worth noting that, in the
topological phase (x < xc), the energy is minimized for α = 1
which is the exact result for x = 0. For α = 1, the ground-state
energy reads

e(α−)

Jp

= −1 − 3x

D2
, (10)

which matches the exact small-x perturbative expansion up to
order 1 but does not give higher-order corrections. Secondly,
in the opposite (large-x) limit, the variational energy per
plaquette can be expanded in powers of 1/x and reads, at
order 4,

e(α+)

Jl

= −3 − 1

x

1

D2
− 1

x2

D2 − 1

6D4
− 1

x3

D4 − 3D2 + 2

36D6

− 1

x4

2D6 − 11D4 + 19D2 − 10

432D8
. (11)

This expansion matches the exact large-x series expansion
up to order 3 but not beyond. Once again, this is due to the
local character of the ansatz that does not capture quantum
fluctuations beyond a single plaquette.

Another important remark concerns the behavior of the
so-called Wilson loop operators denoted Ws

Cn
for a contour Cn

enclosing n plaquettes and a string of type s (see Appendix A).
In the deconfined (confined) phase, the expectation value of
Ws

Cn
is expected to scale as the perimeter (area) of Cn [19].

Remarkably, the present mean-field approach displays this
behavior since〈

Ws
Cn

〉
α

= �sds

[
4α

D2(1 − α)2 + 4α

]n

, (12)

where �s and ds are the Frobenius-Schur indicator and
the quantum dimension of the string s, respectively
(see Appendix A). In the topological phase, one has
〈Ws

Cn
〉α− = �sds for any Cn, which can be interpreted as a

trivial perimeter law with an infinite characteristic length. By
contrast, in the polarized phase, one has 〈Ws

Cn
〉α+ = �sdse

−n/A

where the characteristic area A is readily obtained from
Eq. (12).

Let us now compare the mean-field predictions with
existing results. As explained above, for the ZN theory
(D2 = N ), the model is equivalent to the N -state Potts model
in a transverse field on the triangular lattice. This model is
known to display a second-order transition (Ising universality
class) for N = 2, and a first-order transition for N � 3 (see
Ref. [20] for a review). Thus, the present mean-field treatment
gives the correct order of the transition. In Table I, we
give the position of the transition point xc obtained from
series expansions and from the present mean-field ansatz.
Quantitatively, the difference between the results of both
approaches decreases as D2 increases. For the Potts model,
the mean-field theory is even known to be exact for large

TABLE I. Position of the transition point for several theories
computed with the mean-field ansatz (2) and with series expansions.

Z2 Z3 Fibonacci Ising

D2 2 3 3.618 4
xc (mean field) 0.1667 0.2222 0.2412 0.25
xc (series) 0.2097 [15] 0.2466 [16] 0.256 [17] 0.261 [18]

D2 = N [21]. In this limit, one obtains a first-order transition
at xc = 1/3. Since e(α) only depends on D, this large-D
mean-field result is expected to hold for all theories.

However, for non-Abelian theories with finite D, the situa-
tion is more complex. In two recent studies [17,18], using se-
ries expansion and exact diagonalizations, it has been claimed
that the phase transition for Fibonacci and Ising theories is sec-
ond order but the present mean-field approach predicts a first-
order transition (D2 > 2). Although none of these methods are
exact, we strongly believe that a (weakly) first-order scenario
is correct. Apart from the mean-field result, this conclusion
relies on two observations which have been overlooked.

The first one relies on strong similarities of the ground-state
energy series expansions between Z3, Fibonacci, and Ising
theories (see Fig. 3). In particular, a jump in the first derivative
of the ground-state energy per plaquette ∂e/∂x is observed at
the transition. This jump was considered as an artifact due to
a finite-order series in Refs. [17,18]. As can be seen in Fig. 3,
the magnitude of this jump is found to increase with D, in
agreement with the mean-field result which yields

∂e

∂x

∣∣∣
x=x−

c

− ∂e

∂x

∣∣∣
x=x+

c

= 3(D2 − 2)2

D2(D2 − 1)
. (13)

FIG. 3. (Color online) Comparison of variational results (upper
boundaries of shaded planes) with low- (high-) field series expansions
shown in full (dashed) lines for theories discussed in Table I. Bare
series at highest available orders [15–18] are displayed.
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In addition, for D2 > 2, the (relative) height of the energy
barrier at x = xc between the two minima α± and the local
maximum α∗ reads

e(α±) − e(α∗)

e(α±)
= D4 − 4D2

√
D2 − 1 + 4D2 − 4

4(D4 + D2 − 1)
. (14)

In the limit (D2 − 2) � 1, this relative energy vanishes as
(D2 − 2)4, indicating a weakly first-order transition. Such
a behavior qualitatively explains why the transition for
Fibonacci and Ising theories has been considered as second
order in Refs. [17,18].

