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Current characteristics of a one-dimensional Hubbard chain: Role of correlation and dissipation
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We study the electronic transport in an infinite one-dimensional Hubbard chain, driven by a homogeneous
electric field. The physical chain is coupled to fermionic bath chains in order to account for dissipation and to
prevent the occurrence of Bloch oscillations. The steady-state current is computed in the frame of Keldysh Green’s
functions in cluster perturbation theory. The current characteristics are dominated by resonant-tunneling-like
structures, which can be traced back to Wannier-Stark resonances due to antiferromagnetic correlations. The
same current characteristic occurs in a noninteracting Wannier-Stark model with alternating on-site energies.
Nonlocal effects of the self-energy can be accounted for the observed physical behavior.
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I. INTRODUCTION

One-dimensional (1D) quantum systems exhibit fascinating
nonequilibrium effects such as Bloch oscillations [1] (BOs),
Zener tunneling [2], and Wannier-Stark resonances [3-5].
The first theoretical studies of these effects date back to the
early days of condensed matter physics and were followed by
long-lasting controversial discussions about their relevance in
real materials [6—8]. It was only within the past two decades
that the theoretical predictions could be observed in condensed
matter sytems and optical potentials in a series of ingenious
experiments [9-19]. A detailed overview over the most
important experimental verifications of the above-mentioned
effects is provided in Refs. [20,21], where also experimental
setups for determining Wannier-Stark resonances with cold
atoms in optical lattices are introduced.

Bloch oscillations are mainly studied in 1D systems which
are and were frequently used as model systems to investigate
the physical nature of BOs. As far as correlations are concerned
the 1D Hubbard model was mostly the model of choice. The
clear evidence for the existence of BOs and Wannier-Stark
resonances led to a series of further theoretical investigations
of 1D structures under the impact of a uniform force induced
by an electric or magnetic field [17,20,22-25].

For the emergence of Wannier-Stark resonances in 1D
systems a periodic potential has to be applied. It was long
thought that this periodic potential has to meet some specific
conditions [26-32]. Recently, it was shown analytically that
any periodic potential suffices to cause these resonant quantum
states [33].

The theoretical investigation of nonequilibrium properties
has become very popular in recent years stimulated by the
experimental progress and based on the development of
powerful numerical methods that allow us to tackle these
challenging problems. The nonequilibrium characteristics of
1D systems in a homogeneous electric field, resulting in a
linearly decreasing potential, have been studied with various
theoretical methods and in different geometries and gauges.
We will deal with a time-independent infinitely extended 1D
system in this work, a setup also considered in Ref. [34] and
Ref. [35] and very similar to the systems used in Ref. [36—40].
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While the infinite system avoids finite-length effects and comes
along with the advantage of some nice translation invariances
along the direction of transport, there are also other possible
approaches to study 1D systems out of equilibrium.

One route of research considers 1D rings in the so-called
temporal gauge, i.e., the ring is threaded by a magnetic
flux that increases linearly in time. The advantage of this
geometry is that one can use periodic boundary conditions. For
noninteracting particles the problem can be solved analytically
for arbitrary ring size in the Keldysh formalism. For a review
see Ref. [24]. It has been found that there is no dc current
possible without additional dissipation channels. The latter
can be introduced by attaching an infinite fermionic bath
chain to each site of the ring. As soon as electron-electron
interactions are included, the problem can only be solved
by numerical means and for very small ring sizes without
dissipative bath chains. The real-time evolution for a 10-site
ring has been studied [22] for Hubbard interaction by the
Cranck-Nicholson method and in Ref. [41] for the extended
Hubbard model by the Chebyshev propagation method. In both
cases no steady-state dc current has been found due to the lack
of dissipation processes. In Ref. [41] it was shown that the
current characteristics are always dominated by BOs.

Another class of studies considers a finite 1D Hubbard
chain (central region) with linearly decreasing on-site energies,
which are attached on both ends to leads, represented by finite
tight-binding (TB) chains of noninteracting electrons. Time-
dependent density-matrix renormalization group (tDMRG)
calculations have been performed for a central region of 10
sites attached to 20 lead sites on both ends [42]. The results are
in qualitative agreement with those found for the closed ring
geometry [22], with the quintessence of a universal dielectric
breakdown characteristic of the Mott insulating state. It is
worth mentioning that a similar result was found by dynamical
mean-field theory (DMFT) calculations on the hyper-cubic
lattice [43]. Investigations of the dielectric breakdown in an
infinitely extended 1D Mott insulator also found similar results
[39,40,44]. However, in all real-time evolutions the current did
not reach the steady state.

Yet another possible setup to study the response of 1D lattice
fermions to a homogeneous electric field is an infinite 1D TB
chain with linearly decreasing on-site energies with or without
electron-electron interactions. In the noninteracting case the
temporal gauge has been studied in great detail in Ref. [34],
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where a steady state was obtained by attaching fermionic
dissipative baths to each site of the chain. The dissipation
carries away the extra energy accumulated and is essential
to suppress BOs and to obtain a finite steady-state current.
Also in the two-dimensional one-band Hubbard model [45] an
explicit coupling to fermionic bath chains was concluded to be
essential for obtaining a description of nonequilibrium steady
states. It should be noted that in setups where (interacting)
regions of a finite extent are attached to infinite leads,
dissipation is already provided by the leads [36,37,46].

