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Three-dimensional Weyl and Dirac semimetals can support a chiral-symmetry-breaking, fully gapped, charge-
density-wave order even for sufficiently weak repulsive electron-electron interactions, when placed in strong
magnetic fields. In the former systems, due to the natural momentum space separation of Weyl nodes the ordered
phase lacks the translational symmetry and represents an axionic phase of matter, while that in a Dirac semimetal
(neglecting the Zeeman coupling) is only a trivial insulator. We present the scaling of this spectral gap for a wide
range of subcritical (weak) interactions as well as that of the diamagnetic susceptibility with the magnetic field.
A similar mechanism for charge-density-wave ordering at weak coupling is shown to be operative in double-
and triple-Weyl semimetals, where the dispersion is linear (quadratic and cubic, respectively) for the z (planar)
component(s) of the momentum. We here also address the competition between the charge-density-wave and a
spin-density-wave orders, both of which breaks the chiral symmetry and leads to gapped spectrum, and show that
at least in the weak coupling regime the former is energetically favored. The anomalous surface Hall conductivity,
role of topological defects such as axion strings, existence of one-dimensional gapless dispersive modes along
the core of such defects, and anomaly cancellation through the Callan-Harvey mechanism are discussed.
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I. INTRODUCTION

Three-dimensional Weyl semimetals (WSMs) represent
topologically nontrivial gapless systems that support linearly
dispersing quasiparticle excitations with opposite chiralities in
the vicinity of two so-called Weyl points that are separated in
the momentum space [1]. If Weyl fermions choose to reside
at the same point in the Brillouin zone (BZ), which can occur
at the transition point between the strong Z2 topological and
the trivial band insulators [2–8], the configuration is dubbed a
Dirac semimetal (DSM). Due to momentum-space separation
of Weyl nodes, the time reversal and/or the inversion (parity)
symmetry is broken in WSMs, which can then lead to peculiar
electrodynamic responses, such as the chiral-magnetic effect
and anomalous Hall conductivity [9–18].

Similarly to monolayer graphene, three-dimensional
WSMs or DSMs are also extremely robust against weak
electron-electron interactions, due to the vanishing density
of states [D(E) ∼ E2] near the apex of conical dispersions
[19]. Nevertheless, if interactions are sufficiently strong, they
can undergo continuous phase transitions and enter into fully
gapped massive phases [20,21]. The requisite interaction
strength for such instabilities may be too high to realize any
ordering in the pristine system. However, the application of
strong magnetic fields can trigger the ordering tendencies even
for weak interactions.

Placed in a magnetic field (B), the linear dispersion in a
WSM or DSM quenches into a set of Landau levels (LLs), and
in particular, the zeroth LLs (ZLLs) for the left and right chiral
fermions are composed of nondegenerate and spin-polarized
one-dimensional dispersive modes with energies ±vkz, respec-
tively, where v is the quasiparticle Fermi velocity along the
z direction. For the sake of simplicity, we here assume the
spectrum to be isotropic. Therefore, weak enough electron-
electron interaction can hybridize the one-dimensional chiral
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ZLLs and develop a chiral-symmetry-breaking (CSB) spectral
gap at the Weyl points [22,23]. A similar instability may
also occur within the ZLL of three-dimensional nonrelativistic
Fermi liquids, when placed in strong magnetic fields [24].
Due to the momentum-space separation of Weyl nodes, the
CSB mass breaks the translational symmetry and represents a
charge-density-wave (CDW) order [11,25]. The CDW order in
WSMs stands as an example of the axionic state of matter that
supports a dynamic magnetoelectric effect, captured by the
E · B term, and its coefficient is tied to the separation of Weyl
points [25]. The accompanying massless Goldstone mode or
the sliding mode in the CDW phase is known as the axion.
On the other hand, in DSMs the CSB order corresponds to
a trivial insulator (neglecting the Zeeman coupling) since the
Dirac points reside at the same point in the BZ.

We also address the competition between the axionic CDW
order and a spin-density-wave (SDW) order. Both of them can
lead to a spectral gap within the ZLL. We show that while
the CDW order pushes down all filled LLs (placed below
the chemical potential), the SDW order causes spin-splitting
of filled LLs. Thus we believe (at least for sufficiently weak
interactions) that the CDW order is energetically favored over
the SDW order.

A three dimensional trivial DSM can be realized at the
quantum critical point between the topological and trivial
insulators (in class AII). Recent times have also witnessed the
discovery of topological DSMs (two copies of superimposed
WSMs protected by time-reversal, inversion, and fourfold
rotational symmetries [26]) in Cd3As2 [27] and Na3Bi [28].
In the presence of magnetic fields, Zeeman coupling can
separate the Weyl nodes in trivial and topological DSMs and
support a WSM [29]. Various other proposals for realizing
WSMs in condensed matter systems include 227 pyrochlore
iridates with all in-all out antiferromagnetic ordering [30],
multilayer configuration of topological and normal insula-
tors [10,12], and magnetically doped topological insulators
[31,32]. But their experimental realization remains elusive.
Rather, in the recent past material realization of WSMs
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has been confirmed in inversion-asymmetric TaAs [33–35],
NbAs [36], and TaP [37] and time-reversal-symmetry-
breaking YbMnBi2 [38] and Sr1−yMnSb2 [39]. Therefore,
the proposed many-body axionic ground state can possibly
be observed in these materials in the near-future when these
systems are placed in strong magnetic field. We here present
the scaling behavior of this order for a wide range of subcritical
interactions with the magnetic field. Formation of a spectral
gap at Weyl points can lead to measurable consequences in
various physical quantities and here we address its impact on
the diamagnetic susceptibility (DMS). Since WSMs live at the
upper critical dimensions (dup = 3), the scaling of the mass
gap and the DMS display logarithmic corrections as B → 0.