The second argument that corroborates this scenario is
based on the emergence of bound states in the low-energy
spectrum inside the topological phase and will be discussed
elsewhere. Let us simply mention that such bound states
are necessary although not sufficient to induce a first-order
transition and they are present for D2 > 2.

The mean-field approximation can also be used to analyze
the same model but in the ladder geometry for which several
exact results are known [9,22–24]. In this one-dimensional
case, the variational energy is straightforwardly obtained from
(6) by merely replacing Jl by Jl/3. As for the two-dimensional
case, the ansatz (2) predicts a second-order transition for
D2 = 2 and a first-order transition for D2 > 2 although, for the
ladder, the transition is known to be first order only if D2 > 4
[24]. Thus, the ansatz fails at describing the nature of the
transition for D2 � 4, as already known for the Potts model
[20]. Interestingly, the position of the mean-field transition
point x ladder

c = D2−1
D2 goes to 1 (self-dual point) in the large-D

limit, which is the exact result for any D [24].

IV. CONCLUSION

To conclude, we would like to give some possible routes to
go beyond the present approach. In Refs. [25,26], the ground
state of the string-net model without string tension has been
written as a tensor-network state (TNS), involving a triple-line
structure (that reduces to a double-line structure for Abelian
theories). Following the steps detailed in these works, the
state |α〉 could be written in the same way. The parameter
α would only change the values taken by the tensors. Since
|α〉 already captures semiquantitatively the physics of the
transition induced by string tension, it seems reasonable to
assume that performing a minimization over all parameters of
the tensors should give more precise results. The first-order
nature of the phase transition for D2 > 2 should furthermore
be favorable to the obtention of accurate results.

TNS have already been successfully used to study phase
transitions in Abelian models [11,27–29]. However, they have
not yet been applied to the more challenging non-Abelian
models, although the principles for doing so have been laid
down [30]. The technique exhibited in the present paper can
be considered as a first step, even though the tensor-network
structure has been bypassed. Let us emphasize that single-
parameter TNS have already been proposed for Z2 models
[27,29], but their single-line structure leads to qualitatively
wrong results (first-order transition). To solve this problem,
Gu et al. introduced multiparameter double-line tensors [27]. It
seems that the double-line structure (or triple-line structure for

non-Abelian theories) is crucial since it encodes information
about plaquettes that is necessary for an area law in the
confined phase. Our single-parameter ansatz supports this
conclusion.

Let us also stress that tensors must be chosen carefully, in
order to allow for topological states [31–34]. For the toric code
in a parallel magnetic field, we have shown (see Appendix B
for a detailed calculation) that the topological entropy [35,36]
vanishes for α < 1, i.e., in the polarized phase, but is equal to
−log2D (which is equal to −1 since D = 2) for α = 1, i.e., in
the topological phase. We conjecture that the same relations
hold for the string-net model, for any theory. We leave the
calculation of the topological entropy, or of other measures
[37,38] for future works.

The use of TNS would furthermore allow one to study
other transitions. For instance, for the Fibonacci theory [17],
the ground state for Jp = 0 and Jl < 0 is the state |1〉 where all
links carry a string 1, namely, a Fibonacci anyon. The transition
from the string-net ground state to this state could thus be
studied with a variational state |α〉 = N

∏
p(1 + αZp)|1〉.

However, analytical calculations are much harder in this case,
so that numerical TNS methods would be extremely valuable.

Finally, let us mention that it would be interesting to
describe excitations in a variational setting and thus to study
dynamical properties in the model, as was done in Ref. [39].
We hope the present work will trigger such studies.
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APPENDIX A: STRING-NET MODEL WITH
STRING TENSION

1. Definitions

The Hamiltonian of the string-net model with a string
tension is given by

H = −Jp

∑
p

Bp − Jl

∑
l

Ll, (A1)

where the string-tension operator Ll is the projector onto the
trivial state |0〉l on the link l. The operator Bp enforcing
trivial flux in plaquette p is written as Bp = 1

D2

∑
s d̃sB

s
p.

Here, we introduce d̃s = �sds , which is the product of the
Frobenius-Schur indicator �s and of the quantum dimension
ds of the string s. The total quantum dimension is defined as
D = √∑

s d2
s . The operator Bs

p inserts a string s in the links of
plaquette p as defined in Appendix C of Ref. [7]. Since B0

p acts
as the identity on states satisfying branching rules (to which
we restrict ourselves), we shall single it out and write B0

p = 1.
We introduce the operator Zp = 2Bp − 1 that satisfies Z2

p = 1
since Bp is a projector. With these notations and noting that
d̃0 = 1, one obtains

Zp = −D2 − 2

D2
1 + 2

D2

∑
s =0

d̃sB
s
p. (A2)
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2. Normalization of |α〉
We consider the variational state

|α〉 = N
∏
p

(1 + αZp)|0〉, (A3)

where 0 � α � 1 is a variational parameter. The fully polar-
ized state |0〉 is defined as |0〉 = ⊗l|0〉l . The first task is to
compute the normalization constant N . To this end, let us note
that

(1 + αZp)2 = (1 + α2)(1 + ηZp), with η = 2α

1 + α2
.