Clearly, fermionic heat baths appear rather artificial at first
glance. However, a closer analysis reveals that their impact on
a physical system is qualitatively the same as that of phonons
[34]. Recent quantum many-body studies on this topic showed
that many physical properties in model systems with fermionic
baths behave as predicted by the classical Boltzmann transport
theory [34,35,47]. Further arguments in favor of fermionic
baths can be found in Refs. [35,48], where the nonequilibrium
steady state of photoexcited correlated electrons has been
studied. The fermionic bath model was also used earlier to
describe the electron transport in a metallic ring [49], where
it was denoted as an extended Bttiker’s model. It has to be
mentioned here that in some systems dissipation mechanisms
do not have to be included explicitly since they are included
anyways by means of the setup.

In the present work, we will study an infinite Hubbard
chain in a homogeneous electric field. The dissipation will be
described by fermionic baths [34,45,50] attached to each site
of the physical chain. This approach is particularly convenient
from the theoretical point of view. In contrast to previous works
the nonequilibrium steady state of the interacting many-body
system is treated by a generalization of cluster perturbation the-
ory (CPT) [51-53] to the nonequilibrium situation [36,37,54].
This allows us to study the impact of dissipation and electron-
electron interactions on the transport of lattice fermions in
an infinite homogeneous electric field. Furthermore, nonlocal
effects of the self-energy can be included via CPT. We find that
in an electric field these Hubbard chains coupled to dissipative
bath chains exhibit a resonant behavior in the induced current
characteristics when electron-electron interactions are present.
The origin of this resonant behavior can be traced back
to antiferromagnetic fluctuations which we will show by
mimicking them by the Stoner model. Therefore we will
conclude the inclusion of nonlocal effects of the self-energy to
be crucial to explain these resonant structures occurring in the
correlated Hubbard chain. Quite generally, we will show that
for noninteracting electrons the current exhibits an oscillatory
behavior as function of the electric field strength when an
additional periodic potential is applied.

The paper is organized as follows: In Sec. II we give an
introduction to the model and its solution. The current char-
acteristics in the noninteracting case are briefly summarized
in Sec. III A to allow for a comprehensive understanding of
the current characteristics expected in infinite 1D structures.
The effect of on-site Coulomb interactions is discussed
subsequently in Sec. III B. To gain a comprehensible physical
explanation of the results, we describe an alternative way of
modeling a noninteracting system with a similar nonequilib-
rium behavior as the interacting one in Sec. III C. We will close
our considerations by a simplified nonequilibrium variational
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FIG. 1. (Color online) Sketch of the infinite 1D correlated chain
(blue squares), coupled at each site to individual 1D dissipative bath
chains (red circles). The homogeneous electric field £ is applied
parallel to the physical chain.

cluster approach (VCA) treatment in Sec. IIID. The final
conclusion is presented in Sec. IV.

II. THEORETICAL TREATMENT

The setup of our model is depicted in Fig. 1. Blue squares
represent the correlated physical sites of the 1D Hubbard chain.
Each physical site is coupled via hopping to fermionic bath
chains. The parameters ¢, #;, and v, as depicted in the figure,
stand for the hopping along the physical TB chain, within the
bath chains, and the hopping between the physical system and
the dissipative chains. The uniform electric field is applied
parallel to the physical chain.

A. The Hubbard-Wannier-Stark model

The Hamiltonian corresponding to the system depicted in
Fig. 1 reads

‘H =Ho+ Hy + Hpan- (1)

The kinetic part of the correlated chain is described by a TB
Hamiltonian,

Ho=—tY (chycipr o +He) + > ey (2)
J.o j

J

where, as usual, cj.a (c ja) denote fermionic creation (anni-
hilation) operators for site j and spin ¢ € {1,}} and n; =
> cjgc o stands for the particle number operator. In this
paper we use t = 1. In addition, we also set the lattice constant
and the electronic charge to 1. The on-site energies €; contain

the linear potential due to the applied homogeneous electric
field &,

§=(i-Ye ®

The electron-electron interaction present in the physical
chain is modelled by the Hubbard Hamiltonian

U 1 1
HU:EZ<an_§> <nja_§>a )

Jo
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where U
interaction.

The dissipation that is mediated by fermionic bath chains
is described by individual TB chains attached to each physical
site. The corresponding part of the Hamiltonian reads

Hoath = — 1y Z (d;ja dotJrl,jor +He)+ Z €j nif”

ojo ojo

—v Y (cl,dy;, +He), 5)

jo

represents the repulsive on-site Coulomb

where di jo andd, ;, are creation and annihilation operators for
particles with spin o at position « within the jth bath chain,
respectively, and ”Z‘g is the corresponding number operator.
The third term represents the hybridization between the jth
site in the physical chain and the corresponding bath chain.
As we will see later it is only the ratio of the two external
parameters ¢z and v that affects our results. Therefore we have
used v = ¢ throughout this paper. Note that the thermal bath
chains experience the same electric-field-induced potential
energy €; as the corresponding physical sites. Otherwise the
hybridization would violate the gauge invariance as discussed
in Appendix A. The bath chains are considered to be in an
equilibrium state infinitely far from the correlated chain with
different chemical potentials p given by

ni=e=(-3)¢ (6)

In the Keldysh Green’s function formalism the current
Jmn between two adjacent lattice sites m and n for the
aforementioned Hamiltonian can be obtained from the Keldysh
component of the nonequilibrium Green’s function:

. t (>
==~ /_Oo do Re{GE (»)}. 7

In the next sections we outline how the Keldysh Green’s
function of the infinite chain for interacting electrons in a
homogeneous electric field can be determined.