Our proposed mechanism for the generation of axionic
CDW order at weak coupling in the presence of a strong
magnetic field remains operative among the other members
of the Weyl family, such as the double-WSMs and the
triple-WSMs. Respectively, these two systems support two-
and three-fold degenerate, spin-polarized chiral ZLLs. Thus
sufficiently weak interactions can hybridize them and give rise
to a CDW order. We expect that such a broken-symmetry
phase can be realized in various double-WSMs, such as
HgCr2Se4 [40–42] and SrSi2 [43]. Our conclusion regarding
the competition between the CDW and the SDW orders in
regular WSMs remains unaltered for these two systems as well.

In this work we also address the correction to anomalous
transport properties in various members of the Weyl family
in the presence of an underlying axionic CDW order. In the
uniform phase, the axionic CDW order gives rise to anomalous
charge transport on the surface, which receives contributions
from the one-dimensional chiral surface states as well as from
bulk scattered states, the gapped ZLLs. In the ordered phase
the axionic CDW can also accommodate topological defects,
such as line vortices, known as axion strings. We here show
that such a topological defect hosts a gapless one-dimensional
dispersive mode in its core. Such a gapless mode carries
a dissipationless current, which in turn is supplied radially
from the bulk, according to the Callan-Harvey mechanism.
The number of one-dimensional gapless mode is shown to be
proportional to the topological invariant of the system.

The rest of the paper is organized as follows. In the next
section, we derive the LL spectrum in WSMs and discuss the
possibility of realizing various broken-symmetry phases and
the competition between the CDW and the SDW orders at weak
coupling. Section III addresses the change renormalization and
DMS in the presence of a spontaneously generated spectral
gap at the Weyl nodes. In Sec. IV, we analyze the scaling
behavior of the spectral gap and compare our results with a
recent experiment. Generalization of the magnetic catalysis
mechanism for the other members of the Weyl family (such as
double- and triple-WSMs) is discussed in Sec. V. Discussions
on the chiral anomaly, anomalous transport, the role of
topological defects, and the Callan-Hervey mechanism in the
axionic CDW phase are presented in Sec. VI. We summarize
our findings in Sec. VII. The derivation of the gap equation in
the presence of a magnetic field is relegated to the Appendix.

II. LANDAU LEVELS AND MAGNETIC CATALYSIS

We begin the discussion by computing the LL spectrum
in WSMs. Let us define a four-component spinor ��(�k) =

[�L(�k),�R(�k)], where �X(�k) are two-component spinors, or-
ganized as ��

X (�k) = [�X,↑(± �Q + �k),�X,↓(± �Q + �k)] for X =
L,R. Weyl nodes are located at ± �Q, where nondegenerate,
linearly dispersing left (L) and right (R) chiral bands cross zero
energy, respectively, and ↑ and ↓ are the Kramers partners or
two spin projections. For the sake of simplicity, we choose
�Q = Qẑ, whereas in pristine DSMs | �Q| = 0. The response of

these systems to electromagnetic fields ( �A) is captured by the
Hamiltonian

H [ �A,�a] =
3∑

j=1

iγ0γj (vk̂j − eAj − g̃ aj γ5) (1)

in the low-energy limit, where e is the electronic charge.
Mutually anticommuting γ matrices are γ0 = τ1 ⊗ σ0, γ5 =
τ3 ⊗ σ0, and γj = τ2 ⊗ σj for j = 1, 2, and 3, respectively.
τ0 (σ0) and τj (σj ) are, respectively, the two-dimensional
identity and standard Pauli matrices, operating on the chiral
(spin) index. The external magnetic field �B(=�∇ × �A) = Bẑ

is set to be along the z direction. In Eq. (1), we have
allowed the axial vector potential a3 = B, which supports
Weyl points at ± �QZ , where �QZ = g̃Bẑ (say) [29,45]. For
example, at the quantum critical point between topological
and trivial insulators massless Dirac fermions are realized at
the �k = (0,0,0) point and application of a magnetic field gives
rise to Weyl points at ± �QZ . The explicit dependence on the
axial vector potential from Eq. (1) can, however, be eliminated
by setting �Q = �QZ in the spinor definition of �(�k).

