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A variational approach for constructing an effective particle description of the low-energy physics of one-
dimensional quantum spin chains is presented. Based on the matrix product state formalism, we compute the
one- and two-particle excitations as eigenstates of the full microscopic Hamiltonian. We interpret the excitations
as particles on a strongly correlated background with nontrivial dispersion relations, spectral weights, and
two-particle S matrices. Based on this information, we show how to describe a finite density of excitations as an
interacting gas of bosons, using its approximate integrability at low densities. We apply our framework to the
Heisenberg antiferromagnetic ladder: we compute the elementary excitation spectrum and the magnon-magnon S

matrix, study the formation of bound states, and determine both static and dynamic properties of the magnetized
ladder.
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I. INTRODUCTION

Finding the ground state of strongly correlated quantum
many-body systems poses one of the main challenges of
contemporary condensed matter physics. The physical prop-
erties of these systems, however, are not determined by the
ground state but rather by the low-lying, elementary excitations
relative to this ground state. In contrast to the strongly
correlated ground state, these elementary excitations are of a
particularly simple character; in most cases, they can be treated
as a collection of independent, weakly interacting particles
living on a nontrivial vacuum state [1,2].

In condensed matter theory, these “quasiparticles” are
typically defined starting from some noninteracting limit. In
Fermi liquid theory for interacting electron systems [3,4]—the
most prominent example of this approach—the quasiparticles
are defined in the free-electron system, but remain well-
defined modes when turning on the interactions. The effect
of a finite lifetime and quasiparticle interactions can be
treated in perturbation theory. In strongly correlated lattice
systems, however, there is typically no obvious way to start
from a noninteracting theory to define the quasiparticles that
determine the system’s properties (notable counterexamples in
one dimension include integrable systems [5] and continuous
unitary transformations [6]). The variational approach, which
we will advocate in this paper, is orthogonal to the perturbative
approach by starting from the strongly correlated ground state
and finding the low-lying excitations of the interacting system
variationally. As exact eigenstates, these excitations have an
infinite lifetime, but a priori it is not clear that they should
have a local, particlelike nature.

In relativistic quantum field theory, a picture of localized
elementary excitations on top of a strongly correlated vacuum
has been formulated in a rigorous fashion. Haag-Ruelle scat-
tering theory [7] does indeed construct a many-particle Fock
space by acting with local operators on the vacuum and even
defines an S matrix describing the interactions between these
particles. Because this formalism depends heavily on Lorentz
invariance, there is a priori no straightforward translation
to lattice systems. Indeed, on the lattice, there are fewer
restrictions on the spectrum: different elementary excitation

branches typically have different characteristic velocities and
are not bound to be stable in the whole Brillouin zone—a
typical spectrum is shown in Fig. 1.

Recently though, it was realized that by using Lieb-
Robinson bounds [8] as the soft lattice analog of strict causality
in relativistic QFT, the locality of elementary excitations can
be established in a rigorous way. More specifically, it was
shown in Ref. [9] that an elementary excitation that lives on
an isolated branch in the energy-momentum spectrum and
has a finite overlap with an arbitrary local operator, can be
created out of the ground state by the action of a momentum
superposition of a local operator (to an exponential precision
in the size of the support of this operator). In Ref. [10], the
scattering problem of these particle excitations was formulated
by translating the Haag-Ruelle formalism to the lattice setting.

These theoretical developments provide a motivation for
the variational approach towards a particle picture of the low-
energy physics of lattice systems. Indeed, by making use of the
fact that gapped excitations should be local, it might prove pos-
sible to describe them with only a small number of variational
parameters. This is the idea of the single-mode approximation,
or Feynman-Bijl ansatz, pioneered by Feynman in his study on
liquid helium [11,12] and later successfully applied to quantum
spin systems [13–15]. Although providing qualitative insight
into the nature of the elementary excitations, the single-mode
approximation is often too crude as a variational ansatz to
obtain quantitative results on the low-lying spectrum of generic
spin chains.

Indeed, constructing a variational ansatz for excita-
tions with quantitative accuracy requires both an accurate
parametrization of the ground state and a systematic way to
change this ground state locally. For one-dimensional systems,
the framework of matrix product states [16,17] (MPS) has
proven to meet both requirements. The ground state of one-
dimensional quantum spin systems can indeed be efficiently
parametrized by the class of MPS [18,19]; the success of the
density matrix renormalization group [20] is based on MPS
serving as the class of states over which it optimizes [21,22].
The defining characteristic of MPS—or tensor network states
in general—is the presence of a “virtual” level that carries the
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FIG. 1. A typical momentum-energy excitation spectrum of a
one-dimensional lattice system. We have depicted three elementary
(one-particle) excitations (full lines) and the many-particle continuum
(grey). Both α2 and α3 are stable in the whole Brillouin zone; the latter
remains stable even inside the continuum, possibly because it cannot
decay in a two-particle state through symmetry constraints. Particle
α1 becomes unstable upon entering the continuum, so that it ceases
to be a one-particle excitation (cannot be created by a local operator).

(quantum) correlations in the many-body wave function. By
acting both on the physical and the virtual levels, a variational
ansatz for elementary excitations on an MPS ground state
was introduced in Refs. [23] and [24]. The ansatz was used
for calculating dispersion relations and dynamical correlation
functions of quantum spin chains [25–27], quantum field
theories [28,29], and gauge theories [30].

