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Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline
solids and thin films. Though they remain a powerful tool for probing the electronic properties of nanostructures,
they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron
energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially
resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems.
In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron
microscope, which probes low-energy excitations, combined with a theoretical framework for simulating and
analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The
theoretical component of the method combines density functional theory–based calculations of the excitations
with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order
to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure.
The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The
theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately
becoming a powerful probe of the structure and electronic properties of individual point and extended defects in
both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and
vibrational properties with atomic resolution.
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I. INTRODUCTION

Optical spectroscopies along with energy-band theory were
the cornerstones upon which modern solid-state physics was
founded. Ultraviolet photoemission spectroscopy (UPS) and
x-ray photoemission spectroscopy (XPS) were subsequently
instrumental in the field of surface science. X-ray emission
spectra (XES) and x-ray absorption spectra (XAS) and their
many variants, e.g., resonant x-ray scattering, have also
played significant roles in probing the electronic properties
of solids. Infrared absorption has been a powerful probe of
phonons and low-energy electronic excitations. The spatial
resolution of these spectroscopies, however, is quite limited
by the respective photon wavelengths and other factors [1,2].
Nevertheless, they continue to make major contributions in the
study of nanostructures.

Electron-based spectroscopies have the advantage of ultra-
small de Broglie wavelengths, which enable high spatial reso-
lution. Scanning transmission electron microscopes (STEMs)
employ a highly focused electron beam, which produces
direct images of crystalline films with atomic resolution.
The primary imaging mode of the STEM is Z-contrast
imaging, which relies on high-angle Rutherford scattering
by atomic nuclei [3]. The intensity of scattered electrons
is proportional to approximately the square of the atomic
number Z. In addition, inelastic scattering of the focused
beam yields spatially resolved electron energy loss spectra
(EELS). The advent of aberration-corrected (S)TEMs has led

to significantly enhanced spatial resolution [4–7] and ushered
the era of “core-loss” EELS (electron excitations from core
levels, analogs of XAS) with atomic resolution, especially at
lower accelerating voltages [8–11]. These spectra enable the
construction of “chemical maps” by plotting the integrated
EELS of a characteristic edge of individual atomic species
(e.g., an oxygen map constructed by plotting the integral over
10 − 20 eV of the oxygen K edge) [12–15]. Similarly, maps
of individual features of near-edge structure, e.g., the height
or integral of a peak or the separation between two peaks,
can be constructed [10,16]. It was recently demonstrated that
such maps can be simulated by using a combination of density
functional theory (DFT) to describe core-electron excitations
and dynamical scattering theory to describe the evolution of
the STEM’s focused electron beam in the sample, including
interference effects and the collection of the scattered electrons
in the detector [6,11,17]. These simulations enable detailed
analysis of the origins of excitations that give rise to individual
spectral features and their variations as a function of the local
environment.

In addition to the core-loss EELS, so-called “low-loss”
EELS arises from low-energy excitations, typically valence-
electron excitations (valence-electron energy loss spectra or
VEELS). These are the analogs of optical and infrared
absorption spectra. The key difference is that, in a perfect
crystal, optical and infrared absorption arises from “direct”
transitions in the Brillouin zone as low-energy photons carry
negligible momentum. In contrast, VEELS in a perfect crystal
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arises from transitions with nonzero momentum transfer. In
this sense, VEELS is a complement to optical and infrared
spectroscopies. Published VEELS maps often exhibit features
arising from defects [18] and interfaces [19,20]. Previous
theoretical work has focused on plasmon excitations under
plane-wave illumination [21,22]. Atomically resolved maps
can also be obtained due to localization of phonon excitations
[23]. Even in a perfect crystal, however, Bloch functions
have spatial variations, whereby the question arises whether
the spatial variation of valence-electron excitations can be
captured by suitable VEELS maps. Extrapolation of arguments
based on core-loss EELS has led to inferences that VEELS
in perfect crystals is unlikely to yield sufficient contrast at
different positions of the focused beam to generate atomic-
resolution spatial maps [24–26].

In this paper, we report experimental VEELS data in
pristine monolayer graphene that demonstate the existence
of atomic-scale contrast. We also report the development of a
corresponding theory and computer codes, based on DFT and
dynamical scattering theory, that yield simulations of VEELS
maps, enabling a detailed analysis of the transitions that
underlie the spectra. This initial application to a perfect crystal
establishes low-loss EELS as a powerful atomic-resolution
complement of optical and infrared spectroscopies. Defects
and interfaces naturally induce wave function localization,
whereby the corresponding low-loss EELS has the potential of
a powerful probe of electronic properties of defects in crystals
and of nanostructures with atomic resolution. Data are still
lacking, but the advent of new monochromators that give
high-energy resolution and possible new solid-state detectors
with higher signal-to-noise ratio promise that such data will

be forthcoming. The methodologies and analysis presented
here are uniquely suited for such data. For example, one can
anticipate VEELS maps that provide characteristic signatures
of defects with more than one stable configuration, can
detect interdiffusion at interfaces, and many other applications.
Ultimately, the present method can be extended to magnetism,
as in electron magnetic chiral dichroism, and to phonons.