The orbital coupling of the uniform magnetic field supports
a set of LLs at energies ±√

2nB + v2k2
z [setting aj = 0

in Eq. (1)] for n = 0,1, . . . , with degeneracy per unit area
2−δn,0

2πl2
B

, where lB ∼ 1√
eB

is the magnetic length in WSMs. The
spin-polarized ZLL contains two branches of one-dimensional
dispersive modes with energies ±vkz. The ZLLs are eigen-
states of γ5, the generator of chirality, with eigenvalues ±1.
In the continuum description γ5 is also the generator of
U(1) translational symmetry in WSMs and [H [ �A,�a],γ5] = 0.
An infinitesimal interaction can, therefore, hybridize the left
and the right chiral ZLLs and develop a mass gap at the
Weyl points through a BCS-like mechanism (due to the
effective dimensional reduction of the system in the magnetic
field). This mechanism is also known as magnetic catalysis
[22,23].

To gain insight into the nature of the CSB order, we consider
a generic effective single-particle Hamiltonian,

H [ �m,�n,Q3] = H [ �A,0] + m1γ0 + m2iγ0γ5

+ n1γ3 + n2iγ5γ3 + Q3iγ0γ3γ5, (2)

where �m = (m1,m2) = |�|(cos φ, sin φ) is the complex CDW
order parameter, and φ is the associated U(1) angle. Eigenval-
ues of H [ �m,0,0] are ±√

2nB + v2k2
z + |�|2 for n = 0,1, . . . .

Therefore, � introduces a spectral gap within the ZLL (n = 0)
and, in addition, pushes all the filled LLs (n � 1) at negative
energies farther down. Hence, formation of Dirac masses
within the ZLL is energetically quite favored.

In WSMs nondegenerate left and right chiral fermionic
excitations live around ± �Q, hence

� ∼ exp(−2i �Q · �r) 〈c†�Q c− �Q〉
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represents a translational-symmetry-breaking CDW order,
with periodicity 2 �Q. Breaking of translational symmetry can
be appreciated from the anticommutation relation among
two mass matrices appearing in Eq. (2) and the generator
of translation {γ0,γ5} = {iγ0γ5,γ5} = 0. Such translational-
symmetry-breaking order can arise from the four-fermion
interaction

H CDW
int = g[(�†γ0�)2 + (�†iγ0γ5�)2], (3)

which corresponds to the celebrated Nambu-Jona-Lasinio
model for mass generation of relativistic fermions through
spontaneous chiral symmetry breaking [44].

Next we discuss the effect of the terms proportional to
n1,n2 in Eq. (2). The spectrum in the effective Hamiltonian

H [0,�n,0] is given by ±
√

(
√

2nB + σN )
2 + v2k2

z for σ = ±,

where N =
√

n2
1 + n2

2 . Degeneracy of the LLs is 1
2πl2

B

for n =
0,1, . . . . The four-fermion interaction that can support such a
SDW order is

H SDW
int = g′[(�†γ3�)2 + (�†iγ3γ5�)2]. (4)

The fermionic bilinears 〈�†γ3�〉 = n1 and 〈�†iγ5γ3�〉 =
n2 represent two components of a translational-symmetry-
breaking SDW order with periodicity 2 �Q, which gaps out
the ZLL (n = 0) but splits the filled LLs, placed below
the chemical potential. Therefore, the SDW order, although
introduces a spectral gap within the ZLL, is expected to
be energetically inferior to the CDW order, which, besides
gapping the ZLL out, also pushes down the filled LLs.
Therefore, we strongly believe that the CDW is the natural
ground state in WSMs, when they are placed in a strong
magnetic field, at least for weak repulsive interactions. Thus,
from now on we focus on the CDW order.

In Eq. (2) we have also allowed a term (∼Q3) that can
be dynamically generated by electronic interactions and
renormalize the location of Weyl points [45]. Following
the same procedure described above, Q3 can be eliminated
from Eq. (2) by taking Qẑ → (Q + Q3)ẑ in the definition of

spinor �(�k). However, a finite Q3 modifies the periodicity of
CDW order to 2(Q + Q3)ẑ [46]. The four-fermion interaction
g5(�†iγ0γ3γ5�)

2
can, in principle, renormalize the location of

the Weyl nodes, where Q3 ∼ g5(lB)〈�†iγ0γ3γ5�〉, and g5(lB)
is the strength of the four-fermion interaction g5 at the scale
lB .

Formation of the CDW order can also occur when the
system is placed slightly away from the charge-neutrality
point. CDW order with periodicity 2|Q + |μ|

v
| develops in

WSMs at finite chemical doping (μ), at least when |μ| <√
2B. In Cd3As2 and Na3Bi the field-induced (by Zeeman

coupling) Weyl nodes are located at (±Q0 ± Qz)ẑ [47].
Hence, the periodicity of field-induced CDW order in these
topological DSMs is 2|Qz| (assuming that the periodicity of
the CDW order is unique), which can be measured by scanning
tunneling microscopy, for example. If we completely neglect
the Zeeman coupling and set Q3 = 0 in DSM, one enjoys
the liberty of setting φ = 0 and �(=m1) then represents a
trivial Dirac mass. However, the scaling of DMS (χ ) and
mass gap (�) is insensitive to the exact nature of the CDW
ordering, and depends only in its amplitude (at least in the
mean-field limit).