B. Cluster perturbation theory

One way to treat properties of interacting many-body
systems is CPT [51,53]. For noninteracting particles, CPT
always gives the exact result. In the presence of electron-
electron interaction CPT is no longer exact; it is a first-order
perturbation theory in the intercluster hopping parameters. The
accuracy of CPT increases with the size of the clusters that are
treated exactly by numerical means.

For the model at hand, which still has a kind of translational
invariance, it suffices to perform an exact diagonalization
for one “central cluster.” The Green’s function of the central
cluster is then glued together iteratively by CPT to form the
infinite system. Possible central clusters are depicted in Fig. 2.

C. Nonequilibrium CPT for the Keldysh Green’s functions

The CPT approach can be generalized to the nonequilibrium
situation [54] and Keldysh Green’s functions [55]. In previous
studies [36,37] a finite device with interacting electrons has
been coupled to infinite leads. Here we will generalize these
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FIG. 2. (Color online) Central clusters of size M =2 (a), M =
4 (b), and M = 6 (c), which in CPT are periodically strung together
to form the infinite physical chain. The dissipation mechanism is
represented by noninteracting semi-infinite fermionic TB chains
in the wideband limit, i.e., a constant imaginary retarded Green’s
function iy.

ideas to infinite Hubbard chains subjected to a homogeneous
electric field.

The single-particle Green’s functions in this generalization
are represented as four-component matrices in Keldysh space

[55-59]
_[g@ g
g(w) = [ 0 ga(a)):|' (®)

Lower case g denotes a Green’s function of an isolated cluster
here, while the labels r, a, and k stand for retarded, advanced,
and Keldysh component, respectively. Bold letters are used
for the full Keldysh Green’s function given in Eq. (8). The
size of the submatrices g”, g, and g is determined by the
size of the chosen cluster, as we will see later. Note that this
notation applies throughout the whole paper. We will neglect
the explicit frequency dependence of the Green’s functions in
the following for reasons of readability and will reintroduce it
where necessary.

In equilibrium, the Keldysh component is related to the
advanced or retarded components via

¢ =1g" — g2 fr(w,u,T) — 1], )

where fr(w,u,T) denotes the Fermi function depending on
the chemical potential  and the temperature 7. Weuse 7 = 0
throughout this work.

1. General scheme of CPT

The basic step of the theory is the coupling of two initially
decoupled isolated parts, which we will label «,8 € {1,2}.
For this system the Green’s function is cluster diagonal, i.e.,
g% = 84p8*%. Now the CPT approximation for the Keldysh
Green’s functions G of the whole coupled system, written in
form of a Dyson equation, reads

G = 5,58 + Y g xT“xG",  (10a)
wea,f
T% = (TO T?m), (10b)
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where the matrix multiplications have to performed in Keldysh
space [see Eq. (8)]. T** stands for the matrix that contains
the parameters for the hopping processes that connect the
two clusters @ and «. In the 1D case with only two clusters
considered here, the only nonzero matrix elements of T%% are
given by
Tiw=—t=Ty,

where M denotes the size of the cluster.

We are interested in the submatrix of G belonging to the
first cluster only, i.e., where « = 8 = 1. Evaluating Eq. (10)
leads to

G" = g +¢''T"G", (11a)
r'' .= rh2g?7?. (11b)

A Dyson equation in Keldysh space of the form
G=g+gI'G (12)

can be solved for the advanced or retarded and Keldysh
component separately. For the retarded component we find

GH =) -1, 13)

which has the same form as in equilibrium. Advanced and
retarded Green’s function are related through G¢ = (G’)T.
For the Keldysh component we obtain a special form of the
Kadanoff-Baym equation [58],
G"=G"{(g" g e + TG . (14)
If g belongs to a finite-size cluster in equilibrium, then
the first term in curly brackets can be neglected. Inserting
Eg. (9) into Eq. (14) yields (g*)' — (¢")"' = 2i0". In the
applications in the present paper the second term will originate
from semi-infinite TB chains in the wideband limit. It will
therefore contribute a finite value for I'* much larger than 0,
so the first term can be ignored.

2. Coupling to dissipative bath chains

Now we begin with the construction of the Keldysh Green’s
function for the infinite system in an electric field. We start out
with the computation of the Keldysh Green’s function g¢(w)
for the M-site central cluster based on exact diagonalization.
In this approximation the initially uncoupled parts are in
equilibrium. Therefore it suffices to compute the retarded
Green’s function.