The rest of this paper is organized as follows: In Sec. II, we
present the experimental technique and conditions under which
the STEM-EELS experiments were performed and discuss the
data obtained on a monolayer of pristine graphene. In Sec. III
we introduce the theoretical framework of our method that
allows us to simulate the experiment and directly compare
with the data. In Sec. IV we discuss in detail the theoretical
results and we sumarize our findings in Sec. V. Some further
details regarding the theoretical simulations are discussed in
the Appendixes.

II. EXPERIMENTAL DATA

The STEM-EELS experiments were performed with a Nion
UltraSTEM, equipped with a cold-field emission electron
source and a corrector of third- and fifth-order aberrations,
operating at 60 kV accelerating voltage. After aberration
correction, this microscope is capable of providing 1.065 Å
information transfer limit in Z-contrast imaging, with a probe
current of ∼110 pA. EEL spectra were collected using a Gatan
Enfina spectrometer, with an energy resolution of 0.5 eV for
0.1 eV/channel energy dispersion. The convergence semiangle
for the incident probe was ∼30 mrad, with an EELS collection
semiangle of ∼48 mrad. Under these conditions we obtain that
the maximum momentum transfer occurring in the experiment

FIG. 1. (Color online) Simultaneously acquired Z-contrast image (a) and averaged VEEL spectrum (b). (c–e) VEEL spectrum images
within the three energy loss windows highlighted in (b). (c) 13 − 26 eV, (d) 26 − 42 eV, (e) 42 − 58 eV. The contrast is calculated by
comparing the maximum (that occurs at the atomic positions) with the minimum value at the center of the hexagon.
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is about 6 Å
−1

, which is large enough to trigger excitations
through the whole Brillouin zone. In order to increase the
signal-to-noise ratio and avoid nonlocality effects, the majority
of scattered electrons are collected. For the results shown in
this manuscript, EEL spectrum images were collected from 0.5
to 134.5 eV energy loss range with 0.1 eV/channel dispersion,
0.02 s/pixel dwell time, and 0.257 Å pixel size. Z-contrast
images were collected from ∼86 to 200 mrad half-angle range.
The VEEL spectrum images were obtained by plotting the
VEELS intensity integrated in different energy loss ranges
from the raw data, without any background subtraction or
filtering, as a function of probe position.

Figure 1(a) shows a STEM Z-contrast image of monolayer
graphene that was simultaneously acquired with a VEEL
spectrum image. Figure 1(b) shows the averaged VEEL
spectrum, which displays two main features, namely, the π and
π + σ peaks at 4.5 and 15 eV, respectively. We mapped out
the spatial distribution of electronic excitations by integrating
the intensity at the three different energy loss regions that are
highlighted in Fig. 1(b).

The image in Fig. 1(e) obtained by integrating the spectra in
the 13 − 26 eV range does not show any atomic resolution or
contrast, in apparent accord with the common belief that VEEL
signals are delocalized [24–26]. Strikingly, the VEEL spectral
image obtained within the intermediate energy range of 26 −
42 eV, Fig. 1(d), displays a spatial resolution similar to the one

observed in the Z-contrast image. We provide a quantitative
assessment of the experimental images by defining the contrast
using the formula C = (IMAX − IMIN)/IMAX where IMAX and
IMIN are maximum and minimum intensities in the image.
This gives us a value of 3.1% for the contrast. In Fig. 1(e),
although the image is noisier due to the lower intensity in this
energy range, we are able to measure a weak atomic contrast
of about 0.4% by excluding the noisiest areas of the image.

These results are not simply preservation of elastic image
contrast [27], as seen in Ref. [28], since no contrast is
observed in the integrated zero-loss peak (ZLP) image and the
bright-field image shows reverse contrast as shown in Fig. 2.
Figures 2(a) and 2(b) present the simultaneously acquired
STEM-HAADF (high-angle annular-dark-field) image and the
ZLP spectrum image in the energy range of −0.4 to 0.8 eV.
While the HAADF image is noisy due to the limited number
of pixels and short acquisition time, the graphene lattice can
still be observed. Since the image in Fig. 2(b) is formed
by an incoherent sum of elastically scattered electrons over
a large detector collection angle, it shows no discernible
coherent phase contrast. This should be compared to the weak
inverse contrast exhibited by the conventional bright-field
image shown in Fig. 2(d), which was simultaneously acquired
with the HAADF image in Fig. 2(c). If the results shown in
Fig. 1(d) were simply preservation of elastic image contrast, a
similar level of image contrast should also be observed in the

FIG. 2. (Color online) Zero-loss peak (ZLP) spectrum image and bright-field image from graphene. (a, b) Simultaneously acquired STEM-
HAADF image (a) and ZLP spectrum image in the energy range of −0.4 to 0.8 eV (b). No obvious atomic contrast can be seen in the ZLP
image. (c, d) Simultaneously acquired HAADF image (c) and BF image (d) at optimum focus for the HAADF image. These two images have
been low-pass filtered in order to reduce the random noise. The white circles in the two images mark the identical positions. The carbon atoms
display weak dark contrast in the BF image under this particular focus setting. The four images were acquired using different detectors and
imaging conditions. The intensity is displayed in arbitrary units.
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ZLP image. In contrast, the ZLP spectrum image is dominated
by the noise from the electron source and shows no lattice
information.