III. CHARGE RENORMALIZATION AND
DIAMAGNETIC SUSCEPTIBILITY

We now analyze the effects of mass generation near the
Weyl points in the presence of magnetic fields on DMS, and
the renormalization of the electric charge and the magnetic
field. In magnetic fields, the free energy density (F ) of the
system scales as F ∼ √

eB/l3
B , where

√
eB is the LL energy,

and thus F ∼ (eB)2. Hence, a naive scaling argument indicates
a constant DMS (χ ) in WSMs. However, the free energy and
DMS receive logarithmic corrections, since the system lives
at the upper critical dimension, which we capture pursuing a
field theoretic approach [48,49]. For simplicity, we consider a
constant CSB mass (�). The DMS then acquires contribution
only from the higher LLs (n � 1) and the free energy is given
by

F =
(

− 1

πl2
B

)
×

∫ ∞

−∞

dkz

2π

∞∑
n=1

√
v2k2

z + �2 + n
2v2

l2
B

=
(

− v

πl2
B

)
× lim

ε→0

∫ ∞

−∞

dkz

2π

∞∑
n=1

[
2

l2
B�2

[
k2
z l

2
B

2
+ �2l2

B

2v2
+ n

]] 1
2 − ε

2

=
(

− v2

2π2l4
B

)
×

[
2Hζ

(−1,1 + �2
R

)
ε

+
{

log

(
�2l2

B

2

)
+ 0.386

}
× Hζ

(−1,1 + �2
R

) + Hζ ′(−1,1 + �2
R

)]

=
(

v2

24π2l4
B

)
×

(
2

ε
F1(�R) +

[
log

(
�2l2

B

2

)
+ 0.386

]
F1(�R) − F ′

1(�R)

)
, (5)

where � is the ultraviolet (UV) cutoff for the conical dispersion
in WSM, �R = �lB√

2v
, and Hζ is the Hurwitz zeta function. The

function

F1(x) = −12Hζ [−1,1 + x2] (6)

with F1(0) = 1 and its scaling is shown in Fig. 1. The term
proportional to 1

ε
can be identified as the logarithmically

divergent part of the free energy, which can be removed

through the renormalization of the electric charge (e) and
magnetic field (B) according to

e2
R = e2

[
1 − e2v

12π2
F1(�R) × 1

ε

]
, (7)

B2
R = B2

[
1 + e2v

12π2
F1(�R) × 1

ε

]
, (8)
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FIG. 1. (Color online) Scaling of two functions F1 and F2,
appearing in the expression of DMS [see Eq. (9)], with �R .

where quantities with subscript R represent their renormalized
values. The logarithmic correction in the free energy at T = 0
is determined by the largest energy scale among

√
eB and

�, which sets the infrared cutoff of the theory. For weak
interactions

√
eB � �, and the logarithmic correction is given

by log(B0/B), where B0 ∼ �2 is the magnetic field associated
with the lattice spacing.

The finite part of the free energy gives DMS

χ =
(

− e2
Rv

24π2

) [
F1(�R) log

(
B0

B

)
+ F2(�R)

]
, (9)

where the function

F2(x) = 12[0.31Hζ [−1,1 + x2] − Hζ ′(−1,1 + x2)]. (10)

Scaling of F2(x) is shown in Fig. 1 and F2(0) = 1.68.
Therefore, DMS in WSMs, in addition to a constant value,
also manifests a logarithmic enhancement as B → 0, which
can be measured in the small-field limit. Equation (9) suggests
that DMS, besides the logarithmic correction, also acquires
nontrivial contributions due to the gap generation in the
magnetic field (see Fig. 1). We expect such corrections to
DMS can be observed in experiments.

IV. SCALING OF THE SPECTRAL GAP

In the previous section, we assumed that the spectral gap
at the Weyl point is insensitive to the strength of the magnetic
field. However, the CSB mass displays a nontrivial dependence
on the magnetic field and the interaction strength, which
we explore in this section. The qualitative behavior of DMS
remains the same, even when � = �(B).

The condensation energy in the presence of CSB order is

E = �2

4g
−

∫ ∞

−∞

dkz

2π

∞∑
n=0

(2 − δn,0)

√
2nB + v2k2

z + �2

2πl2
B

.

(11)

We consider here only the short-range component (g) of the
Coulomb interaction that supports the CSB order. Minimizing
E with respect to �, we obtain the gap equation [50]

1

g
= B

∫ ∞

�−2

ds

s
e−s�2

coth(sB), (12)

FIG. 2. (Color online) Scaling of CSB mass (m) with magnetic
field (B) for interaction strength, decreasing from top to bottom,
parametrized by δ(=(gc − g)/ggc�

2) = 0, 0.01, 0.02, 0.03, 0.04,
0.05, 0.06, and 0.07. Here, m is measured in units of v�, and B

in units of B0 ∼ �2; the magnetic field associated with the lattice
spacing (a ∼ 1/�).

after completing the integral over kz and taking 2π2/g → 1/g.
A detailed derivation of the gap equation is available in the
Appendix. The right-hand side of the above equation discerns
a UV divergence as we take � → ∞, which can be reg-
ularized by introducing a quantity δ = (g�2)−1 − (gc�

2)−1

that measures the deviation from the zero-magnetic-field
critical strength of the interaction (gc) for CSB ordering,
defined as g−1

c = ∫ ∞
0 dxK(x)/x2. The function K(x) satisfies

K(x → 0/∞) = 0/1, otherwise arbitrary. In terms of the
dimensionless gap �

v�
→ m(� 1) and magnetic field B

�2 →
B(� 1), the gap equation simplifies to

δ + I1(m,B) + I2(m,B) + O(m6,B4,y−4) = 0, (13)

where

I1(m,B)

2B
= a − b

y2
+ c

y3
− y + 1

2y

[
log(2B) − B + B2

6

]
,

I2(m,B)

B
= γE + 2 log(m) − m2 + m4

4
, (14)

and y(=B/m2) � 1, for a subcritical (g < gc or δ > 0)
strength of the interaction. γE is the Euler-Mascheroni con-
stant, and a = 0.63, b = 0.21, c = 0.05 (see the Appendix).
Numerical solutions of the above gap equations for a wide
range of subcritical interactions are presented in Fig. 2. The
mass gap acquires logarithmic corrections as B → 0, since the
system lives at an upper critical dimension (dup = 3).

So far we have considered only the short-range parts of
the Coulomb interaction and neglected its long-range tail
since dielectric constants in semiconductors are typically very
high (∼10–30). A weak long-range interaction is a marginally
irrelevant perturbation in WSMs and gives rise to a logarithmic
correction to the Fermi velocity (v) [49,51,52] according to
v ≈ v0[1 + α log (B/B0)] in magnetic fields, where v0 is the
bare Fermi velocity and α is the fine-structure constant. There-
fore, the mass gap (m) also acquires an additional logarithmic
correction, since m is measured here in units of v� [50]. The
DMS (χ ), quoted in Eq. (9), also receives an additional loga-
rithmic correction from the long-range tail of the Coulomb in-
teraction, as χ is expressed as a function of �R = �lB/(

√
2v).
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FIG. 3. (Color online) Scaling of the difference between the total
gap mt (=mb + m) and the interaction-driven gap (m); �m = mt − m

as a function of dimensionless magnetic fields B = B/�2, for δ =
0.01 (red line), δ = 0.02 (black line), δ = 0.03 (blue line), δ = 0.04
(magenta line), and δ = 0.05 (cyan line).

In a recent experiment, LL quantization has been observed
in Cd3As2 [53]. However, the crystal was cleaved along a
low-symmetry axis (112), and consequently the underlying
C4 symmetry, protecting the gapless semimetallic phase [26],
is lost. Therefore, even the noninteracting Hamiltonian gives
rise to a gap in the spectrum, which possibly scales as
mb = m0B (to the leading order), and m0 is chosen such
that at B = 12 T, mb produces a noninteracting gap of
1.4 meV, in qualitative agreement with Ref. [53]. Performing
self-consistent calculation of the total gap mt = m + mb we
find that for weak magnetic fields the noninteracting gap mb

dominates over the interaction-driven mass gap (m), which
overwhelms the former contribution at stronger fields. Such
crossover, however, takes place at stronger magnetic fields as
the interaction gets weaker, as shown in Fig. 3.

Cd3As2 and Na3Bi cleaved along the high-symmetry axis,
so that the underlying C4 symmetry is preserved, provides
the ideal situation to observe only the interaction-induced
gap at Weyl points. Alternatively, one can also compare
the scaling of this gap with the magnetic field at different
temperatures. At high temperatures the gap is determined
by its noninteracting component (mb), which is expected to
scale linearly with the magnetic field, whereas at sufficiently
low temperatures the interaction-driven gap (m) can take
over mb. The critical temperature for the CDW transition is
Tc ∼ exp(−1/[gD(B)]), where D(B) is the density of states
of the ZLL (BCS scaling). Thus subtracting the B-linear part
of the gap, obtained from its high-temperature scaling, one can
extract the scaling behavior of the interaction-induced gap in
magnetic fields at low temperatures (T < Tc). Therefore, the
CSB mechanism for insulation in WSMs can be identified from
the temperature dependence of the magnetic-field-induced gap
[53] and, also, from the scaling of DMS.

V. MAGNETIC CATALYSIS IN DOUBLE- AND
TRIPLE-WEYL SEMIMETALS

The magnetic catalysis for the gap formation in WSMs at
weak coupling remains operative for the other members of the
Weyl family, such as double- and triple-WSMs. Respectively,

these two systems display quadratic and cubic dispersions in
the x-y plane and a linear dispersion along the z direction
in the vicinity of Weyl nodes, located at ± �Q. For example,
double-WSMs can be realized in HgCr2Se4 [40–42] and SrSi2
[43], although the material realization of triple-WSMs remains
illusive. The bulk topological invariants in double- and triple-
WSMs are, respectively, twice and thrice that in WSMs, and
consequently one-dimensional chiral surface states carry an
additional two- and three-fold degeneracy.