We now use CPT to couple the central cluster to bath
chains which are attached according to Fig. 1. We are only
interested in Green’s functions G, where both indices « and
B in Eq. (10) belong to the central cluster. In this case Eq. (11)
reads

GCC — gCC+gCCrGCC’
I‘ — chghbTbC’

(15a)
(15b)

where b denotes the bath chains, see Fig. 1. The matrix T
describes the dissipation and dephasing of the transport along
the physical chain. Due to the nearest-neighbor hopping along
the bath chains the submatrices g”>¢ of g®?, where ¢ stands

PHYSICAL REVIEW B 92, 125149 (2015)

for retarded, advanced, or Keldysh, are diagonal, i.e.,

g™t = diag(g;.8,° - .qui) (16)

with

g (@) = ¢" (0 — €;.u)). (17

Here g”'f (w,u;) is the local Green’s function of the semi-
infinite bath that is connected to site j of the central cluster
at the first contact point. €; is the on-site energy and j; the
chemical potential in the j-th bath chain. At half filling we
have 1 ; = €;. The chemical potential only enters the Keldysh
component. For the retarded part of the local Green’s function
of the semi-infinite TB chain we have [60]

2
with
Im{g”" (w)} =0 for |w|>21p.
The Keldysh component g”X follows from Eq. (9) as
g (uy) = 18" — ("2 fr(u;. T) =11 (19)

In the wideband limit [34,35,47] t, > |w| we find
b,r _ L
g ()= -

In this case, the self-energy I' entering the Dyson equation
[Eq. (15)] becomes

I =iv?/|t| :=iy. (20)

That means that the dissipation is described by a constant
dissipation parameter y. More precisely, the retarded part of
the cluster Green’s function follows from that of the isolated
cluster by

(Gcc.r)—l — (gccnr)—l + l)/ (21)

3. Construction of the infinite system

Given the Green’s function of the central cluster we can
iteratively combine these clusters to form the infinite chain.
This can be done best by first determining a right and left
semi-infinite “chain” of these clusters with the coupled bath
chains and finally connecting them to end up with the desired
infinite structure.

We begin with the construction of the semi-infinite part
on the right half of the system. Let G'!(w) stand for the
corresponding Green’s function in which the site indices are
restricted to the first (leftmost) cluster of the semi-infinite part.

The best way to obtain an iteration equation for this
Green’s function is given by connecting a dissipative central
cluster—with its Green’s function G““—to the first cluster
of the remaining semi-infinite part by CPT (see Fig. 3). The
coupled system then is the same as the original one apart from
an overall energy shift w; = EM. Therefore, Eq. (11) yields

G''(w) = GC(w)[1 + T*G N (w—w)T? G (w)]. (22)

This equation can be solved by considering it as an iteration
equation starting with G'(w) = G°“(w). We obtain a similar
equation for the left semi-infinite part with w;, = —ME.
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FIG. 3. (Color online) Iterative construction of the right semi-
infinite system. The values of the potential energy ¢; due to the applied
electric field are depicted below (lattice constant and electronic charge
are set to unity).

Finally, the two semi-infinite parts can be combined again
by CPT based on Eq. (11) (see Fig. 4).

III. RESULTS

A. Noninteracting case

Now we turn to the results obtained with the nonequilibrium
CPT for the model employed in the present paper. First we
present a short summary of the key results in the noninteracting
case and compare the description of the dissipative bath chains
by semi-infite TB chains to the wideband-limit approach.

An instructive approximation is obtained for |E],y < ||
and the wideband limit, where one finds [34]

2taq L

. 2

JO~——T—.
1 (Zy)

Here g is the charge of the particles and a the lattice
constant. It should be re-emphasized that we use units in which
q = l,a = 1,t = 1. This approximate result has a universal
maximum, characterized by

(23)

Emax = 2qaTl’,

. t
Jmax = —- (24b)
b/

(24a)

As emphasized before, in the noninteracting case CPT pro-
vides the exact result, irrespective of the cluster size. Therefore
we here also compare our results obtained by the nonequi-
librium CPT approach to previous works [34,35,47,48]. And

iy iy iy iy iy iy

M M M (="M M M

%({’ %Q) \{O \/Q/ (b‘{) @Q)
sV SNy Sy o ‘ o

FIG. 4. (Color online) Decomposition of the infinite system into
two semi-infinite parts. The zero point of the potential energy is
chosen in the middle of the central part.
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FIG. 5. (Color online) Current calculated according to Eq. (7) in
the noninteracting case (U = 0). Shown with dotted, dashed, and dot-
dashed lines are the results for dissipation described by a wideband-
limit approach. In comparison the results for dissipation described
by semi-infinite TB chains are shown with cross, star, and circle
markers. The approximate current obtained by Eq. (23) is plotted for
comparison (solid line). The position of its maximum is marked by
the dashed vertical line.

indeed for U = 0 we find that our CPT results for the infinite
noninteracting TB chain are in perfect agreement with those
for the same system obtained in temporal gauge [34]. For
noninteracting particles and in the wideband limit of the
bath chains it turns out that the coupling of the fermionic
bath chains modifies the cluster (advanced) self-energy by a
constant damping y, as already indicated by Eq. (21).