These results thus confirm that preservation of elastic
image contrast is not the mechanism for the lattice contrast
observed in our experimental VEELS image and that the
spatial resolution of VEELS imaging can reach even the atomic
level. We also performed STEM-VEEL spectrum imaging
with different EELS collection semiangles (35 mrad), different
energy dispersions (0.05 eV/channel,0.3 eV/channel), differ-
ent energy loss collection onsets; atomic-resolution VEEL
spectrum images were consistently obtained as those shown in
Fig. 1.

III. THEORETICAL SIMULATIONS: INELASTIC IMAGE
FORMATION BASED ON VALENCE-ELECTRON

EXCITATIONS

The conditions under which atomic resolution is possible
cannot be revealed by the experiment solely, but require a
theoretical approach that takes into account the band structure
effects in combination with the interactions with the fast
electrons of the probe. The transition induced by the fast
electron between different electronic states within a crystal
is moderated by the Coulomb interaction and the real-space
transition matrix element hence has the form

Hn0(r) = e2

4πε0

∫
�∗

n (r′)
1

|r − r′|�0(r′)dr′, (1)

where r is the coordinate of the fast electron and r′ the crystal
coordinate. Here e is the electron charge and ε0 the permittivity
of free space. Also �n and �0 are the electronic crystal wave
function for the states n and 0 with eigenvalues En and E0

respectively. Equation (1) can be seen as a convolution of
the probe intensity with the long-range Coulomb interaction,
which introduces the delocalization of the excitation. For
transmission electron microscopy it is usual to work in the
projected potential approximation [29,30]. Writing r = (R,z)
we define

Hn0(R) =
∫ t

0
Hn0(r)e2πiqzzdz, (2)

where qz is the momentum transfer to the crystal along the
beam (z) direction determined by the energy loss ELoss =
En − E0 and the incident energy E0 by the formula qz �
k0ELoss/2E0 and t the crystal thickness. In order to calculate
the inelastic image for the transition from the ground state 0 to
the excited state n we need to construct the inelastic potential
for this particular transition [30],

Vn0(R,ELoss) = πme

h2knt
|Hn0(R)|2δ(ELoss − E0 + En), (3)

where ELoss is the energy loss of the fast electron and me the
mass of the electron. t is an effective thickness of the graphene
layer, which drops out in the final equation for the measured
spectral intensity (see below). For a single sheet of graphene
we may neglect channeling of the fast electron and write the
image formed by this particular transition as a convolution

with the probe intensity [31–33],

In0(R0,ELoss) = 4π

hυ

∫ t

0
|P (R0,R,z)|2dz ⊗ Vn0(R,ELoss).

(4)

Here υ is the velocity of the fast electron, R0 is the
probe position, and P (R0,R,z) the probe wave function
(see Appendix Afor more details). Over the effective range of
the projected potential the probe intensity may be considered
to be approximately constant in the z direction. In this way
Eq. (4) can be written as

In0(R0,ELoss) � 4πt

hυ
|P (R0,R)|2 ⊗ Vn0(R,ELoss). (5)

Considering Eqs. (3) and (5), we conclude that the image
intensity is independent of the crystal thickness, since the t

factor in Eq. (5) cancels the 1/t factor in Eq. (3), which is
an arbitrary constant for a two-dimensional system within the
projected potential approximation. The only restriction about
the thickness comes from the need to obtain fully converged
electronic wave functions as discussed in Appendix C. The
inelastic image is then determined by a linear combination
of transitions that lie within a given energy range. For
computational reasons it is more practical to calculate the
transition matrix elements in reciprocal instead of real space
as in Eqs. (2) and (3). The projected transition matrix element
is given by the formula

Hn0(q⊥) = e2

4πε0

〈�n(r)|e−2πiq·r|�0(r)〉
q2

∣∣∣∣
qz

, (6)

as a function of the transverse momentum transfer q⊥ and
for fixed qz. The momentum transfer q is connected with the
wave vectors k and k′ of the fast electron before and after
the inelastic scattering by the formula hq = h(k − k′). Note
that the delocalization of the VEEL excitation is expressed
by the term 1/q2 in Eq. (6). The real-space transition matrix
element is then calculated via an inverse Fourier transform
of the reciprocal space matrix element. The transition matrix
element in Eq. (6) is calculated within the formalism of
the projector augmented wave method (PAW) method and is
further discussed in Appendix B.