A more general understanding of these efforts is obtained
by realizing that the low-energy dynamics correspond to small
variations around the variational ground state and are therefore
not necessarily contained within the variational class itself.
Indeed, for the smooth manifold of MPS [31], it is the tangent
space constructed around the MPS ground state that provides
a natural parametrization of the low-energy dynamics. For
example, the best approximation to time evolution within the
MPS manifold can be obtained by projecting the Schrödinger
equation into the MPS tangent bundle, according to the time-
dependent variational principle (TDVP) [32,33]. Similarly, the
ansatz for an elementary excitation corresponds exactly to a
vector in the tangent space around the MPS ground state.
These ideas can be grouped under the concept of post-MPS
methods [25] as an alternative for the standard MPS algorithms
for tackling the low-energy dynamics around an MPS ground
state.

The crucial next step in this approach—after the construc-
tion of single-particle excitations—consists of studying the
interactions between these particles and, more specifically,
computing the two-particle S matrix [34]. This information
can then be used as the input for the “approximate Bethe
ansatz” [35–37] (i.e., neglecting all three-particle scattering
processes) in order to provide a first-quantized description of
a finite density of excitations on top of the strongly correlated
vacuum.

These developments should eventually lead to the ab initio
construction of an effective second-quantized Hamiltonian,
acting in a Fock space of interacting particles. In contrast to
standard effective-field theory constructions, the variational
approach would automatically incorporate all symmetries and
correlations of the vacuum state on which these particles live
without relying on phenomenological considerations.

In this paper, we further elaborate on the framework that we
introduced in Ref. [34]. In Sec. II, we show how to construct
one- and two-particle excitations on an MPS vacuum state.
We formulate a definition of the S matrix based on the form
of the two-particle wave function and prove that it is unitary.
Finally, we construct the projector on the one- and two-particle
subspaces, which shows up in the spectral representation of
dynamical correlation functions. In Sec. III, we take a step back
and show that the S matrix as defined in Sec. II corresponds to
the one that shows up in standard dynamical scattering theory.
Next, we elaborate on the approximate Bethe ansatz as a way of
dealing with a finite density of excitations in a first-quantized
many-particle formalism. In Sec. IV, we apply our variational
method to study the Heisenberg antiferromagnetic two-leg
ladder. We compute the elementary excitation spectrum, the
two-particle S matrix and one- and two-particle contributions
to dynamical correlation functions. Afterwards, we apply the
approximate Bethe ansatz to the magnetization process, at zero
and finite temperature, and compute both the thermodynamic
properties and correlation functions of the magnetized ladder.
In the last section, we provide an overview of some interesting
extensions of our framework and give an outlook towards the
construction of effective-field theories in second quantization.

II. CONSTRUCTING SCATTERING STATES

In this section, we construct variational one- and two-
particle states on an MPS background.1 Based on the form
of these wave functions, we define the S matrix and introduce
the projectors on the one- and two-particle subspaces (i.e.,
the low-energy subspace), which can be used to compute the
low-energy part of dynamical correlation functions. Note that
while the complete framework is presented in the main body,
technical details and long equations are taken up in Appendix.
A short remark on notation is also in order. Vectors of any
length will be denoted in boldface, whereas matrices will
use a sans serif font. Vector entries will be referred to using
a superscript (in which case the boldface will be dropped),
whereas subscripts of a boldface vector typically refer to a
label of a set of vectors, such as a basis. The only exception
to these rules is that physical states are denoted using Dirac’s
bra-ket notation and the matrices appearing in the definition of
the matrix product state (which can also be interpreted as rank
three tensors) are typeset using the normal serif type (italic).

A. Ground state

Consider a one-dimensional quantum spin system with
local dimension d in the thermodynamic limit, described by a

1Note that our approach was inspired by the works of Kohn [107]
and Feynman [108].
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FIG. 2. Graphical representation of an MPS ground state. The cir-
cles represent the (D×d×D)-dimensional tensor A: every outgoing
leg corresponds to a tensor index. Whenever two legs are connected,
this corresponds to a contraction of the two indices. In the MPS, all
virtual indices are contracted, while the physical indices correspond
to the physical degrees of freedom in the MPS wave function (1). The
matrix product structure contains the (quantum) correlations of this
ground state.

local and translation invariant Hamiltonian. While in no way
crucial, we restrict our study to nearest-neighbor Hamilto-
nians, i.e., Ĥ = ∑

n∈Z ĥn,n+1, for reasons of simplicity. We
furthermore assume that the translation invariant ground state
of this system (we restrict our analysis to a unique ground state,
see Sec. V for extensions) can be accurately described by an
injective uniform matrix product state (uMPS) [32,38,39]

|�[A]〉 =
d∑

{s}=1

v
†
L

[∏
m

Asm

]
vR|{s}〉, (1)

where As is a set of D×D matrices for s = 1, . . . ,d, or,
equivalently, A can be interpreted as a D×d×D tensor;
v

†
L and vR are D-dimensional boundary vectors. In the

thermodynamic limit, all physical observables are independent
of these boundary vectors [31], so that the tensor A provides a
complete description of the ground state |�[A]〉 (see Fig. 2).

The set of injective MPS of a certain bond dimension
constitute a complex manifold [31]. Finding the best approxi-
mation of the ground state of a certain Hamiltonian within this
manifold can be achieved using different algorithms [16]—in
our simulations, we will always use the TDVP algorithm
[32,33].