Figure 5 compares the current j(€) in the physical chain
as a function of the electric field £ for the two different
approaches for the dissipative bath chains. Curves labeled
by the value for the constant damping y correspond to the
wideband-limit approach, while the ones where dissipation
is described by semi-infinite TB chains are labeled by the
value of ¢5. The behavior of the current is characterized by
a pronounced unimodal structure. While peak position and
height are reasonably well described for all sets of parameters
by the approximation in Eq. (24), one observes significant
deviations in the current curve for large values of y and
small values of ¢, respectively. However, already for y = 0.1
(tp = 10) we find an almost perfect quantitative agreement
even up to & = 1, where the condition £ < t is not really met.
Since we will restrict our further investigations to the y < 0.1
regime, the wideband-limit approach chosen in the following
is completely justified.

Equation (23) emphasizes the importance of the dissipative
bath chains. Without bath chains (y = 0) the resulting current
would be zero for all values of &, as it was also observed in
recent studies for the 1D [34] and 2D [45] Hubbard models.

The linear relationship j(€) o< € valid for weak electric
fields corresponds to Ohm’s law formulated in the Drude
model:

t et
—
T m*

~
~

ELy

, (25)

o | ~.

where t denotes the lifetime of a transport electron with an
effective mass m* and a charge ¢ and the TB relationships
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FIG. 6. (Color online) Current j(€) [blue solid line, calculated according to Eq. (7)] for different values of the interaction strength U =
0.5, 1.0, 2.0 and an effective damping y = 0.01. The result at U = 0 is shown as reference in every subplot (red dashed line).

m* % and y « % were used [61,62]. The expression essen-
tially represents the well-known Drude dc conductivity per
electron.

The initial linear region agrees with that obtained by linear
response theory [63]. The occurrence of a maximum value
for the current in combination with a subsequent negative
differential conductance can be explained by the increasing
relevance of BOs at larger electric field intensities: When the
electron moves to a neighboring site of lower potential energy
its kinetic energy increases by £ (in the present units). At the
same time, part of the energy is dissipated into the bath chain.
The energy loss due to dissipation is given in terms of the
effective damping y. For £ 3> y the dissipation mechanism is
simply too weak to dissipate enough energy and, consequently,
prevent the occurrence of BOs, which results in a continuously
decreasing current. Similar results have been reported recently
for the 2D Hubbard model [45].

For our symmetric choice of parameters here (and as well in
the case of Hubbard interaction) there is no particle flow from
the physical chain into the bath chains, which is an essential
prerequisite for the use of the dissipative bath chain model
anyway. Regarding energy dissipation, we found very similar
results for the heat currents occurring in our noninteracting
system as in Ref. [35], where it is shown that the energy influx
to each bath chain is exactly the Joule heating. It is worth
mentioning here that our calculations for the interacting system
revealed exactly the same features: no particle flow into the
bath chains and a heat current in accordance to Joule heating.

B. Current in the Hubbard-Wannier-Stark model

Next we want to study the impact of electronic correlations.
For U # 0 the cluster size M becomes important. We start the
following investigations with a two-site cluster (M = 2). We
will also present the results for larger cluster sizes (M = 4 and
M = 6) before turning back to the two-site cluster treatment
to explain the origin of the arising current resonances in the
Hubbard-Wannier-Stark model.

Figure 6 shows the dependence of the current j(£) on the
interaction strength. In all cases we used a damping parameter
y = 0.01. For U < 0.5 we find similar j(£) curves as for
U = 0, where the current maximum decreases slightly with
increasing U. For U > 1 an oscillatory behavior sets in and
a transport gap opens up. This gap is, however, much smaller
than the single-particle gap one obtains for £ = 0in the density
of states.

Similar resonances have been found experimentally in
GaAs/Al,Ga;_, As superlattices [64]. The origin of the reso-
nant structures in the current visible in Fig. 6 will be discussed
in Sec. III C.

First, however, we will study the effect of the dissipation
strength on the current characteristics, which are displayed
in Fig. 7 for a fixed value of U = 2.0 and various values
of y. There are two major effects observable in Fig. 7.
First, the current maximum jy,,x increases monotonically with
increasing dissipation strength. This is in contrast to the result
at U = 0, where only the position of the maximum current is
shifted according to Eq. (24). But it corroborates that a nonzero

0.3 —U=-20,7-0002] 03[ —U=20,y=001] 03] —U=20,~-0.05
—--U=0.0, 7 = 0.002 i --U=0.0,7=0.01 Y U= 00, 7=0.05

0.2} 02} ! 02!
O O o
= | = =

0.1} 0.1} )

Y 0
0 02 04 06 08 I 0 02 04 06 08 1 0 02 04 06 08 I
£ € £

FIG. 7. (Color online) Current j(£) [blue solid line, calculated according to Eq. (7)] for different values of the effective damping y =
0.002, 0.01, 0.05 and a fixed value for the repulsive on-site energy U = 2.0. The corresponding result at U = 0 is shown as reference (red

dashed line).
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FIG. 8. (Color online) Current j(£) [blue solid line, calculated according to Eq. (7)] for different cluster sizes M = 2, 4, 6. The results
are shown for an interaction strength U = 1.0 (top row) and U = 2.0 (bottom row) with a fixed value of the effective damping y = 0.01. The

corresponding result at U = 0 is shown as reference (red dashed line).

dc current is only possible when dissipation is included. The
second effect is a smoothing of the resonances with increasing
dissipation strength. While one finds a very spiky structure in
the j(£) curve for a small effective damping, the oscillations
for larger values of y are rather smooth. The origin of this
behavior will be discussed in the following section.