(A4)

Thus, denoting Np the number of plaquettes and since all Bs
p

commute with one another, we find

1 = 〈α|α〉 = N 2(1 + α2)Np 〈0|
∏
p

(1 + ηZp)|0〉. (A5)

For simplicity and since we are interested in the thermodynam-
ical limit, let us assume open boundary conditions. Then, the
only contribution to 〈0|∏p (1 + ηZp)|0〉 comes from the term
proportional to 1 that arises when expanding

∏
p (1 + ηZp).

Indeed, the action of a B
s =0
p on |0〉, for a boundary plaquette,

introduces nontrivial strings in the boundary links that cannot
be compensated by any other operator Bs ′

p′ =p. Using Eq. (A2),
it is then easy to get the normalization condition

1 = 〈α|α〉 = N 2(1 + α2)NpεNp , (A6)

with

ε = 1 − η
D2 − 2

D2
. (A7)

3. Computation of 〈Bp〉α

Let us pick a particular plaquette p and compute
〈Bp〉α = 〈α|Bp|α〉. Since all Bs

p commute with one another,
we get

〈Bp〉α = N 2(1 + α2)Np 〈0|Bp

∏
p′

(1 + ηZp′)|0〉. (A8)

From the definition of Zp, it is easy to derive the identity
Bp(1 + ηZp) = (1 + η)Bp. The prefactor of 1 in this term is
1+η

D2 . Proceeding along the same lines as for the normalization
of |α〉, and using the expression ofN stemming from Eq. (A6),
we then find

〈Bp〉α = 1 + η

D2

1

ε
. (A9)

4. Computation of 〈∏ p Bp〉α

LetPn be a set of n plaquettes. The same argument as above
shows that all plaquettes of Pn will have a contribution 1+η

D2
1
ε
,

while other plaquettes have a contribution 1. As a consequence〈 ∏
p∈Pn

Bp

〉
α

=
(

1 + η

D2

1

ε

)n

= 〈Bp〉nα. (A10)

5. Computation of 〈Ll〉α

Let us finally turn to the computation of 〈Ll〉α = 〈α|Ll|α〉,
which is a little bit more involved. We denote p1 and p2

the plaquettes sharing link l. Then Ll commutes with all Zp

operators, except those acting at plaquettes p1 and p2. As a
consequence

〈Ll〉α = N 2(1 + α2)Np−2〈0|(1 + αZp1

)(
1 + αZp2

)
×Ll

(
1 + αZp1

)(
1 + αZp2

) ∏
p =p1,p2

(1 + ηZp)|0〉.

(A11)

As for the previous two computations, the only contribu-
tion to the matrix element 〈0| · · · |0〉 comes from the term
proportional to 1 after expanding the operators. Conse-
quently, we can already take into account the contribution of∏

p =p1,p2
(1 + ηZp), that is, εNp−2 as well as the expression of

N stemming from Eq. (A5), to write

〈Ll〉α =
(

1

1 + α2

)2 1

ε2
〈ψ |Ll|ψ〉, (A12)

where

|ψ〉 = (
1 + αZp1

)(
1 + αZp2

)|0〉. (A13)

Denoting 1 + αZp = β1 + γCp, with

β = 1 − α
D2 − 2

D2
, γ = 2α

D2
, and Cp =

∑
s =0

d̃sB
s
p,

(A14)

one gets

|ψ〉 = [
β21 + βγ

(
Cp2 + Cp1

) + γ 2Cp1Cp2

]|0〉. (A15)

Since Ll enforces a trivial (s = 0) flux in link l, and since Cp

operators introduce nontrivial fluxes, only the first and third
terms of |ψ〉 contribute to the matrix element appearing in
Eq. (A12). When acting with Cp1Cp2 on |0〉, the only way
to obtain a trivial flux in link l is to take the same s in Cp1

and in Cp2 . Thus, one gets all possible states with a loop s

surrounding plaquette p1 and a loop s surrounding p2. Since
one requires the link l to be in the trivial s = 0 state, the weight
of these states is equal to d̃s as can be found by using Eq. (2.23)
in Ref. [40]. As a consequence, we obtain