We have, therefore, developed a theoretical scheme that
allows us to simulate the images that are formed by valence-
electron excitations. Within the framework of this theory we
are able to study VEELS through the low-loss energy range—
up to 50eV above the Fermi level—on an equal footing.
Our method allows us to calculate images within a given
energy range or between particular electronic states without
invoking the dipole approximation. The latter is essential for
a realistic simulation of STEM-VEELS experiments where a
nonvanishing amount of momentum transfer is always present.
Within this scheme, such images are essentially equivalent
to the inelastic scattering cross section that describes the
excitations of valence electrons through inelastic scattering
by the fast electrons of the microscope probe.

With the theoretical method described here we can provide
a direct simulation of the experimental results of Fig. 1. Fig-
ure 3(a) shows the calculated Z-contrast image, which displays
the hexagonal structure of graphene. Figure 3(b) shows the
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FIG. 3. (Color online) Calculated Z-contrast image (a) and VEEL spectrum (b). (c–e) Integrated spectroscopic images obtained with the
same energy windows as in Fig. 1 without (upper halves) and with the addition of noise (lower halves). Panels (f–h) are the gray-scaled versions
of (c–e), correspondingly. To visually emphasize the contrast variations panels (c–e) have been normalized to a common mean and displayed
over a common intensity range.

calculated area-averaged VEEL spectrum. We see that the the-
oretical result is in good agreement with the experimental data.
The two main calculated graphene peaks are located at about
the same energies as in the experimental data with a slight shift
of about 1 eV toward lower energies. The latter is due to exci-
tonic effects [34], which were neglected in the calculations.

We continue now with the calculation of VEELS images
by applying Eq. (5) and integrating over the same energy
ranges as in Fig. 1. Within the intermediate energy range the
image displays the hexagonal symmetry of pristine graphene
with a contrast about 4.1%, which is consistent with the
experimentally obtained value of 3.9% as shown in Fig. 1(d).
We obtain a low contrast about 1.9% for the low-energy
region—Fig. 3(c)—whereas for the higher energies it increases
to 3.9% but without showing a graphenelike structure. Note
that noise is always present is such experiments making the
observation of weak contrast rather difficult. The latter is
demonstrated in the lower halves of Figs. 3(c)–3(e) where a

certain level of noise with a standard deviation of 1% is added
to the simulated images. In this way any contrast disappears
in Fig. 3(c) while the graphenelike structure in Fig. 3(d)
remains intact. To further compare the experiment with the
theoretical results in a more quantitative way we consider
the line profile measurements. In Fig. 4 we show the line
profile of the experimental VEELS image of Fig. 1(d) and the
corresponding ones of the simulation derived by the images
in Figs. 3(c)–3(e). The measurements are taken along a line
shown in Fig. 4(b). We observe that the maximum intensity
within the energy range of 26 − 42 eV for both experiment
and simulation coincides with the positions of the carbon
atoms, while the minimum intensity occurs at the center of
the hexagonal rings. On the other hand the line profiles for the
lower or the higher energy diverge from a graphenelike profile
as we clearly see in Figs. 3(c) and 3(e). We conclude that our
theoretical technique provides a realistic description of VEELS
excitations, which is in accordance with the STEM-EELS
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FIG. 4. (Color online) (a) Line profile measurements for the
experimental image in Fig. 1(d) (blue squares) and the theoretical
images in Figs. 3(c)–3(e) (solid lines). In order to account for the
experimental noise the experimental profile is taken within the less
noisy area of the image in Fig. 1(d). (b) A sketch showing the line
along which the measurements are taken. The two dashed lines in (a)
show the positions of the carbon atoms. Measurements are normalized
to show the variations with respect to the energy.

experiments and therefore can be used to further study the
nature of the experimental results. The latter is the focus of the
rest of this paper.

IV. DISCUSSION

The theoretical technique discussed in Sec. III allows us
to examine the contribution of each transition separately as a

function of electron probe position, and so identify the origin
of the experimentally observed contrast. In order to identify the
character of a particular VEELS excitation one needs to study
the character of the underlying states. The degree of atomic
character is determined by the projection of the electronic
Bloch wave functions onto a spherical harmonic centered on a
particular atomic position. The latter is defined by the formula
Pnlmk = 〈Ylm |�nk〉 by integrating within a sphere around a
particular atomic position. That quantity becomes large when
the overlap between the states involved increases, and therefore
provides a qualitative criterion of the atomic character of the
electronic wave function. This analysis reveals the complex
character of the band structure of pristine graphene. As shown
in Fig. 5, the graphene conduction band consists of isolated
“islands” of states where the atomic character is high in
comparison with the surrounding states. These states can be
identified as having s, pz, pxy , or d character, reflecting the
existence of sp2 hybridization in the hexagonal graphene.