Now we focus on the influence of larger cluster sizes on the
current characteristics analyzed in Fig. 8. Independent of the
interaction strength the qualitative behavior does not change
significantly when the number of sites within the CPT cluster
is increased. The spiky structure of the current remains as well
as the finite transport gap. Furthermore, comparing the results
for M =4 and M = 6, it seems that in a wide region of the
electric field the results coincide also in a quantitative way. Due
to the rather weak impact of the cluster size we will restrict
our further investigations to the M = 2 case.

C. Origin of the resonances in the
Hubbard-Wannier-Stark model

We will argue in this section that the origin of the resonant
structures can be traced back to the occurrence of short-range
antiferromagnetic order. Although it is well known that the
1D Hubbard model in equilibrium does not exhibit long-range
order [65,66], strong short-range fluctuations are nevertheless
present. On the short length scale of the cluster, where true
long-range and short-range order cannot be distinguished,
this order can be described reasonably well by a mean-field
decoupling, i.e., by the Stoner model. We will show in the
following that the positions of the resonances are in perfect
agreement with the maxima of the eigenvalues of the Wannier-
Stark ladders (WSL) obtained in this mean-field treatment.

The mean-field decoupled Hamiltonian is given by
N ~ U 1 1
oD
Assuming antiferromagnetic order leads to

~ o 1
Hll\/ﬂ: — Zelﬂj <n]0_ _ 5)’

jo

27

where the value for the order parameter € will be adjusted such
that the Stoner model gives the same single-particle energy
gap as the Hubbard model. The inset of Fig. 9 shows the
equilibrium density of states p(w) for the Hubbard and the
Stoner model. Obviously, the gap and the low-lying excitations
are well described by the Stoner model.

More importantly, we see that the current characteristics
of the two models are qualitatively in very good agreement.
Concerning the position of the resonances, we see even perfect
quantitative agreement. This allows a transparent explanation
of the resonances in the frame of the much simpler Stoner
model. To this end we start out with the bare Stoner model
(AW = Ty + HMF) without coupling to the bath chains.

It is well known (see, e.g., Ref. [21]) that noninteracting
electrons in a periodic potential, which experience in addi-
tion a homogeneous electric field, are trapped in localized
states, corresponding to Bloch oscillators. The energies form
Wannier-Stark ladders. In the present example of an alternating

potential the WSL energies have the form
E, =né+ AE,, (28)

where AE, denotes a possible energy correction. Without
the periodic potential (¢ = 0) the WSL energies are simply
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FIG. 9. (Color online) Comparison of the current characteristics j(£) obtained for the Hubbard model and its mean-field approximation
for y = 0.01. For the Hubbard model U = 2.0 and in the mean-field approximation the corresponding order parameter is € = 0.3. The latter
is adjusted such that both models have the same single-particle energy gap, as can be seen in the inset, which depicts the corresponding

equilibrium density of states.

E, = né&, corresponding to AE, = 0. It is straightforward
to determine the eigenvalues (and hence AE,) of VSt
numerically for sufficiently large systems. The result is
depicted in Fig. 10 for € = 0.5 as function of In(£). We observe
that for £ > 1 the energy correction A E,, approaches the value
€, the amplitude of the alternating potential. For £ < 1 the
energy correction oscillates with extrema at £ as indicated in
Fig. 10. Very surprisingly, it turns out that these field strengths
correspond to the values of £ where the current maxima are
observed in Fig. 9. This is illustrated in Fig. 11 where the
extrema of AE, are compared with the position of the current
resonances.

In order to unravel the origin of these oscillations in A E,,(£)
it is instructive to solve the eigenvalue problem in first-order
perturbation theory.

The eigenvectors of 7—20 can be expressed as [21]

W) =Y Ju-m(©) €} 10) (29)

where J;(¢) are Bessel functions of the first kind and ¢ = %
In Appendix C we show that the first-order energy corrections
are given by

AED = (W, | HYF | W,,) = ™€ Jo(20).

The first-order correction is also plotted in Fig. 10 and
compared with the exact correction AE, := E,, — n€. Obvi-

| |[—first order

FIG. 10. (Color online) Energy correction AE, = E, — n& for
even n as function of the logarithmic field strength. A comparison is
given between the first-order correction and the exact value, which is
obtained numerically by exact diagonalization. Note that A E,, is the
same for all even sites and for odd n the sign is reversed.

ously, the energy correction is well described by the first-order
term and it also shows the oscillatory dependence on £. To
understand this behavior it is crucial to bear in mind that the
Wannier-Stark states |\V,) are localized with mean position
(m) = n and variance

2. 2 _ 82
o? i= (m — m)) = 5 = 5. (30)
For completeness the proof is given in Appendix B.

Consequently, for fields € > +/2 the state is confined to a
single site, n = 0, say, and the first-order energy correction
is simply AE(()]) = €, corroborating the asymptotic behavior
in Fig. 10 for £ 3 1. Then, upon lowering £ the wave
function spreads out like 1/€ and gradually reaches sites with
alternating potential, which leads to an oscillatory behavior of
AEW as observed in Fig. 10.