B. One-particle excitations

This ground state serves as our vacuum, on top of which we
will build localized, particlelike excitations. A first guess for
the wave function of an elementary excitation with momentum
κ is the single-mode approximation

|�SMA(κ)〉 =
∑

n

eiκnÔn|�[A]〉, (2)

where Ôn is an operator acting at site n. The choice of
operator can be inspired by physical intuition [11–15,40] or
determined by numerical optimization [41]. Though providing
some qualitative insight into elementary excitation spectra,
this ansatz is typically not a good quantitative approximation
for the true wave function of the excitation. Systematically
improving on this would ask for the introduction of bigger
local operators Ôn. It was indeed proven [9] that, in the case
of an isolated excitation branch, the exact wave function can

FIG. 3. Graphical representation of the one-particle excitation
ansatz. The ground-state tensor A is changed at site n into a new
tensor B (square) and a momentum superposition is taken. The matrix
product structure allows that the tensor B can change the ground state
over a finite distance.

be arbitrary well approximated in this way. More specifically,
it was shown that the localized nature of an excitation depends
on the gap to the nearest eigenvalue of the Hamiltonian in the
same momentum sector.

Within the framework of matrix product states, it is possible
to construct a variational ansatz that is able to capture the
localized nature of the excitation by directly modifying the
local tensors. Indeed, instead of only operating on the physical
level, we can change one ground-state tensor As with a new
tensor Bs and take a momentum superposition [21,23,25] (see
Fig. 3):

|�κ [B]〉 =
∑

n

eiκn
∑
{s}

v
†
L

[∏
m<n

Asm

]

×Bsn

[∏
m>n

Asm

]
vR|{s}〉. (3)

Through the virtual level of the MPS, this ansatz is able to
perturb the ground state over a finite length determined by
the bond dimension D. All variational freedom of this ansatz
is contained within the tensor Bs . As the parametrization
of the state (3) is linear in the elements of Bs , variationally
optimizing amounts to solving the Rayleigh-Ritz problem

Heff,1p(κ)u = λu (4)

with Heff,1p(κ) the momentum-dependent effective
one-particle Hamiltonian and vector u containing the
coefficients ui to expand tensor B in the state (3) with respect
to a suitably chosen basis {B(i),i = 1, . . . ,(d − 1)D2}. We
refer to Appendix A2 for details on how to calculate Heff,1p.

Upon solving the eigenvalue problem in Eq. (4), we obtain
a set of (d − 1)D2 eigenvalues for every momentum κ . Some
of those eigenvalues �α(κ) offer a good approximation to
the exact dispersion relations of the elementary excitations,
i.e., the isolated branches in the spectrum of the Hamiltonian.
Moreover, from the corresponding eigenvectors uα(κ), we
obtain an explicit expression for the wave function of the
elementary excitations by inserting the tensors Bα(κ) =∑

i u
i
α(κ)B(i) in Eq. (3). This expression can be used to

calculate the spectral weights of the excitations and, conse-
quently, the one-particle contribution to dynamical correlation
functions.

Other eigenvalues obtained from Eq. (4) will fall in the
continuous part of the spectrum of the Hamiltonian, i.e., in the
set of scattering states. Scattering states cannot be described
by a single local perturbation, so we expect the ansatz (3)
to fail. In fact, instead of a scattering state, the variational
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optimization will create a localized wave packet of two-particle
states within some energy range. Obviously, the variational
eigenstates of the form in Eq. (3) will not provide a good
approximation to the exact scattering eigenstates of the full
Hamiltonian. A more appropriate variational ansatz for two-
particle scattering states is discussed in the remainder of this
section.

Remark that we have so far not discussed the case of
bound states. When defining (quasi) particles along a path
of Hamiltonians using, e.g., perturbation theory or continuous
unitary transformations [6], bound states can be identified with
isolated eigenstates emerging from a multiparticle continuum
along the path. In our variational framework, we consider one
particular Hamiltonian which is not necessarily related to a
one-parameter family. All isolated branches in the spectrum
are equally elementary (see Ref. [42] for the analogous result
in QFT). While there might be quantum numbers that indicate
the “history” of an elementary excitation along a path of
Hamiltonians, there is typically no particle number symmetry
to make the interpretation of bound states unambiguous. On a
related note, elementary excitations are by this definition exact
eigenstates of the Hamiltonian and therefore have an infinite
life time. We cannot and do not target resonances within the
continuous part of the spectrum. Therefore the Hamiltonian
does not contain interactions that link the one-particle sector
with higher particle states.

As mentioned previously, the spectrum of general quantum
spin chains can be very complex. Within certain regions of
the Brillouin zone, the energy of elementary excitations can
fall within the continuum (this typically requires a quantum
number that protects them against decay) or there might
be no elementary excitations at all (e.g., around momentum
zero in the spin-1 Heisenberg antiferromagnet). We therefore
need a way to determine which variational eigenvalues of
Eq. (4) correspond to elementary excitations and therefore
offer a good approximation to actual eigenstates of the
Hamiltonian. Upon enlarging the variational one-particle
space, e.g., by increasing the bond dimension or the spatial
support of the local perturbation, eigenvalues that correspond
to elementary excitations will converge quickly (related to
the gap to the nearest eigenvalue) and remain at a fixed
position. Eigenvalues in the continuous part of the exact
spectrum, on the other hand, will not really converge and
several new eigenvalues will appear in those regions. A more
quantitative way to assess how well an exact eigenstate is
approximated consists of calculating the variance of the Hamil-
tonian [43], i.e., 〈�κ [B]|(Ĥ − �(κ))2|�κ [B]〉. For elementary
excitations, these variances should be small (see Sec. IV A
for numerical values). For the other solutions of the one-
particle problem (4), which correspond to scattering states,
the variance should be larger. For a typical gapped system, the
difference will be some orders of magnitude. Consequently,
this quantity allows for the identification of one-particle states,
even within higher-particle bands and without exploiting
symmetries.