〈ψ |Ll|ψ〉 = β4 + γ 4
∑
s =0

d̃s
2 = β4 + γ 4(D2 − 1), (A16)

so that

〈Ll〉α =
(

1

1 + α2

)2 1

ε2
[β4 + γ 4(D2 − 1)]. (A17)

6. Computation of e(α) = 〈H〉α/Np

Finally, we can compute the variational energy per plaquette

e(α) = 〈α|H |α〉
Np

= −Jp〈Bp〉α − 3Jl〈Ll〉α, (A18)

where the factor of 3 comes from the fact that on a honeycomb
lattice, the number of links is three times the number of
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plaquettes. Replacing 〈Bp〉α and 〈Ll〉α by their expressions,
and simplifying everything, one gets the energy per plaquette
given in the main text. Note that for the ladder geometry [9],
the link operator Ll only acts on rungs. As there are as many
rungs as plaquettes, the variational energy per plaquette for the
ladder reads eladder(α) = −Jp〈Bp〉α − Jl〈Ll〉α .

7. Computation of 〈W s
Cn

〉α

For a contour Cn enclosing n plaquettes, the Wilson loop
operator Ws

Cn
inserts a string s along Cn. In principle, one

should consider two distinct operators, depending whether the
string lies above or below the lattice. However, for our ansatz
state, these operators have identical expectation values so that
we denote both of them as Ws

Cn
. This operator is given by

Ws
Cn

= �sWs
Cn

where Ws
Cn

is the type-s simple-string operator
defined in Ref. [7], and is nothing but a multiplaquette version
of Bs

p. As Ws
Cn

commutes with all Bs ′
p operators,〈

Ws
Cn

〉
α

= �sN 2(1 + α2)Np 〈0|
∏
p

(1 + ηZp)Ws
Cn

|0〉. (A19)

Since Ws
Cn

|0〉 is the state with a string s along Cn, the only
nonzero contribution comes from (Np − n) operators 1 for
plaquettes outside Cn, and from n operators Bs̄

p inside Cn,
annihilating the string s (where s̄ is the dual string of s). Each
of the n fusions of s and s̄ gives a factor �s/ds , and the resulting
contractible s loop gives a factor ds . As a result〈

Ws
Cn

〉
α

= �sN 2(1 + α2)NpεNp−n

(
2ηd̃s

D2

)n(
�s

ds

)n

ds. (A20)

Simplifying this expression finally yields〈
Ws

Cn

〉
α

= �sds

(
2η

D2ε

)n

. (A21)

Let us mention that, as for a single plaquette, one can build
the projector WCn

= 1
D2

∑
s d̃sW

s
Cn

onto flux 0 inside Cn. This
operator has the following expectation value:〈

WCn

〉
α

= 1

D2

[
1 + (D2 − 1)

(
2η

D2ε

)n]
. (A22)

From this expression, it follows that 〈WCn
〉α=1 = 1 as

expected. Furthermore, when n = 1, one can check that
〈WCn=1〉α = 〈Bp〉α given in Eq. (A9). This result allows one
to rewrite the expectation value of Wilson operators as〈

Ws
Cn

〉
α

= �sds

(
D2〈Bp〉α − 1

D2 − 1

)n

. (A23)

APPENDIX B: TORIC CODE IN A MAGNETIC FIELD

1. Definitions

The Hamiltonian of the toric code in a magnetic field reads

H = −J
∑

v

Av − J
∑

p

Bp −
∑

l

h · σ l , (B1)

where h = (hx,hy,hz) is a uniform magnetic field and
σ l = (σx

l ,σ
y

l ,σ z
l ) are Pauli operators at link l of a square lattice.

Furthermore, Av = ∏
l∈v σ x

l and Bp = ∏
l∈p σ z

l , where v and
p, respectively, denote vertices and plaquettes of the lattice
(see Ref. [28], and references therein for a detailed discussion

of this model). These operators all commute with one another
and A2

v = B2
p = 1. Note that, with these definitions, Av and Bp

are not defined as projectors. In the following, we shall only
consider a system in the thermodynamical limit with open
boundary conditions.

2. Ansatz and limiting cases

For a given direction of the magnetic field h, following the
mean-field prescription previously detailed for string nets, we
introduce the following variational state:

|α,β〉 = N
∏
v

(1 + αAv)
∏
p

(1 + βBp)|h〉, (B2)

where |h〉 denotes the state fully polarized in the field direction.
When h = 0, the exact ground state is given by α = β = 1,
whereas for J = 0, it is obtained for α = β = 0. Although the
normalization constant N is hard to compute for arbitrary |h〉,
it is possible to find exact expressions for some particular field
directions.