The low-energy Hamiltonian in double-WSMs, placed in a
magnetic field �B = Bẑ, reads as

H2[ �A] = iγ0

[
γ1

(
π2

x − π2
y

2m∗

)
+ γ2

(
2πxπy

2m∗

)
+ γ3vkz

]
,

(15)

where πj = (−i∂j − Aj ) and m∗ is the effective mass of the
parabolic dispersion in the x-y plane. The spectrum of LLs
goes as ±√

n(n − 1)ω2
c + v2k2

z for n = 0,1,2, . . . , where ωc

is the cyclotron frequency. Therefore, double-WSMs also host
one-dimensional spin-polarized chiral ZLLs, which, carry an
extra twofold orbital degeneracy (for n = 0,1) [54]. Hence,
weak repulsive interactions can hybridize the chiral ZLLs and
a CSB gap (�) opens up at the double-Weyl points. The ZLLs
are then placed at ±√

v2k2
z + �2.

The effective Hamiltonian for triple-WSMs reads as

H3[ �A] = iγ0

[
γ1

π3
+ + π3

−
�

+ γ2
π3

+ − π3
−

�
+ γ3vkz

]
, (16)

in a magnetic field �B = Bẑ, where the parameter � controls
the curvature of the cubic dispersion, and π± = πx ± iπy . The

spectrum of LLs is given by ±
√

l−6
B

�2 n(n − 1)(n − 2) + v2k2
z .

Hence, the chiral ZLL in a triple-WSM carries a threefold
orbital degeneracy (for n = 0,1,2). Thus, sufficiently weak
repulsive interactions can hybridize the chiral ZLL and open a
spectral gap at the triple-Weyl points. The additional two- and
three-fold degeneracies of the ZLLs, respectively, in double-
and triple-WSMs stem from the bulk topological invariant
of these two systems. Due to this additional degeneracy of
the one-dimensional chiral ZLL, we expect the transition
temperature for axionic CDW order in these materials to be
higher than that in WSMs (neglecting the effect of disorder).

Note that the ZLLs in double- and triple-WSMs can also
be gapped out by the SDW order. However, in these systems
as well, the SDW order splits the filled LLs. Hence, we expect
that even in double- and triple-WSMs, the CDW order is
energetically favored over the SDW order.

VI. AXIONIC DENSITY-WAVE, CHIRAL ANOMALY,
AND TOPOLOGICAL DEFECTS

Momentum-space separation of Weyl nodes gives rise
to a translational-symmetry-breaking CDW order in various
members of the Weyl family at weak coupling in the presence
of magnetic fields, which enters Eq. (2) as a complex mass
� = m1 + im2, and the U(1) angle (φ) between m1 and m2

is a dynamic variable. Thus, CDW order in WSMs represents
an axionic state of matter, proposed several decades ago in the
context of high-energy physics [55–57] and, more recently,
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for paired ground states with p + is symmetry in various
three-dimensional doped narrow-gap semiconductors, such as
CuxBi2Se3 and Sn1−xInxTe [58] and a parity and time-reversal
odd Kondo singlet order in a strongly correlated topological
Kondo insulators [59]. However, experimental detection of
axions has remained elusive. In this paper, we have shown that
the axionic phase can be realized in various condensed matter
systems at low T , such as DSMs (with Zeeman coupling)
and WSMs, but, for weak repulsive interactions, when these
systems are placed in strong magnetic fields.

The complex axionic mass can be represented as m(r) =
|�(r)| exp[−iQ · r − iφ(r)], where Q is the separation of
Weyl nodes in the BZ. After a local chiral transformation
on the fermion field �(r) → �(r) exp[i(Q · r + φ(r))γ5/2]
the complex mass becomes real. However, the path integral
measure and the action are not invariant under such chiral
transformation [60] and result in an anomalous magnetoelec-
tric term,

Sax = n × e2

32π2

∫
dtdrεμνρλ[Q · r + φ(r)]FμνFρλ,

= n × e2

4π2

∫
dtdr[Q · r + φ(r)]E · B, (17)

where Fμν is the electromagnetic field strength tensor. The
coefficient of the magnetoelectric term n = 1, 2, and 3,
respectively, for a WSM, double-WSM, and triple-WSM.

When a constant magnetic field is applied along the z

direction, the corresponding charge density is given by

j0 = ne2

4π2
(qz + ∂zφ)B. (18)

The first term gives rise to a layer quantum Hall effect
with thickness 2nπ/qz accounting for the contribution from
one-dimensional chiral surface states, residing at the boundary
of WSMs, which can be observed in ARPES experiments.
The second term is new and arises from the contribution of
scattered states bound to the bulk of a WSM, the gapped
ZLLs. Decomposing this term as neB

2π
× e

2π
∂zφ, we find that

the second term corresponds to the one-dimensional charge
density, while the first one accounts for the degeneracy of ZLLs
in WSMs (n = 1), double-WSMs (n = 2), and triple-WSMs
(n = 3). The effect of this term appears only where ∂zφ jumps,
i.e., at the interface of WSMs with a vacuum. Hence, the bulk
anomalous term Sax gives rise to surface Hall conductivity in
WSMs, and through bulk-boundary correspondence the theory
remains anomaly-free. Therefore, by comparing the separation
of Weyl nodes from the ARPES measurements and the surface
Hall conductivity, one can extract the contribution from the
second term in Sax arising from bulk axionic CDW order.