Note finally that, without Galilean invariance on the lattice,
the tensor Bα(κ), which describes the particle α on a dispersion
branch �α(κ), is momentum dependent. On the other hand, we
expect that for a well-defined particle in a certain momentum
range this momentum dependence is not too strong. Indeed,

it turns out that by a suitable choice of the basis tensors
{B(i),i = 1, . . . ,(d − 1)D2}, we can fully capture Bα(κ) for
all elementary excitations α and for all momenta κ in the
span of just a small number � � (d − 1)D2 basis vectors
{B(i),i = 1, . . . ,�}. Although more sophisticated optimization
strategies should be possible, we construct this reduced basis
from a number of B’s at different momenta. This reduced basis
will be important for solving the scattering problem in the next
sections.

C. Variational ansatz for two-particle states

In the previous section it became clear that we need another
ansatz to capture the delocalized nature of a two-particle
state. We will start from a one-particle spectrum consisting
of a number of different types of particles, labeled by
α, with dispersion relations �α(κ). In the thermodynamic
limit, constructing the two-particle spectrum is trivial: the
momentum and energy are the sum of the individual momenta
and energies of the two particles [2]. The two-particle wave
function, however, depends on the particle interaction. The
interactions, which depend on both the Hamiltonian and the
ground-state correlations, are reflected in the wave function
in two ways: (i) the asymptotic wave function has different
terms, with the S matrix elements as the relative coefficients,
and (ii) the local part of the wave function.

In order to capture both, we introduce the following ansatz
for describing states with two localized, particlelike excitations
with total momentum K:

|ϒ(K)〉 =
+∞∑
n=0

Ln∑
j=1

cj (n)|χK,j (n)〉, (5)

where the basis states are (see Fig. 4)

|χK,j (n = 0)〉 =
+∞∑

n1=−∞
eiKn1

d∑
{s}=1

v
†
L

[∏
m<n1

Asm

]

× B
sn1
(j )

[∏
m>n1

Asm

]
vR|{s}〉, (6)

|χK,(j1,j2)(n > 0)〉

=
+∞∑

n1=−∞
eiKn1

d∑
{s}=1

v
†
L

[∏
m<n1

Asm

]
B

sn1
(j1)

[ ∏
n1<m<n1+n

Asm

]

× B
sn1+n

(j2)

[ ∏
m>n1+n

Asm

]
vR|{s}〉. (7)

We collect the variational coefficients either in one half-infinite
vector C with Cj,n = cj (n) or using the finite vectors c(n) with
entries {cj (n),j = 1, . . . ,Ln} for every n = 0,1, . . .. Here, we
have L0 = (d − 1)D2 and Ln>0 = [(d − 1)D2]2. Note that the
sum in Eq. (5) only runs over values n � 0, because a sum over
all integers would result in an overcomplete basis.

Already at this point, we will reduce the number of
variational parameters to keep the problem tractable. The terms
with n = 0 [corresponding to the basis vectors in Eq. (6)]
are designed to capture the situation where the two particles
are close together. No information on how this part should
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FIG. 4. Graphical representation of the basis states (7). The ground state is changed at two sites at a distance of n sites and a momentum
superposition is taken (with the total momentum K).

look like is a priori available, so we keep all variational
parameters cj (0), j = 1, . . . ,L0 = D2(d − 1). The terms with
n > 0 corresponding to the basis vectors in Eq. (7) represent
the situation where the particles are separated. We know that,
as n → ∞, the particles decouple and we should obtain a
combination of one-particle solutions. With this in mind, we
restrict the range of j1 and j2 to the first � basis tensors
{B(i),i = 1, . . . ,�}, which were chosen so as to capture the
momentum dependent solutions of the one-particle problem.
Consequently, the number of basis states of Eq. (7) for
n > 0 satisfies Ln = �2, which we will henceforth denote as
just L.

This might seem like a big approximation for n small:
when the two particles approach the wave functions might
begin to deform, so that the B tensors of the one-particle
problem no longer apply. Note, however, that the local (n = 0)
and nonlocal (n > 0) part are not orthogonal, so that the
local part is able to correct for the part of the nonlocal
wave function where the one-particle description is no longer
valid.

As the state (5) is linear in its variational parameters
C , optimizing the energy amounts to solving a generalized
eigenvalue problem

HeffC = ωNeffC (8)

with ω the total energy of the state and

(Heff)n′j ′,nj = 〈χj ′,K (n′)|Ĥ |χj,K (n)〉, (9)

(Neff)n′j ′,nj = 〈χj ′,K (n′)|χj,K (n)〉 (10)

two half-infinite matrices. They have a block matrix structure,
where the submatrices are labeled by (n′,n) and are of size
Ln′ × Ln. The computation of the matrix elements is quite
involved and technical, so we refer to the appendix for the
explicit formulas.

Since the eigenvalue problem is still infinite, it cannot be
diagonalized straightforwardly. Since we actually know the
possible energies ω for a scattering state with total momentum
K , we can also interpret Eq. (8) as an overdetermined system
of linear equations for the coefficients Cj,n = cj (n). In the
next two sections, we will show how to reduce this problem to
a finite linear equation.