In the following, we focus on two simple directions:
the parallel-field case where the field points in the z (or
equivalently x) direction [41–43], and the transverse-field
case where it points in the y direction. In the former case,
a second-order phase transition in the Ising universality class
is known to occur for hz/J � 0.328 [41–43], whereas in the
latter case, a first-order transition occurs for hy/J = 1 [44].
As we will see, the ansatz state |α,β〉 qualitatively captures
these two very different behaviors.

3. Parallel field

For a start, we consider a field h = (0,0,h) pointing along
the z axis. When J vanishes, the ground state is |⇑〉 = ⊗l|↑〉l ,
namely, the polarized state where all spins point in the z

direction. In the opposite limit where h = 0, the system is in
the topological (toric code) phase. The ground state is then an
eigenstate of all Av and Bp operators, with eigenvalues 1, that
can be written N

∏
v (1+Av

2 )|⇑〉. For h = 0, the Hamiltonian
still commutes with all Bp operators and the problem can then
be mapped onto an Ising lattice gauge theory on the square
lattice [41]. The ground state is an eigenstate of all Bp’s with
eigenvalues 1 which enforces β = 1 in Eq. (B2). Thus, we
consider the following simple ansatz state:

|α〉 = |α,β = 1〉 = N
∏
v

(1 + αAv)|⇑〉. (B3)

The structure of this state is simple enough to allow for
straightforward calculations of all quantities appearing in the
Hamiltonian.

a. Normalization

Since A2
v = 1, one has (1 + αAv)2 = (1 + α2)(1 + ηAv),

where

η = 2α

1 + α2
. (B4)
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For a finite-size system with Nv vertices and open boundary
conditions, the normalization condition thus reads

1 = 〈α|α〉 = N 2(1 + α2)Nv 〈⇑|
∏
v

(1 + ηAv)|⇑〉. (B5)

The only contribution to 〈⇑| ∏v(1 + ηAv)|⇑〉 arises from the
term proportional to 1 (i.e., that does not involve any Av

operator), since an Av operator for a boundary vertex flip
boundary spins. These spin flips cannot be compensated by
the action of other Av operators. As a consequence, the state
|α〉 is normalized if the following condition holds:

1 = 〈α|α〉 = N 2(1 + α2)Nv . (B6)

b. Computation of 〈Bp〉α and 〈Av〉α

Since all Bp and all Av operators commute, it is easy to see
that

〈Bp〉α = 〈α|Bp|α〉 = 1. (B7)

The computation of 〈Av〉α = 〈α|Av|α〉 is also straightfor-
ward since

〈Av〉α = N 2(1 + α2)Nv 〈⇑|Av

∏
v′

(1 + ηAv′)|⇑〉

= 〈⇑|(η1 + Av)
∏
v′ =v

(1 + ηAv′ )|⇑〉. (B8)

Here, we used the normalization condition (B6) and the fact
that A2

v = 1. As for the calculation of the norm, the only
nonzero contribution comes from the term proportional to 1,
so that one gets

〈Av〉α = η. (B9)

This result is independent of Nv and is thus valid in the
thermodynamical limit. This will be the case for all quantities
discussed below.

c. Computation of 〈∏v∈Vn
Av〉α

Let Vn be a set of n vertices. The same argument as above
shows that all vertices of Vn have a contribution η while other
vertices have a contribution 1, so that〈∏

v∈Vn

Av

〉
α

= ηn = 〈Av〉nα. (B10)

This factorization property illustrates the mean-field character
of the variational state |α〉.

d. Computation of 〈σ z
l 〉α

We now turn to the calculation of 〈σ z
l 〉α = 〈α|σ z

l |α〉 at
link l:〈

σ z
l

〉
α

= N 2〈⇑|
∏
v

(1 + αAv)σ z
l

∏
v

(1 + αAv)|⇑〉. (B11)

We denote v1 and v2 the two vertices that share link l.
Then σ z

l Avj
= −Avj

σ z
l for j = 1,2, while σ z

l commutes
with all other Av operators. Using the trivial identity
(1 + αAvj

)(1 − αAvj
) = (1 − α2)1, we obtain〈

σ z
l

〉
α

= N 2〈⇑|
∏

v =v1,v2

(1 + ηAv)(1 − α2)2|⇑〉. (B12)

We thus get

〈
σ z

l

〉
α

=
(

1 − α2

1 + α2

)2

. (B13)

e. Computation of 〈σ x
l 〉α and 〈σ y

l 〉α

For the sake of completeness, let us mention that〈
σx

l

〉
α

= 〈
σ

y

l

〉
α

= 0, (B14)

which follows from the fact that σx
l and σ

y

l both flip a single
spin and that this single spin flip cannot be compensated by
any product of Av operators.