In perturbation theory, we can also determine the position
of the extrema of AE(D(€) analytically,

a

0 4t 4¢ 1
—AED(E) o —Jo[ = xJil=)=0
Tt PR T-M W= &
1.5 w ‘
e =0.3 x current resonances
1t o extrema of AE, () |
& o extrema of AEY(€)
050 % 1
LT
0 . P E e e s 88 80 v s
0 5 10 15 20
1.5 w ‘
e =0.5 x current resonances
1% o extrema of AE, () |
& o o extrema of AEY(€)
05F i
2
0 ? ? # % ® 22088888000

0 5 10 15 20
sequence number

FIG. 11. (Color online) Field values corresponding to the current
resonances for the Stoner model, depicted in Fig. 9, compared with
the positions of extrema of AE,(E) for the exact eigenvalues and
those obtained by first order perturbation theory, as discussed in the
text.
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escape
probability

/

FIG. 12. (Color online) On-site energies (solid black line) of the
Stoner model in a homogeneous electric field with antiferromagnetic
order parameter. The red curve sketches the wave function localized
in the potential well at site 7;. The potential well ends on the left site
at position r,. The escape probability is proportional to the size of the
filled red area.

Let £ be the v-th zero of J;(x) and then

4t
&= -0 3D
v

Interestingly, to first order, the positions of the maxima are
independent of €. In Fig. 11 these positions are also included.
We find that the first-order result is in reasonable agreement
with the current resonances.

We can now invoke second-order Fermi’s golden rule to
compute the current induced by the coupling to the bath
chains. The first-order terms vanish as the coupling to the
bath changes the number of electrons in the physical chain.
Brute-force application of Fermi’s golden rule shows that the
energy correction AE,(€) plays a decisive role and Fermi’s
golden rule corroborates the above observation that the current
maxima occur at the extrema of AE,(E).

Now that we have shown that the short-range order is
responsible for the current resonances, we want to analyze
the current suppression for small £ observed in Fig. 9.

For small £ the Wannier-Stark states are the wrong starting
point. In this case we have to consider £ as perturbation. Then
the localized states are due to the alternating potential barrier
and have an £-independent localization width. In Fig. 12 a
sketch of the localized wave function centered at some site r;
is depicted. The electric-field-induced linear potential allows
the particle to tunnel through the potential barrier that ends at
site r,. The escape probability is proportional to the size of the
filled area in Fig. 12.

For a qualitative description we approximate the left half
of the wave function by an exponentially decreasing function

£

The quantity & describes the spatial extent of the localized
wave function.

Then the escape probability and in turn the current should
be proportional to

( |V—V1|>
Y(r)occexp | — : (32)

(6 / 1w () Pdr o< exp [—@} (33)
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FIG. 13. (Color online) Plot of Fig. 9 zoomed into the low-
electric-field region. The maxima are highlighted (magenta star
markers) and fitted according to Eq. (34) (brown dot-dashed line),
resulting in the fitting parameters &g, Cyg, depicted in the figure.

The distance r, — r; can be approximated by the slope of the
linear potential r, — r; &~ 2¢/£. Hence, we have

i€ =cCexp(——< ), (34)
g€

We consider £ as fitting parameter, which is estimated from
the height of the resonances for small electric fields. The
resulting envelope is depicted in Fig. 13. The envelope function
describes the values of the current maxima almost perfectly
for small £, which confirms our description. The size of the
transport gap, defined by the field strength £* for which the
exponential in Eq. (34) is unity, is characterized by

e
£

It is proportional to the height potential barrier and inverse

proportional to the localization length. For large £ the current

is suppressed by the BOs in agreement with the noninteracting
result, which is also shown in Fig. 13.

E* (35)

D. Consequences/relevance of nonlocal effects in the self-energy

Our CPT results deviate from a recent investigation of the
same system within DMFT [50]. This can be especially seen
in the linear response behavior: While our calculations suggest
the infinite 1D chain to be in an insulating state, the DMFT
calculations display a metallic linear response. This insulating
state with a too-large gap is a known drawback of CPT also
known from the Hubbard I approximation which corresponds
to using a single-site cluster (M = 1), as can be seen in
Fig. 14(a) (light blue curve). This drawback can be corrected
by adding an additional uncorrelated bath site in the sense of a
minimal DMFT setup. The parameters of the bath site can be
determined, e.g., within the VCA [67-69]. Figure 14(a) (dark
blue curve) shows the resulting current in the linear response
region. Here it is appropriate to use the parameters determined
for the equilibrium case £ = 0. As one can see, the insulating
behavior has changed to a metallic one. On the other hand, at
half filling, the Hubbard model is expected to be insulating for
any U > 0 both in one as well as in two dimensions [70,71].
This behavior is clearly missed when neglecting nonlocal
effects in the self-energy as in single-site DMFT. A minimal
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FIG. 14. (Color online) Linear response regime or region of the
current j(€) [calculated according to Eq. (7)] with (dark blue solid
line) and without (light blue solid line) an additional VCA optimized
bath site for the single-site case (M = 1) (a) and the two-site case
(M = 2) (b) for U = 2. In the single-site treatment the overall linear
response behavior changes from insulating to metallic by adding an
additional bath site, while for the M = 2 case the insulating behavior
remains. All results are shown for a fixed value of the effective
damping y = 0.01. The corresponding result at U = 0 is shown as
reference (red dashed line).

setup to account for the true physical insulating solution
down to U = 0 consists of a two-site cluster (M = 2) with
additional bath sites, as can be seen from the linear response
region displayed in Fig. 14(b). These results point out the
importance of nonlocal effects in the self-energy, which are
induced by short-range antiferromagnetic fluctuations. This
is also confirmed in an early VCA work [67] according to
which it is more effective to include physical sites in the
cluster, thus making the self-energy more nonlocal, rather than
bath sites, which emphasize its dynamical character. This is
the reason why we have chosen in this paper to use large
clusters rather than smaller ones with bath sites. Nevertheless,
it would be interesting in this context to investigate the same
infinite 1D system also by means of a nonequilibrium cellular
DMFT (CDMFT) [70,72,73] approach, in particular in a doped
situation.