In Fig. 6 we focus on excitations at the � point in the
Brillouin zone (BZ)—where the atomic character of the states
is highest—and show images from excitations between states
with maximum atomic character. In this way, we demonstrate
the character of a VEELS image with respect to the character of
the underlying exitations. Such images reflect the symmetries
of the involved states, for example, px or py orbitals on each
atom, which may differ from the hexagonal symmetries of
graphene. Figures 6(a)–6(c) show calculated images from
the non-dipole-allowed s to s, pz to pz, and pxy to pxy

excitations, correspondingly. We observe that all three images
exhibit a graphenelike structure with a very high contrast and
therefore contribute the most to the total VEEL image contrast.
Figure 6(d) shows the spectrum image of a dipole-allowed
transition that also exhibits atomic character. The images due to
pz to d transitions in Fig. 6(e) show strong atomic contrast, but

FIG. 5. (Color online) (a) A map illustrating the atomic character of all states in the Brillouin zone. Only states with an atomic character
of 50% or higher are shown. All states in the valence band show high atomic character whereas the conduction band consists of an “island” of
states with a high atomic character. (b) The graphene band structure along the high-symmetry lines.
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FIG. 6. (Color online) Characteristic images at the � point created by non-dipole-allowed (a–c) and dipole-allowed excitations (d–f). (a) s

to s excitations; (b) pz to pz excitations; (c) pxy to pxy excitations; (d) pxy to s excitation; (e) pz to d excitations; (f) s to pxy excitations. (d–f)
Images show the highest intensity and thus contribute the most to the total image.

less localized on the C atom sites than the pz to pz excitations
in Fig. 6(b). In particular, the s to pxy transitions in Fig. 6(f)
show atomic resolution with reversed contrast, their maxima
not coming from the carbon sites. Such contributions lower
the overall spectroscopic image contrast.

Using the transitions shown in Figs. 6(a) and 6(f) as an
example, we examine the underlying mechanisms resulting
in the simulated image contrast. Figure 7(a) reproduces the
image Fig. 6(a) while Figs. 7(e) and 7(i) contribute equally
to the formation of the delocalized image Fig. 6(f) which

FIG. 7. (Color online) (a) The image of Fig. 6(a). Panels (e, i) contribute equally to the formation of the delocalized image (f) of Fig. 6.
Panels (b, f, j) are the inelastic scattering potentials that after convoluting with the probe produce the images (a, e, i), respectively. Panels (c, g,
k) are the Fourier transform of (b, f, j), respectively. Panels (d, h, l) are the projected transition matrix elements for each case.
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FIG. 8. (Color online) (a) The number of characteristic nondipole excitations as a function of energy loss. (b–e) Images obtained by
excitations within the illustrated energy ranges color coded to represent the dominant atomic transition.

comes from excitations to a twofold degenerate pxy state.
These images are formed by convolution of the probe intensity
with the inelastic scattering potentials shown in Figs. 7(b),
7(f), and 7(j), respectively, as discussed in Sec. II A. While
Fig. 7(b) is highly localized on the atomic sites, Figs. 7(f) and
7(j) show intensity inside the graphene ring albeit with two
localized features. This is reflected in the Fourier transform
of Figs. 7(b), 7(f), and 7(j) shown in Figs. 7(c), 7(g), and
7(k), respectively. Figure 7(c) shows significant intensity at
large q values corresponding to localized features in the
potential. Figures 7(g) and 7(k) are dominated by low-q
features resulting in a less localized potential with a higher
background. Figures 7(d), 7(h), and 7(l) show the projected
transition matrix elements, given by Eq. (6), for each case.
Figure 7(d) indicates a high contribution from transitions with
significant transverse momentum transfer. This is reduced in
Figs. 7(h) and 7(l) except for two lobes corresponding to the
two localized features in Figs. 7(f) and 7(e). It is clear from
Fig. 7 that electrons scatter only with momentum transfer

smaller than 1 Å
−1

, which is consistent with the fact that
the experimental spectra do not change with the size of the
collection apertures used in the experiment (see Sec. II).

The atomic character of the states decreases away from the
� point in the BZ as shown in Fig. 5. Figure 8(a) shows the joint
density of the nondipole excitations including all k points of
the BZ. Due to momentum transfer, which is always present in
VEELS, the joint density includes also indirect excitations. It is
clear that the character of the excitations varies as a function of
the energy loss. Excitations with a pz character (blue) are found
mostly at lower energy losses, while the pxy and s excitations
are located within the 10 − 40 eV range. At higher energies

the graphene band structure mostly consists of delocalized
d states with a weak atomic character. In order to associate
the resulting images with the character of the excitations
we calculate images within 2-eV energy windows where the
atomic character is maximized. The obtained images are shown
in Figs. 8(b)–8(d). It is clear that the contrast of these images is
significantly reduced compared to Fig. 6, much closer to that
observed experimentally. Figure 8(e) shows an image in which
the intensity is not localized at individual atomic sites, but blurs
two atomic sites together, consistent with Fig. 2(e). The results
confirm that the origin of the experimental contrast lies in these
atomiclike transitions. Finally, for energy losses around 50 eV,
as in Fig. 8(e), we obtain a low-intensity image, as compared
to the rest of the images, with low contrast at the carbon
sites. This is due to the lack of highly localized excitations for
energies higher than 40 eV. Any atomic contrast within that
energy range originates from excitations to states with a weak
d character. We thus conclude that the graphenelike images
are mostly controlled by excitations that are highly localized.
The lower contrast seen experimentally is due to contributions
from dipole excitations showing weaker or reversed contrast.