So far, we have discussed the effect of the axionic density
wave in the uniform phase. The U(1) CDW order can also
allow the existence of topological defects, e.g., a line vortex or
axion string, along the z direction. For simplicity we consider
the vorticity to be one and restrict ourselves to the dilute
vortex limit. The line vortex accommodates n number of
chiral one-dimensional dispersive gapless fermionic modes
in its core that carry a nondissipative electric current in
the z direction, determined by the one-dimensional chiral

anomaly

jz = n × e2Ez

2π
, (19)

with n = 1, 2, and 3, respectively, for the WSM, double-WSM,
and triple-WSM [61]. This current in turn is pumped from the
bulk radially, which is captured by the bulk axionic term Sax,
according to the Callan-Harvey mechanism [32,62]. The exact
solution of the dispersive modes can readily be obtained upon
multiplying solutions of precise zero-energy modes bound to
a point vortex in the x-y plane [63] by the plane-wave factor
exp(ikzz). The existence of such one-dimensional gapless
dispersive modes will manifest in a T-linear specific heat in the
ordered phase when it accommodates a line vortex, which is
distinct from T 3 dependence of the specific heat in the normal
phase of three-dimensional WSMs.

VII. SUMMARY AND CONCLUSIONS

To summarize, we here propose that both DSMs and WSMs
can undergo a weak-coupling instability towards the formation
of a CDW order in the presence of a strong magnetic field. Due
to separation of Weyl nodes, which occurs naturally in WSMs,
and due to Zeeman coupling in trivial as well as topological
DSMs, the CDW order spontaneously breaks the translational
symmetry and represents an axionic phase of matter. In this
work, we demonstrate the effect of such mass generation on
the renormalization of the charge and DMS and also analyze
the scaling behavior of the spectral gap with the strength
of the subcritical interactions and magnetic field. A similar
mechanism has been argued to be operative in double- and
triple-WSMs, where, due to the additional degeneracy of the
ZLL, a larger gap can possibly be realized. Furthermore, we
have argued that, between the CDW and the SDW orders, both
of which can lead to a spectral gap at the Weyl points, the
former one wins energetically since it pushes the filled LLs
down in energy. Thus our proposed axionic phase of matter
can be realized in topological DSMs, such as Cd2As3 [27]
and Na3Bi [28], in recently found WSMs in TaAs [33–35],
NbAs [36], TaP [37], YbMnBi2 [38], and Sr1−yMnSb2 [39],
and in various three-dimensional strong-spin-orbit-coupled
materials, such as Bi2Se3, when these systems are placed
in the close vicinity of the quantum critical point between
the topological and the normal insulating phases. In addition,
proposals for realizing double-WSMs in HgCr2Se4 [40–42]
and SrSi2 [43] give genuine hope that axionic CDW orders,
corrections to DMS, and anomalous transport behavior can
be observed in various members of the Weyl family in the
near-future.

Besides the uniform ground state, we have also considered
the role of topological defects in the ordered phase. Due to
the associated U(1) angle in the axionic-CDW phase, the
ordered state can support a line vortex, also known as an
axion string. In the dilute vortex limit, we show that such a
defect hosts n number of one-dimensional gapless propagating
modes, localized in its core, where n = 1, 2, and 3 for
the WSM, double-WSM, and triple-WSM, respectively when
the vorticity in one. Thus the number of gapless modes is
intimately tied to the topological invariant of the system.
Such dispersive modes carries a nondissipative electric current
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which in turn is supplied radially from the bulk, through the
Callan-Harvey mechanism.

As a final remark, we comment on the role of disorder. Note
that axionic CDW in the WSM, double-WSM, and triple-WSM
breaks the translational symmetry due to momentum-space
separation of the Weyl nodes. Most likely, the periodicity of
such CDW order is incommensurate with the lattice period-
icity. Therefore, axionic CDW can be susceptible to generic
disorders [64], which may reduce the ordering temperature
considerably. Nevertheless, we expect that in sufficiently clean

systems and strong magnetic fields, a sizable mass gap can be
observed in WSMs at low temperature.
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APPENDIX: DERIVATION OF THE GAP EQUATION

We devote this Appendix to derive the gap equation, quoted in Eq. (13). The condensation energy in the presence of a CSB
mass is given by

E = �2

4g
− B

2π

∫ ∞

−∞

dkz

2π

⎡
⎣√

�2 + k2
z + 2

∑
n�1

√
2nB + k2

z + �2

⎤
⎦, (A1)

as shown in Eq. (11). Minimizing E with respect to � we obtain the gap equation

1

g
= B

π

∫ ∞

−∞

dkz

2π

⎡
⎣ 1√

�2 + k2
z

+
∑
n�1

2√
2nB + �2 + k2

z

⎤
⎦ = B

π3/2

∫ ∞

�−2

ds√
s

∫ ∞

−∞

dkz

2π
e−s(k2

z +�2)

⎡
⎣1 + 2

∑
n�1

e−s(2nB)