D. Asymptotic regime

First, we solve the problem in the asymptotic regime,
where the two particles are completely decoupled. This regime
corresponds to the limit n′,n → ∞, where the effective norm
and Hamiltonian matrices, consisting of blocks of size L×L,
take on a simple form. Indeed, if we properly normalize the

basis states, the asymptotic form of the effective norm matrix
reduces to the identity, while the effective Hamiltonian matrix
is a repeating row of block matrices centered around the
diagonal

(Heff)n′,n → An−n′ , n,n′ → ∞. (11)

The blocks decrease exponentially as we go further from the
diagonal, so we can, in order to solve the problem, consider
them to be zero if |n − n′| > M for some suitably chosen
integer M . In this approximation, the coefficients c(n) obey

M∑
m=−M

Amc(n + m) = ωc(n), n → ∞. (12)

We can reformulate this as a recurrence relation for the c(n)
vectors and therefore look for elementary solutions of the
form c(n) = μnv. For fixed ω, the solutions μ and v are now
determined by the polynomial eigenvalue equation

M∑
m=−M

Amμmv = ωv. (13)

From the special structure of the blocks Am (see Appendix B3)
and their relation to the one-particle effective Hamiltonian
Heff,1p, we already know a number of solutions to Eq. (13).
Indeed, if we can find � combinations of two types of
particles (α,β) with individual momenta (κ1,κ2) such that
K = κ1 + κ2 and ω = �α(κ1) + �β(κ2), then the polynomial
eigenvalue problem will have 2� solutions μ on the unit circle.
These solutions take the form μ = eiκ2 and the corresponding
eigenvector is given by

v = uα(κ1) ⊗ uβ(κ2) (14)

(in the case of degenerate eigenvalues we can take linear
combinations of these eigenvectors that no longer have
this product structure). Every combination is counted twice,
because we can have particle α on the left and particle β on
the right, and vice versa.

Moreover, since A†
m = A−m, the number of eigenvalues

within and outside the unit circle should be equal. This allows
for a classification of the eigenvalues μ as

|μi | < 1 for i = 1, . . . ,LM − �,

|μi | = 1 for i = LM − � + 1, . . . ,LM + �,

|μi | > 1 for i = LM + � + 1, . . . ,2LM.

The last eigenvalues with modulus bigger than one are not
physical (because the corresponding c(n) ∼ μn

i vi yiels a
nonnormalizable state) and should be discarded. The 2� eigen-
values with modulus 1 are the oscillating modes discussed
above; we will henceforth label them with γ = 1, . . . ,2� such
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that μ = eiκγ (κγ being the momentum of the particle of the
right) and the corresponding eigenvector is given by

vγ = uαγ
(K − κγ ) ⊗ uβγ

(κγ ).

Finally, the first eigenvalues are exponentially decreasing and
represent corrections when the excitations are close to each
other. We henceforth denote them as e−λi with �(λi) > 0 for
i = 1, . . . ,LM − � and denote the corresponding eigenvec-
tors as wi .

With these solutions, we can represent the general asymp-
totic solution as

c(n) →
LM−�∑

i=1

pie−λinwi +
2�∑

γ=1

qγ eiκγ nvγ . (15)

Of course, we still have to determine the coefficients {pi,qγ }
by solving the local problem.

E. Solving the full eigenvalue equation

Since the energy ω was fixed when constructing the
asymptotic solution, the generalized eigenvalue equation is
reduced to the linear equation

(Heff − ωNeff)C = 0.

We know that in the asymptotic regime this equation is fulfilled
if and only if c(n) is of the form of Eq. (15). We will
introduce the approximation that the elements for the effective
Hamiltonian matrix [Eq. (9)] and norm matrix [Eq. (10)] have
reached their asymptotic values when either n > M + N or
n′ > M + N , where N is a finite value and can be chosen
sufficiently large. This implies that we can safely insert the
asymptotic form for n > N in the wave function, which we
can implement by rewriting the wave function as

C = Z × x, (16)

where

Z =
(
1local

{e−λinwi} {e−iκγ nvγ }
)

.

The {e−λinwi} and {e−iκγ nvγ } are the vectors corresponding to
the damped, respectively, oscillating modes, while the identity
matrix is inserted to leave open all parameters in c(n) for
n � N . The number of parameters in x is reduced to the finite
value of D2(d − 1) + NL + LM + �.

Since the equation is automatically fulfilled after M + N

rows, we can reduce Heff and Neff to the first rows, so we end
up with the following linear equation:

[H − ωN]red × Z × x = 0 (17)

with

[H − ωN]red =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

(H − ωN)ex AM 0 . . . 0
AM−1 AM . . . 0

...
...

. . .
...

A1 A2 . . . AM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This “effective scattering matrix” consists of the first (M +
N ) × (M + N ) blocks of the exact effective Hamiltonian
and norm matrix and the A matrices of the asymptotic
part [Eq. (11)] to make sure that these matrices remain the
truncated versions of a Hermitian problem. This matrix has
D2(d − 1) + (N + M)L rows, which implies that the linear
equation (17) has � exact solutions, which is precisely the
number of scattering states we expect to find. Every solution
consists of a local part [D2(d − 1) + NL elements], the
LM − � coefficients p of the decaying modes, and the 2�

coefficients q of the asymptotic modes.