IV. CONCLUSIONS

We have seen that Hubbard chains in an electric field
coupled to dissipative bath chains exhibit an oscillatory or
resonant behavior in the current characteristics j(£). The
coupling to the bath chains is essential for a nonvanishing
steady-state current. The origin of the oscillations has been
traced back to antiferromagnetic fluctuations which we mim-
icked by the Stoner model. Quite generally we have shown that
noninteracting electrons in an alternating potential permeated
by a homogeneous electric field, i.e., for a Wannier-Stark
model with alternating on-site energies, the current exhibits
an oscillatory behavior as function of the field strength &,
which is directly linked to similar oscillations in the spacing
of the Wannier-Stark ladder. For small field strength the current
is suppressed due to localization in the periodic potential
barriers. For field strength £ much larger then the damping
parameter I', the current is again suppressed due to localization
or rather Bloch oscillations, which are a ubiquitous feature of
the Wannier-Stark model without dissipation.
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APPENDIX A: EQUIVALENCE OF THE COULOMB AND
THE TEMPORAL GAUGE IN THE
HUBBARD-WANNIER-STARK MODEL

Here we will briefly outline a proof, which is closely related
to that given in Ref. [74], that in the Hubbard-Wannier-Stark
model an electric field can be described either by a potential
term, corresponding to the Coulomb gauge used in Eq. (1),
or in a time-dependent Peierl’s phase, corresponding to the
temporal gauge [34]. The two approaches are equivalent in
the sense that they differ by a unitary transformation which
leaves the Liouville equation invariant. As a consequence, the
steady-state current computed via

JoocIm{te (el e o)) (A1)

will be the same.
To prove this statement, we start out with the Coulomb
gauge, where the electric field adds a potential term

7:(g=52j(nj+nl})

J

to the Hamiltonian 7—20 without E field. The total Hamiltonian is
'H = Hy + He, where the first term also contains the Hubbard
interaction. In the temporal gauge, on the other hand, there is no
&-dependent potential term, and, instead, the nearest-neighbor
hopping parameter #; ; is modified to
fip1d = Tip1s = g1 €99
Let the Hamiltonian in temporal gauge be denoted by 7.
We define a time-dependent unitary operator

Ur) = e e,

It can readily be seen that H=U T7—A£0U , where the Hubbard
part is not modified, as the unitary operator only contains
density operators. Let p(¢) be the density operator defined for
the system in Coulomb gauge with the corresponding Liouville
equation

4 5= iRm0
—p = —i[H,p].
p tP P
Then the transformed density operator § = U pU fulfills
d .
—p =—i[H.p],
prid i[H,p]

which is the Liouville equation in temporal gauge. The initial
value for ¢ = 0 is the same for both representations, i.e., fp =
Do It should be noted that the gauge invariance is violated if the
bath chains do not experience the same E-field potential as the
corresponding physical site. The reason is the coupling term
between the physical sites and the thermal bath. In view of the
unitary transformation it is obvious that the current defined in
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Eq. (A1) is the same in both representations, ji41; = ]TIHJ, since

{141 tr(p el 5¢1 o)} = Im{fi (B el o))

APPENDIX B: PROPERTIES OF THE WSL WAVE FUNCTION FOR A TB MODEL

Here we outline some of the properties of WSL states of Eq. (29). The key elements are the Bessel functions in the following
representation:

1 T .
J.(y) = E/ e’[k”*)’ Sm(k)]dk_

The mean position of the WSL state |¥,,) is

=D il P =m Y 1P =) 1Al =m.
J l 1

Similarly, for the variance we find

P =(G— U= Y PlipmP=
[=—00

1

2
T e

Integration by parts eventually yields

- (@n)?

=1 =0

/ dkdkleiy[sin(k)—sin(k’)] Z l2 e—il(k—k’)
l

9 2
eiy[sin(k)—sin(k’)] e 8(k . k/)
ok

APPENDIX C: PERTURBATION THEORY FOR AN ALTERNATING POTENTIAL IN A WANNIER-STARK MODEL

Here we compute the first-order energy correction of 7:[0 + ﬂllvlF The terms of the Hamiltonian are defined in Egs. (2) and (26),

1

AE;}) —¢ Z |Jlfm()/)|2€iﬂl — einme Z |Jn(y)|26irm — eiﬂme B )2 Z eiV(Sin(k)—sin(k')) Z ein(k—k'+rr)
JT
! n

1 - ‘
_ itm i2y sin(k) __ itm
=€e T Ek e =ce Jo(2y).
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