The character of a VEELS image depends strongly on the
energy loss integration window. As we show in Fig. 9 by
shifting the energy range by a few eVs we obtain images with
various patterns. The images in Figs. 9(b)–9(d) show the strong
dependence on the energy loss. The lower-energy image (b)
shows every other carbon atom bright, which is reversed at the
higher-energy range (d). At the 30 eV image we observe again
the graphene structure with a comparatively high contrast of
5.3%. The latter is a direct indication that the total image
at 26 − 42 eV mainly originates by the excitations that are
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FIG. 9. (Color online) (a) The three highlighted areas where the images in (b–d) are calculated. (b–d) The integrated images obtained
within the three highlighted areas in (a) with a 2-eV energy window.

located within a narrow window at around 30 eV. This result
is due to interplay between the different types of excitations
that coexist within the intermediate energy range. Increased
signal-to-noise ratios will open the possibility of experimental
measurement from reduced energy windows allowing the
exploration of such transitions.

We note further that some of the images in Fig. 8 exhibit the
full graphene lattice and others do not. We expect s-s and pz-pz

transitions to exhibit the full graphene lattice because s and pz

orbitals have the full point-group symmetry of the lattice. This
feature is evident in Fig. 6 where we plotted single excitations.
In contrast, px and py orbitals do not have the full point-group
symmetry (graphene does not have 90◦ rotation symmetry).
As a result, some of the images in Fig. 8, depending on the
energy range, do not exhibit the graphene lattice.

It is clear from Fig. 8(d) that the graphenelike image is
directly associated with the existence of s to s excitations
within the 29 − 31 eV window. The states involved in such
excitations have the point-group symmetry of graphene and
therefore yield an image that resembles a graphene lattice. On
the other hand, images that come from pz excitations at 8 −
10 eV, Fig. 8(b), and pxy excitations at 20 − 22 eV, Fig. 8(c),
show a rather distorted graphenelike pattern since one spot is
much brighter than the other. To understand that feature, one
must consider that states with pxy character are degenerate at
the � point. The one-to-one mixing of the px and py orbitals

at the high symmetry BZ points results in the graphenelike
image of Fig. 3(c). However, if we split the image into partial
ones, we see that those coming from pairs of states within the
subspace exhibit spatial distortions due to the variant px-py

mixing
To demonstrate the effect of degeneracy on the formation

of VEELS images we show in Fig. 10 the partial images
that contribute equally to the total image in Fig. 6(c), which
comes from a fourfold degenerate pxy excitation at the G

point. In Fig. 9(e), we plot the line profiles for the partial
images (a–d) (y-axis values are normalized to the maximum
value of the total image). Although none of the partial line
profiles shows graphenelike behavior the total image restores
the correct profile. The variant spatial dependence of the partial
images is due to different px-py mixing. Only the total image
has a 50% − 50% mixing between px and py and hence
conserves the graphene symmetry. In the general case—where
excitations between all k points of the BZ are included—the
excitation of a single partial image is now attainable due to
the breaking of the degeneracy. Therefore excitations between
pxy states do not contribute to the graphenelike images but
introduce deviations from the hexagonal pattern.

Such distortions affect images only at k points away from
the high-symmetry points where the degeneracy of the pxy

orbital is broken. Therefore, the high concentration of pxy ex-
citations around 20 eV is responsible for the distorted graphene
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FIG. 10. (Color online) (a–d) Partial images that contribute to the total image in Fig. 6(c). (e) Line profiles for the partial images (a–d)
(y-axis values are normalized to the maximum value of the total image).

images calculated theoretically. Although at lower energies
the concentration of pz excitations is higher, the images
are still distorted due to strong contributions that come from the
remaining pxy excitations. Such contributions are negligible
at much lower energies—about 5 eV—and the graphenelike
pattern is restored. The latter is clearly demonstrated in Fig. 11
where VEELS images in the two main peaks of the EEL
spectrum, namely, the π and π + σ peaks, are shown. Both
images display very low contrast while only the π peak image
exhibits a graphenelike structure. According to Fig. 8 the π

FIG. 11. (Color online) (a) Highlighted areas of the energy
ranges for the images in (b, c).

peak lies within the areas where the pz excitations are dominant
while for the π + σ peak the pxy excitations contribute in an
equal footing. Because of that the image that corresponds to the
π peak is graphenelike while the π + σ peak gives a distorted
image.