F. S matrix and normalization

After having shown how to find the solutions of the
scattering problem, we can now elaborate on the structure
of the asymptotic wave function and define the S matrix.
We start from � linearly independent scattering eigenstates
|ϒi(K,ω)〉 (i = 1, . . . ,�) at total momentum K and energy ω

with asymptotic coefficients qi(K,ω). The asymptotic form of
these eigenstates is thus a linear combination of all possible
nondecaying solutions of the asymptotic problem:

|ϒi(K,ω)〉 =
2�∑

γ=1

q
γ

i (K,ω)
∑
n>N

∑
j

eiκγ nvj
γ (κγ )|χj,K (n)〉,

(18)

where the coefficients are obtained from solving the local
problem. The number of eigenstates equals half the number
of oscillating modes that appear in the linear combination.
With every oscillating mode γ we can associate a function
ωγ (κ) giving the energy of this mode as a function of the
momentum κγ of the second particle at a fixed total momentum
K . If γ corresponds to the two-particle mode with particles
αγ and βγ , this function is given by ωγ (κ) = �αγ

(K − κ) +
�βγ

(κ). The derivative of this function, which will prove of
crucial importance, is ω′

γ (κ) = �′
βγ

(κ) − �′
αγ

(K − κ). It can
be interpreted as the difference in group velocity between the
two particles, i.e., the relative group velocity in the center of
mass frame.

Much like the proof of conservation of particle current in
one-particle quantum mechanics, it can be shown that (see
Appendix C), if (18) is to be the asymptotic form of an
eigenstate, the coefficients q

γ

i (K,ω) should obey∑
γ

∣∣qγ

i (K,ω)
∣∣2(dωγ

dκ
(κγ )

)
= 0. (19)

This equation can indeed be read as a form of conservation of
particle current, with ω′

γ (κγ ) playing the role of the (relative)
group velocity of the asymptotic mode γ . As any linear
combination of eigenstates with the same energy ω is again an
eigenstate, this relation can be extended to∑

γ

q
γ

j (K,ω)qγ

i (K,ω)

(
dωγ

dκ
(κγ )

)
= 0.

With this equation satisfied, we can define the two-particle
S matrix S(K,ω). Firstly, the different modes are classified
according to the sign of the derivative: the incoming modes
have dω

dκ
> 0 (two particles moving towards each other), the
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outgoing modes have dω
dκ

< 0 (two particles moving away from
each other), so that we have∑

γ∈�in

q
γ

j (K,ω)qγ

i (K,ω)

∣∣∣∣dωγ

dκ
(κγ )

∣∣∣∣
=

∑
γ∈�out

q
γ

j (K,ω)qγ

i (K,ω)

∣∣∣∣dωγ

dκ
(κγ )

∣∣∣∣.
If we group the coefficients of all solutions in (square) matrices
Qin(K,ω) and Qout(K,ω), so that the ith column is a vector
with the coefficients q

γ

i for the in- and outgoing modes of the
ith solution, we can rewrite this equation as

Qin(K,ω)†V 2
in(K,ω)Qin(K,ω)

= Qout(K,ω)†V 2
out(K,ω)Qout(K,ω),

with Vin,out(K,ω)ij = δij | dωγ

dκ
(κγ )|1/2

a diagonal matrix. As
Qin(K,ω) and Qout(K,ω) should be connected linearly, we

can define a unitary matrix S(K,ω) as

Vout(K,ω)Qout(K,ω) = S(K,ω)Vin(K,ω)Qin(K,ω).

In Sec. III A, we will show that this definition corresponds
to the standard S matrix. Note, however, that S(K,ω) is only
defined up to a set of phases. Indeed, since the vectors vγ can
only be determined up to a phase, the coefficient matrices Cin

and Cout are only defined up to a diagonal matrix of phase
factors. These arbitrary phase factors show up in the S matrix
as well. We will show how to fix them in the case of the elastic
scattering of two identical particles (Sec. II G); in the case
where we have different outgoing channels only the square
of the magnitude of the S matrix elements is physically well-
defined (see Sec. III A).

This formalism allows to calculate the norm of the scatter-
ing states in an easy way. Indeed, the general overlap between
two scattering states is given by

〈ϒi ′(K
′,ω′)|ϒi(K,ω)〉 = 2πδ(K − K ′)

⎛
⎝∑

γ,γ ′
q

γ ′
i ′ (K ′,ω′)qγ

i (K,ω)v†
γ ′vγ

∑
n,n′>N

ei(κγ −κ ′
γ ′ )n + finite

⎞
⎠

= 2πδ(K − K ′)

⎡
⎣∑

γ,γ ′
q

γ ′
i ′ (K ′,ω′)qγ

i (K,ω)v†
γ ′vγ πδ(κγ (ω) − κ ′

γ ′(ω′)) + finite

⎤
⎦.

The δ factor for the momenta κγ is obviously only satisfied if ω = ω′, so we can transform this to a δ(ω − ω′). Moreover, if
κγ (ω) = κ ′

γ ′(ω′) for γ �= γ ′, then necessarily v
†
γ ′vγ = 0, so we can reduce the double sum in γ,γ ′ to a single one. If we omit all

finite parts, we have

〈ϒi ′(K
′,ω′)|ϒi(K,ω)〉 = 2πδ(K − K ′)πδ(ω − ω′)

∑
γ

q
γ

i ′ (K
′,ω′)qγ

i (K,ω)

∣∣∣∣dωγ

dκ
(κγ )

∣∣∣∣.
With the Qin/out as defined above, the overlap reduces to

〈ϒi ′ (K
′,ω′)|ϒi(K,ω)〉 = 2πδ(K − K ′)2πδ(ω − ω′)[Qin(K,ω)]†i ′V

2
in(K,ω)[Qin(K,ω)]i

= 2πδ(K − K ′)2πδ(ω − ω′)[Qout(K,ω)]†i ′V
2

out(K,ω)[Qout(K,ω)]i .