f. Computation of the energy per link e

On the square lattice, in the thermodynamical limit, the
number of plaquettes Np equals the number of vertices Nv ,
and this number is half the number of links Nl of the
lattice. As a consequence, the variational energy per link
e(α) = 〈α|H |α〉/Nl can be written as follows if one gathers
all previous results:

e(α) = −J

2
(η + 1) − h

(
1 − α2

1 + α2

)2

. (B15)

Denoting η = 2α
1+α2 = cos θ and 1−α2

1+α2 = sin θ , one finally
obtains

e(θ ) = −J

2
(cos θ + 1) − h sin2 θ. (B16)

g. Analysis of the variational energy and phase diagram

The variational energy e(θ ) exactly has the form one would
obtain by (i) noting that the Hamiltonian is dual to the
transverse-field Ising model on the square lattice, thanks to the
duality transformation Av = μz

v and σ z
l = μx

v1
μx

v2
with v1 and

v2 being the two adjoining vertices to link l; (ii) performing
a mean-field treatment from the dual spin-1/2 variables μ,
namely, by writing the variational state as a product state
|θ〉 = ⊗v|θ〉v satisfying 〈μz

v〉θ = cos θ , 〈μx
v〉θ = sin θ , and

〈μx
v1

μx
v2

〉θ = sin2 θ . Of course, a direct mean-field treatment
based on the original variables σ cannot describe this transition
since a product state is topologically trivial.

The energy e(θ ) can be studied easily. It has a single mini-
mum at θ = 0, i.e., α = 1, when x = h/J � xc = 1/4. When
x > xc, a single minimum is found for cos θ = xc/x, thus
for α < 1. This shows that there is a second-order quantum
phase transition at x = xc, between the low-field (x < xc)
topological phase, and the high-field (x > xc) polarized phase.
The mean-field approach is thus able to capture the qualitative
features of the phase transition, since it is known that the
transverse-field Ising model has a second-order quantum phase
transition at xc � 0.328. However, the position of the critical
point is about 24% off since we find xc = 1/4.

It is also interesting to note that, in the topological phase,
e(x < xc) = −J , which agrees with the order 1 perturbative
expansion in the low-field limit h/J � 1. In the polarized
phase, one has

e(x > xc) = −h − J

2
− J 2

16h
, (B17)
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FIG. 4. (Color online) Partition of the lattice between two subsets
C and D, where C is simply connected.

which agrees with series expansion up to order 2 in the high-
field limit J/h � 1. As explained for string nets, this is due
to the fact that the mean-field ansatz only captures quantum
fluctuations at a single-vertex level which is not sufficient to
obtain the exact contributions at higher orders.

h. Topological entropy

A reliable way to detect topological order in a given
quantum state is to compute the topological entropy [35,36].
In the following, we show that state |α〉 has a nonvanishing
topological entropy only if α = 1, which is in agreement with
the nature of the phases expected on both sides of the critical
point xc.

As shown in Ref. [45], the topological entropy can be
extracted from the computation of the Rényi entanglement
entropy. We consider a system with open boundary conditions,
and we split it into two subsystems C and D, where C is simply
connected, as shown in Fig. 4 for an example where C has a
square shape. We denote c, d, and n the numbers of vertices
fully included in C, fully included in D, and belonging to
both C and D, respectively. The aim is to compute the Rényi
entanglement entropy between C and D when the system is in
state |α〉, namely, E2 = −log2[Tr(ρ2

C)], where ρC = TrD|α〉〈α|.
In the thermodynamical limit, and for a domain C that becomes
bigger and bigger, E2 = βn − γ + · · · where · · · contains all
terms that vanish as n → ∞. The first term is nonuniversal,
contrary to the second one Stopo = −γ , which is the topological
entropy. It can be shown that Stopo = −log2D, where D is the
total quantum dimension of the model under consideration.
We shall prove below that

Stopo(α = 1) = −1 and Stopo(0 � α < 1) = 0, (B18)

so that only the state |α = 1〉 has topological properties, with
the expected quantum dimension D = 2, since there are four
kinds of Abelian particles in the toric code model [2].

In order to perform this calculation, we begin by rewriting
|α〉 as follows:

|α〉 = N
NCND

∏
v∈∂

(1 + αAv)|α〉C ⊗ |α〉D, (B19)

where ∂ denotes the boundary of C and D, namely, the vertices
belonging to both C and D, and where

|α〉C =NC
∏
v∈C

(1+ αAv)|⇑〉C with |⇑〉C = ⊗l∈C |↑〉l ,

(B20)

|α〉D = ND
∏
v∈D

(1 + αAv)|⇑〉D with |⇑〉D = ⊗l∈D|↑〉l .