V. CONCLUSIONS

In summary, we have introduced a powerful experimental
and theoretical methodology that probes low-energy excita-
tions in solids and nanostructures with atomic resolution,
complementing optical spectroscopies that have limited spatial
resolution. We demonstrated that certain electron-beam–
induced valence-electron excitations contain atomic-scale
information that can be revealed by suitable STEM-VEELS
maps. We developed a theoretical scheme that allows the
direct simulation of such maps. This scheme further allows
us to investigate the contributions of individual excitations
to the observed features and identify their spatial and orbital
characteristics. In this implementation of the technique we
chose pristine graphene for computational efficiency, but also
because it provides unambiguous evidence for the atomic-scale
contrast even in the absence of defects, which naturally
induce localization of electronic states. Experimentally, it may
be possible to maximize the contribution of the nondipole
transitions using special detection schemes such as annular
apertures [35].

Though for a perfect crystal the theoretical VEEL maps
only provide information about the origin of the transitions that
correspond to experimental maps, the technique presented here
provides a useful tool for investigating the properties of struc-
tural defects and impurities. More specifically, one would be
able to compare the experimental maps with theoretical maps
corresponding to different atomic configurations and deter-
mine which configurations fit the data best. As detectors with
improved signal-to-noise ratios and monochromators with
higher-energy resolution become available, these alternative
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atomic-resolution maps may be able to probe all types
of low-energy excitations, including plasmons, interband
transitions, and phonons. Mapping their variation around
defects and interfaces will give fundamental insights into the
atomic-scale origins of electronic, magnetic, transport, and
thermal properties and provide characteristic signatures for
defect identification, offering guidance for atomic-level defect
engineering for improved functionality.
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APPENDIX A: PROBE WAVE FUNCTION

In this Appendix we discuss the properties of the fast
electron probe as described by a probe wave function. The
probe wave function is most easily expressed in reciprocal
space as

P (R0,Q) = A(Q) exp [−iχ (Q)] exp[−2πiQ · R0], (A1)

where the pupil function,

A(Q) =
{

1 for Q � Qmax

0 else , (A2)

is defined by the probe forming aperture α with Qmax = kα

The aberration function is defined as

χ (Q) = πλ�f Q2 + π

2
λ3CsQ

4 + · · · , (A3)

where λ is the fast electron’s wavelength, �f the probe
defocus, and Cs the third-order spherical aberration of the
imaging system. We have limited our description to the first
aberrations with spherical symmetry. The real-space wave
function is simply the inverse Fourier transform of Eq. (A1).

The probe intensity is further modified by incoherence
in the imaging system. The simplest is spatial incoherence
describing the finite size of the electron source. This can
simply be added by convolving the probe intensity with the
distribution of the source size. For this work we have assumed a
Gaussian source broadening with a full width at half maximum
of 0.75 Å. Temporal incoherence is more complicated to deal
with in most cases. However, the use of Eq. (A1) allows us to
include it directly in the probe intensity. Temporal incoherence

is due to the energy spread in the incident electron beam, which
due to chromatic aberration of the probe forming optics, leads
to a defocus variation δf in the probe. In its simplest form this
can be expressed as

δf = Cc

�E

E0
, (A4)

where Cc is the chromatic aberration coefficient, �E the
energy spread of the incident beam, and Eo the incident energy.
For the Nion UltraSTEM 100 used in these results Cc =
1.33 mm. The resulting probe intensity is easily calculated
as an incoherent sum of probe intensities for different defocus
values,

|P (R0,R)|2 =
∑
δf

wδf |P (R0,R,δf )|2, (A5)

where wδf is a weighting factor depending on the geometry of
the energy/defocus spread.

APPENDIX B: CALCULATION OF THE INELASTIC
TRANSITION MATRIX ELEMENT WITHIN THE PAW

METHOD

In this Appendix we present the calculation of the matrix
elements between an initial electronic state in the valence band
and a final state F in the conduction band of the operator
e−2πiq.r given by

〈�F (r)|e−2πiq·r|�I (r)〉. (B1)

Both wave functions are given by the following generic
formula:

�N (r) = �̃N (r) +
∑

α

[φα(r) − φ̃α(r)]〈pα|�̃N 〉, (B2)

within the formalism of the projector augmented wave method
(PAW) [33,34]. The first term of the right-hand side cor-
responds to the pseudo-wave-function, which is expressed
as a plane-wave expansion �̃N (r) = ∑

G CG
Ne

2πi(G+k)·r
over

the reciprocal vectors G. Note that the pseudo-wave-function
is rapidly varying around the core positions in order to
be orthogonal to the core states. That makes the accurate
description of the electronic states numerically challenging.
Moreover the pseudo-wave-functions do not by definition
satisfy the orthogonality condition for the higher-energy states
of the conduction band. Therefore in order to avoid any
unnatural divergence at the low momentum transfer limit it is
essential to include the PAW corrections to the electronic wave
functions as described by the second term in the right-hand
side of Eq. (B2). In this way we obtain a smooth wave
function around the cores and simultaneously we ensure
the orthogonality and thus the numerical accuracy of our
simulations. Note that the index a in Eq. (B2) stands for
the atomic quantum numbers nlm and the atomic positions.
Also φi(r),φ̃i(r) are the all-electron (AE) and pseudo (PS)
atomic wave functions, which are proportional to a spherical
harmonic with a radial weighting φi(r) = �nl(ri)Ylm(θ,φ)
and φ̃i(r) = �̃nl(ri)Ylm(θ,φ). The term 〈pα|�̃N 〉 expresses a
projection that transforms the AE wave function onto the PS
wave function within the sphere with the atomic radius Rc.
Moreover, the AE and PS atomic orbitals are constructed in a
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way to match each other outside of the augmentation sphere,
with radius RAUG, which is smaller than the atomic radius Rc.