G. One type of particle

Let us make things more concrete by working out the case
where the one-particle spectrum consists of just one type of
particle with dispersion relation �(κ). Suppose we have only
one combination of momenta κ1 and κ2 such that they add up to
total momentum K = κ1 + κ2 and total energy ω = �(κ1) +
�(κ2). There are two asymptotic modes—one mode with κ1

on the left and κ2 on the right, and one mode with the momenta
interchanged—that combine into one scattering state with the
asymptotic form

c(n) → q1eiκ2nv1 + q2eiκ1nv2.

The conservation equation that was derived in the previous
section takes on the simple form

|q1|2 = |q2|2

because ω′(κ1) = −ω′(κ2). As we mentioned above in the
general case, the relative phase of the two vectors v1 and
v2 can be chosen arbitrarily. However, since the two modes

correspond to the interchanging of two identical particles,
it makes sense to fix the phase such that v2

†v1 > 0. Due to
the momentum dependence of the one-particle solutions, this
overlap will be slightly smaller than one.

The S matrix reduces to a phase factor and is defined as

S(κ1,κ2) = S(K,ω) = q2

q1
.

The asymptotic wave function takes the form

|ϒ(κ1,κ2)〉 →
∑
n1<2

ei(κ1n1+κ2n2)[Bκ1 at n1,Bκ2 at n2
]

+ S(κ1,κ2)ei(κ2n1+κ1n2)[Bκ2 at n1,Bκ1 at n2
]
.

(20)

From simple arguments [44], one can argue that in one
dimension the S matrix should have the universal limiting
value for low-energy scattering [45,46]

S(κ1,κ2) → −1 as |κ1 − κ2| → 0.
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We define the scattering phase θ as the phase shift of the S

matrix relative to its universal low-energy value S(κ1,κ2) =
−eiθ(κ1,κ2).

H. Spectral functions

With the variational wave functions of one- and two-particle
states, we can now calculate the low-energy part of spectral
functions at zero temperature. We consider the following
function:

S(κ,ω) =
∑

n

∫
dt ei(ωt−κn)〈�0|O†

n(t)O0(0)|�0〉

with On(t) an operator at site n in the Heisenberg picture. In
order to approximate the low-energy part, we insert a projector
on the one- and two-particle subspaces:

P1p,2p =
∫

dκ

2π

∑
α∈�1(κ)

|�α(κ)〉〈�α(κ)|

+
∫

dK

2π

∫
dω

2π

∑
γ∈�2(K,ω)

|ϒγ (K,ω)〉〈ϒγ (K,ω)|,

where �1 (�2) is the set of all types of one-particle (two-
particle) states at that momentum (momentum-energy). The
states are orthonormalized as

〈�γ ′(κ ′)|�γ (κ)〉 = 2πδ(κ ′ − κ)δγ γ ′,

〈ϒγ ′(K ′,ω′)|ϒγ (K,ω)〉 = 4π2δ(K ′ − K)δ(ω′ − ω)δγ γ ′ .

so that we obtain the Lehmann representation [47] for the
spectral function up to two-particle contributions

S(κ,ω) =
∑

α∈�1(κ)

2πδ(�α(κ) − ω)|〈�α(κ)|Ô0|�0〉|2

+
∑

γ∈�2(κ,ω)

|〈ϒγ (κ,ω)|Ô0|�0〉|2 + · · · .

In gapped systems, the one- and two-particle contributions
saturate the full spectral function below the three-particle
threshold, while contributions from higher-particle excita-
tions might become important for higher energies. Yet,
it appears that typically the one- and two-particle sectors
already contain the largest portion of the spectral function,
see, e.g., Ref. [48]. The one- and two-particle form factors
appearing in the above expression are calculated explicitly in
Appendix A 3.

To get a quantitative estimate of how well the spectral
function is approximated, we look at the zeroth and first
frequency moments at a certain momentum, which are defined
as

s0(κ) =
∫

dω

2π
S(κ,ω) and s1(κ) =

∫
dω

2π
ωS(κ,ω).

These quantities follow the sum rules [49]

s0(κ) =
∫

dω

2π
〈�0|O†

−κ2πδ(ω − Ĥ )O0(0)|�0〉

= 〈�0|O†
−κO0(0)|�0〉

and

s1(κ) =
∫

dω

2π
ω〈�0|O†

−κ2πδ(ω − Ĥ )O0(0)|�0〉

= 〈�0|O†
−κĤO0(0)|�0〉.

If the ground state is taken to be an MPS, these quantities can
be calculated exactly. Note that s0 is just the static correlation
function and that the ratio of the two is equal to the single
mode approximation for the dispersion relation [50]

�SMA(κ) = s1(κ)

s0(κ)
= 〈�0|O†

−κĤO0(0)|�0〉
〈�0|O†

−κO0(0)|�0〉
.

By comparing the one- and two-particle contributions for s0

and s1 to the exact values, we can get an idea of how well these
eigenstates capture the effect of the operators working on the
ground state and, consequently, how well the spectral function
is approximated by only looking at these contributions.

III. TWO-PARTICLE S MATRIX AND APPROXIMATE
BETHE ANSATZ

We now discuss how the variational formulation of scat-
tering theory using matrix product states, as developed in
the previous section, relates to standard scattering theory. We
then discuss how we can use the information provided by
the scattering matrix to build an effective description of the
low-energy behavior of the spin chain using the approximate
Bethe ansatz.