(B21)

These are normalized states, which impose the conditions
N 2

C (1 + α2)c = 1 and N 2
D(1 + α2)d = 1, that can be found as

before, since C and D have (at least) one boundary. Knowing
that N 2(1 + α2)c+d+n = 1, we can rewrite

|α〉 = M
∏
v∈∂

(1 + αAv)|α〉C ⊗ |α〉D, (B22)

with M2(1 + α2)n = 1.
For each vertex v ∈ ∂ , we write Av = AC

vA
D
v , where the

operator AC
v = ∏

l∈v∩C σx
l flips the spins that belong to both v

and C, and where AD
v = ∏

l∈v∩D σx
l is defined similarly with

domain D. Then, state |α〉 can be expanded as follows:

|α〉 = M
(

|α〉C ⊗ |α〉D + α
∑
v∈∂

AC
v |α〉C ⊗ AD

v |α〉D

+α2
∑

v1 =v2∈∂

AC
v1

AC
v2

|α〉C ⊗ AD
v1

AD
v2

|α〉D + · · ·

+αnAC
v1

· · · AC
vn

|α〉C ⊗ AD
v1

· · · AD
vn

|α〉D
)

, (B23)

where in the last term, all v1, · · · ,vn are distinct and belong
to ∂ .

For open boundary conditions, the states |α〉D, {AD
v |α〉D,

v ∈ ∂}, {AD
v1

AD
v2

|α〉D,v1 = v2 ∈ ∂}, · · · ,AD
v1

· · · AD
vn

|α〉D are
all different and form an orthonormal set of states. It is thus
easy to take the partial trace needed to compute the reduced
density matrix ρC = TrD|α〉〈α|. One gets

ρC = M2

(
|α〉C C〈α| + α2

∑
v∈∂

AC
v |α〉C C〈α|AC

v + · · ·

+α2nAC
v1

· · · AC
vn

|α〉C C〈α|AC
v1

· · ·AC
vn

)
, (B24)

where we did not write as many terms as before to keep things
as readable as possible.

To compute Tr(ρ2
C), one needs to find the spectrum

of ρC . For this, one has to see that all states appearing
in the expression of ρC , namely, |α〉C , {AC

v |α〉C,v ∈ ∂},
{AC

v1
AC

v2
|α〉C,v1 = v2 ∈ ∂}, · · · ,AC

v1
· · · AC

vn
|α〉C are normed

but not orthogonal to each other, because one has the following
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identity:

AC
v1

· · ·AC
vn

=
∏
v∈C

Av. (B25)

Indeed, let us define two complementary states |ψ1〉C and
|ψ2〉C , as states from the set written above that have the overlap

C〈ψ1|ψ2〉C = C〈α|AC
v1

· · ·AC
vn

|α〉C = C〈α|
∏
v∈C

Av|α〉C

= ηc, (B26)

the last expression being obtained as Eq. (B10). Thus, two
complementary states are not orthogonal. On the contrary,
two states that are not complementary are easily seen to be
orthogonal. As a consequence, the density matrix ρC has
a block diagonal structure. Each block is a 2 × 2 matrix
involving two complementary states, of the form

ρ
(j )
C = M2(α2j |ψ1〉C C〈ψ1| + α2(n−j )|ψ2〉C C〈ψ2|), (B27)

where j is the number of AC
v operators appearing in state

|ψ1〉C = AC
v1

· · ·AC
vj

|α〉, with 0 � j � n/2. For the sake of
simplicity, we shall consider that n is an even number, as
is the case in Fig. 4. When j < n/2, there are (nj) such ρ

(j )
C

matrices. When j = n/2, there are 1
2 ( n

n/2) matrices ρ
(n/2)
C .

The matrices ρ
(j )
C can be rewritten in an orthonormal basis

made of states |φ1〉C and |φ2〉C . For this, one first computes the
overlap matrix O with matrix elements Ok,l = C〈ψk|ψl〉C with
k and l taking values 1 or 2, namely,

O =
(

1 ηc

ηc 1

)
. (B28)

This symmetric matrix can be diagonalized by performing a
rotation, O = tPDP , with

P = 1√
2

(−1 1
1 1

)
and D=

(
1 − ηc 0

0 1 + ηc

)
. (B29)

With these definitions, and noting that the diagonal matrix
D has non-negative diagonal elements, one can perform the
change of basis(|ψ1〉C

|ψ2〉C
)

= tPD1/2P
(|φ1〉C

|φ2〉C
)

. (B30)

One can then express ρ
(j )
C in the orthonormal basis of states

|φ1〉C and |φ2〉C (the expressions being quite large, we shall not
give them here).