⎤
⎦

= B

π2

∫ ∞

�−2

ds

s

⎡
⎣−1

2
+

∑
n�0

e−s(2nB)

⎤
⎦e−s�2 = B

π2

∫ ∞

�−2

ds

s

[
e2sB

e2sB − 1
− 1

2

]
e−s�2 = B

2π2

∫ ∞

�−2

ds

s
e−s�2

coth(sB). (A2)

The above gap equation shows the UV divergence as we take the UV cutoff � → ∞. To regulate this divergence (after taking
2π2/g → 1/g), we can rewrite the gap equation as

1

g
− �2

∫ ∞

0
ds

K(s)

s2
= −

∫ ∞

�−2

ds

s2
[1 − Bse−s�2

coth(sB)], (A3)

where the function K(s) satisfies the asymptotic properties K(s → 0) = 0 and K(s → ∞) = 1, otherwise arbitrary. In terms of
dimensionless variables �/(�v) → m and B/�2 → B, where m,B � 1, the above gap equation reduces to

δ + I1(m,B) + I2(m,B) = 0, (A4)

as shown in Eq. (13). For weak interactions y = B/m2 � 1, and expanding the functions I1(m,B) and I2(m,B) for small m and
B, as well as large y, we obtain

I2(m,B) = −B

∫ ∞

1

ds

s
e−s m2 = B

[
γE + 2 log(m) − m2 + m4

4
+ O(m6)

]
, (A5)

I1(m,B) = 2B

∫ ∞

2B

ds

s2

[
1 − se−s/(2y)

et − 1

]
= 2B

[ ∫ ∞

0

ds

s2

(
1 − s + 1

2 s2

es − 1

)
+ 1

2

(
1 + 1

y

) ∫ ∞

2B

ds

(
1

es − 1

)

− 1

2
· 1

(2y)2

∫ ∞

0
ds

(
s

es − 1

)
+ 1

6
· 1

(2y)3

∫ ∞

0
ds

(
s2

es − 1

)
− O(y−4)

]

= 2B

[
0.63 − 0.21

y2
+ 0.05

y3
+ 1

2

(
1 + 1

y

){
− log(2B) + B − B2

6

}
+ O(y−4,B6)

]
, (A6)

as shown in Eq. (14), and where

δ = 1

g�2
−

∫ ∞

0
ds

K(s)

s2
≡ 1

g�2
− 1

�2gc

, and
1

gc

= �2
∫ ∞

0
ds

K(s)

s2

is the zero-magnetic-field critical strength of the interaction for CSB ordering. Therefore, δ measures the deviation from the
zero-magnetic-field critical point (δ = 0) and δ > 0 corresponds to a subcritical interaction, i.e., g < gc.

125141-7



BITAN ROY AND JAY D. SAU PHYSICAL REVIEW B 92, 125141 (2015)

[1] G. E. Volovik, The Universe in a Helium Droplet (Oxford
University Press, New York, 2003).

[2] M. Z. Hassan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[3] X. L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[4] S.-Y. Xu, Y. Xia, L. A. Wray, S. Jia, F. Meier, J. H. Dil, J.

Osterwalder, B. Slomski, A. Bansil, H. Lin, R. J. Cava, and
M. Z. Hasan, Science 332, 560 (2011).

[5] T. Sato, K. Segawa, K. Kosaka, S. Souma, K. Nakayama, K.
Eto, T. Minami, Y. Ando, and T. Takahashi, Nat. Phys. 7, 840
(2011).

[6] M. Brahlek, N. Bansal, N. Koirala, S.-Y. Xu, M. Neupane, C.
Liu, M. Z. Hasan, and S. Oh, Phys. Rev. Lett. 109, 186403
(2012).

[7] L. Wu, M. Brahlek, R. V. Aguilar, A. V. Stier, C. M. Morris, Y.
Lubashevsky, L. S. Bilbro, N. Bansal, S. Oh, and N. P. Armitage,
Nat. Phys. 9, 410 (2013).

[8] X. Xi, C. Ma, Z. Liu, Z. Chen, W. Ku, H. Berger, C. Martin,
D. B. Tanner, and G. L. Carr, Phys. Rev. Lett. 111, 155701
(2013).

[9] H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389 (1983).
[10] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205

(2011); A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev.
B 84, 235126 (2011).

[11] K. Y. Yang, Y. M. Lu, and Y. Ran, Phys. Rev. B 84, 075129
(2011).

[12] A. A. Zyuzin, S. Wu, and A. A. Burkov, Phys. Rev. B 85, 165110
(2012).

[13] V. Aji, Phys. Rev. B 85, 241101 (2012).
[14] A. G. Grushin, Phys. Rev. D 86, 045001 (2012).
[15] D. T. Son and B. Z. Spivak, Phys. Rev. B 88, 104412 (2013).
[16] P. Goswami and S. Tewari, Phys. Rev. B 88, 245107 (2013).
[17] M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 206802

(2013).
[18] S. A. Parameswaran, T. Grover, D. A. Abanin, D. A. Pesin, and

A. Vishwanath, Phys. Rev. X 4, 031035 (2014).
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