By substituting the PAW wave function in Eq. (B1) we
obtain that the transition matrix element within the PAW
formalism is given by

〈�F (r)|e−2πiq·r|�I (r)〉
= 〈�̃F (r)|e−2πiq·r|�̃I (r)〉+

∑
αβ

〈�̃I |pα〉[〈φα|e−2πiq·r|φβ〉

− 〈φ̃α|e−2πiq·r|φ̃β〉]〈pβ | �̃F 〉, (B3)

where we make use the completeness relation
∑

α |φ̃α〉〈pα| =
1 for the projector operators. Although the set of projector
operators is complete for an infinite number of projectors,
for computational reasons we keep only two projectors for
every atomic level lm. Note that for q =0 the above relation
is reduced to the orthonormalization relation for the AE wave
function,

〈ψ̃F (r)|ψ̃I (r)〉 +
∑
αβ

〈ψ̃I |Pα〉[〈φα|φβ〉 − 〈φ̃α|φ̃β〉]〈Pβ |ψ̃F 〉

= δIF . (B4)

For the calculation of the first part, the matrix elements
between the pseudo-wave-functions as in Eq. (B3), we use the
form of the plane-wave expansion for the wave function. In
this way we found that

〈�̃F (r)|e−2πiq·r|�̃I (r)〉
=

∑
GG′

CG
I

∗
CG′

F δ(q + k + G − k′ − G′). (B5)

The contribution of the plane-wave expansion to the matrix
element has the form of a double sum over the reciprocal
vectors G,G′ The pair of these vectors has to satisfy the delta
function, which connects the momentum transfer vector q
with the wave vectors K and K′ of the initial and final state,
correspondingly. In this way crystal local-field corrections,
which play a crucial role to highly anisotropic 2D materials
such as graphene, are taken into account [36].

In order to evaluate numerically the PAW part of the
transition matrix element we make use of the expansion

e−iq·r = 4π
∑
LM

iLjL(qr)Y ∗
LM(q̂)YLM(r̂), (B6)

where jL(qr) is a spherical Bessel function of the first kind, into
the PAW part of Eq. (B3), taking into account the fact that the
atomic orbitals do not overlap with those on the neighboring

site. In this way we found that the PAW part of the matrix
element is

〈�F (r)|e−2πiq·r|�I (r)〉|PAW

=
∑
αLM

〈�̃I |pα〉〈pβ | �̃F 〉F LM
αβ Rαβ(q), (B7)

where we introduce the radial RL
αβ(q) and the angular F LM

αβ

integrals given by the following formulas:

Rαβ(q) =
∫ RC

0
[�α(r)�β(r) − �̃α(r)�̃β(r)]jL(qr)r2dr,

(B8)
F LM

αβ =
∫

Y ∗
α (r̂)YLM(r̂)Yβ(r̂)d�.

While the radial integral RL
αβ(q) needs to be evaluated

numerically, the angular integral is written as

F LM
αβ = (−1)Mα

√
(2Lα + 1)(2L + 1)(2Lβ + 1)

4π

×
(

Lα Lβ L

−Mα Mβ M

)(
Lα Lβ L

0 0 0

)
, (B9)

where we make use of the properties of the spherical harmonics
and the 3j symbols. While the angular integral in Eq. (B9)
introduces a set of selection rules for the angular momentum
the radial integral governs the intensity of the transition matrix
element with respect to the momentum transfer.

APPENDIX C: FIRST-PRINCIPLES CALCULATIONS OF
THE ELECTRONIC WAVE FUNCTIONS

The initial and final electronic wave functions are calculated
within density functional theory (DFT). We carry out the DFT
calculations by using the Vienna ab initio Simulations Package
(VASP) [37–39]. In order to correctly model the vacuum on
either side of a graphene sheet we use a two-atom unit
cell with a significantly increased size, about 30 Å, along
the perpendicular direction. That increases the number of
transitions significantly and makes the numerical simulation
challenging. In order to converge the density of states and the
electronic wave functions up to 60 eV, we use 260 bands and
a dense sampling of the Brillouin zone (BZ) with 12 × 12 k

points on the x-y plane. We also work within the local density
approximation (LDA) while we take into account the PAW
corrections which are essential for the proper treatment of the
low-momentum-transfer limit (dipole approximation) [37,40].
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