A check of the validity of the obtained expression is to
compute TrρC . We find that

Tr
(
ρ

(j )
C

) = α2j + α2(n−j )

(1 + α2)n
, (B31)

thus TrρC = 1

2

n∑
j=0

(
n

j

)
Tr

(
ρ

(j )
C

) = 1, (B32)

as it should. Note that we have extended the sum over
j = 0, · · · ,n/2 to j = 0, · · · ,n and have corrected the in-
duced double counting by the prefactor 1/2.

Similarly, one can compute Tr(ρ(j )
C

2
) and deduce

Tr
(
ρ2
C
) = 1

2

n∑
j=0

(
n

j

)
Tr

(
ρ

(j )
C

2)
(B33)

=
[

1 + α4

(1 + α2)2

]n[
1 +

(
2α2

1 + α4

)n(
2α

1 + α2

)2c]
.

In the case α = 1, one finds Tr(ρ2
C) = 21−n, so that

E2(α = 1) = n − 1 and Stopo = −1, as expected [35,36].
When 0 � α < 1, the second term in the above equation
vanishes exponentially fast when n grows (for a generic
domain C, c grows like n2). One then gets the following
behavior of E2:

E2 = n log2

[
(1 + α2)2

1 + α4

]
+ · · · , (B34)

where · · · represents terms that vanish when taking the limit
n → ∞. As a consequence, the topological entropy vanishes
when 0 � α < 1.

i. Wilson loops

As already mentioned, the topological phase (x < xc) is the
deconfined phase of the Ising lattice gauge model, in which
Wilson loops are known to obey a perimeter law [46]. By
contrast, in the polarized (deconfined) phase, these loops obey
an area law. In the toric code model, Wilson loop operators
WC can be chosen as a product of σx

l operators along a closed
contour, which is nothing but the product of all operators
Av surrounded by this contour. Using Eq. (B10), one thus
gets 〈WC〉α = ηn where η = cos θ = 2α

1+α2 . In the topological
phase, the energy is minimized for α = 1 so that 〈WC〉α = 1
for any contour C. This can be interpreted as a trivial perimeter
law with an infinite characteristic length. In the polarized phase
(α < 1), one can write 〈WC〉 = exp[−n ln(1/η)], which is an
area law with a characteristic area 1/ ln(1/η). Our variational
state thus correctly mimics the expected behavior of W in the
deconfined phase as well as in the confined phase.

4. Transverse field

We now consider a field h = (0,h,0) pointing along the
y axis. In this case, the model is known to display a first-order
quantum phase transition at the self-dual point h = J [44].
The variational state reads

|α,β〉 = N
∏
v

(1 + αAv)
∏
p

(1 + βBp)|⇒〉, (B35)

where |⇒〉 = ⊗l|→〉l is the polarized state where all spins
point in the y direction. For the sake of completeness,
we introduced two variational parameters α and β but, for
symmetry reasons, we expect them to be equal.

Since all calculations follow closely that of the preceding
section, we shall directly give the results without further
justification. The expectation values of charge and flux
operators read

〈Av〉α,β = 2α

1 + α2
and 〈Bp〉α,β = 2β

1 + β2
. (B36)
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In addition, one has 〈σx
l 〉α,β = 0, 〈σ z

l 〉α,β = 0, and〈
σ

y

l

〉
α,β

=
(

1 − α2

1 + α2

)2(
1 − β2

1 + β2

)2

. (B37)

Setting cos θ = 2α
1+α2 , sin θ = 1−α2

1+α2 and cos φ = 2β

1+β2 ,

sin φ = 1−β2

1+β2 , and keeping in mind that, in the thermodynami-
cal limit, Nv = Np = Nl/2, one gets the following energy per
link:

e(θ,φ) = −J

2
cos θ − J

2
cos φ − h sin2 θ sin2 φ. (B38)

As expected, this variational energy is found to be minimum
for φ = θ , i.e., for α = β. Again, the expression of e(θ,θ )
could have been obtained by using a duality transformation
and treating the dual model in a mean-field way. The study
of e(θ,θ ) shows that θ = 0 is always a minimum, but is
the absolute minimum only for x = h/J < xc = 27/32. For

x � x∗ = 3
√

3
8 , a second local minimum appears and it

becomes the absolute minimum for x > xc. For x = xc, two
absolute minima coexist, at θ = 0 and at θ = arccos(1/3).
We thus find a first-order quantum phase transition at x = xc.
Consequently, our variational analysis is thus about 16% off
the exact result xc = 1, and misses the self-duality of the
model [44].

Finally, in the topological phase, e(x < xc) = −J agrees
with the low-field series expansion up to order 1 in h/J . In the
polarized phase, the series expansion of the variational energy
at order 4 in J/h reads

e(x < xc) = −h − J 2

8h
− J 4

256h3
, (B39)

which matches the high-field series expansion up to order 2 in
J/h [44] (odd order contributions vanish).
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