A. Stationary scattering states and the S matrix
in one dimension

In standard scattering theory, the S matrix is typically
defined from a dynamical point of view: its elements are the
overlaps of asymptotically free in and out states with respect to
the full time-evolution operator. Although it is a priori not clear
that this definition corresponds to the one that was presented
in the previous sections, we can show that this is indeed the
case.

Appendix D provides a summary of the standard scattering
formalism of single-particle quantum mechanics [51], which
we have adapted to the one-dimensional setting with general
Hamiltonians (e.g., potentials which are not diagonal in
real space) and arbitrary dispersion relations (nonquadratic
eigenvalue spectrum of the “free” Hamiltonian Ĥ0). More
specifically we have shown how the S matrix elements
f (qβ ← pα) show up in the asymptotic form of the scattering
eigenstates |pα±〉 of the full Hamiltonian Ĥ .

To make the connection to the variational scattering states
of Sec. II, we have to make a few modifications. First of
all, we can reformulate the two-particle scattering problem
as a one-particle problem by factoring out the conservation
of total momentum and only focus on the matrix elements
between different relative momenta. At every value of the total
momentum, we can define relative momentum states |pγ 〉 with
dispersions ω(pγ ), which are solutions of the free Hamiltonian
Ĥ0. This free Hamiltonian corresponds to the effective two-
particle Hamiltonian matrix in the asymptotic regime (11) and
the states |pγ 〉 are the asymptotic modes (14).
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Secondly, our “one-particle” Hilbert space is only defined
on a half-infinite line, because the particles are essentially
bosonic. The way around this consists of artificially assigning
particle labels and distinguishing the situation where particle
1 (2) is on the left (right), and the opposite situation;
the relative coordinate n = n2 − n1 now ranges over the
positive and negative integers. Alternatively, one could add
to the free Hamiltonian Ĥ0 a potential V̂ , which is infinite
everywhere on the negative real line, making this a forbidden
region. Scattering theory would still work (existence of the
Möller operators, etc.), provided that we restrict the “in” states
to momenta for which dω

dp
(p) < 0 and the out states to momenta

for which dω
dp

(p) > 0. This corresponds exactly to how we
defined the incoming and outgoing modes in Sec. II F.

Translating the expression for the asymptotic wave function
of the scattering states |pα+〉 to the framework of Sec. II F
amounts to the following form for the wave function cα(n)

cα(n) →
∣∣∣∣dω

dκ
(κα)

∣∣∣∣
−1/2

vαeipαn

+
∑

γ∈A+(κα)

f (κγ ← κα)

∣∣∣∣dω

dκ
(κγ )

∣∣∣∣
−1/2

vγ eiκγ n

for every incoming mode α = 1, . . . ,�. In this representation,
we choose one incoming mode α that couples only to all
outgoing modes {γ ∈ A+(κα)}. The coefficient matrix for the
incoming modes that was defined earlier takes on the form

(Qin)γ,α = δγα

∣∣∣∣dω

dκ
(κα)

∣∣∣∣
−1/2

,

while the coefficients for the outgoing modes are given by

(Qout)γ,α =
∣∣∣∣dω

dκ
(κγ )

∣∣∣∣
−1/2

f (κγ ← κα).

The S matrix S(K,ω) that was defined takes on the simple
form (as VinQin = 1 in this representation)

S(K,ω) = VoutQout

= f (κγ ← κα).

Through this identification the unitariness of the S matrix
S(K,ω) that was proven in the previous section is indeed
equivalent to the unitary S matrix defined through the Møller
operators as S = �

†
−�+.

B. Scattering length and bound states

Suppose we have the scattering process of two identical
particles in the limit of vanishing relative momentum. We
expect that the equation for the relative wave function ψ(x)
should obey the zero energy and zero potential Schrödinger
equation

d2ψ(x)

dx2
= 0

in the region x > x0 where x0 is the length of the interaction.
The solutions are of the form ψ(x) ∝ x − a for large x, which
matches the asymptotic form of Sec. II G if the phase of the S

matrix reduces to

θ (κ1,κ2) ≈ −a(κ1 − κ2) (21)

in the limit for κ1 − κ2 → 0. The slope a will be called the
scattering length and still depends on the total momentum
κ1 + κ2.

Suppose now the existence of a bound state with very low
binding energy −ε. The wave function of this bound state
should look like ψ(x) = e−κx ≈ 1−κx with ω(iκ) = −ε →0.
If we want the formation of this bound state to follow
smoothly from a scattering state with vanishing energy, the
scattering length should diverge. This means that the formation
of a bound state out of a scattering continuum at a certain
momentum should be accompanied by a diverging scattering
length.

C. Approximate Bethe ansatz

In this section, we will develop a method to describe a
finite density of excitations based on the coordinate Bethe
ansatz. For simplicity, we will for the remainder of this
section restrict to the case of one type of particle—making the
consistency conditions for factorized scattering (Yang-Baxter
equation) trivial—but the framework can be extended to
multicomponent situations [52]. We will interpret the strongly
correlated MPS ground state as a vacuum state on which
we can build N -particle states, described by an N -particle
wave function �(x1, . . . ,xN ). Although in general we have
no particle conservation in the system, we will argue that the
first-quantized approach gives a good approximation at low
densities. Indeed, particle-number violating processes involve
three or more particles and can be neglected at low densities. In
Sec. V, we will discuss how to develop a second-quantization
approach.

We start with one particle. We can link the one-particle
excitation |�κ [B]〉 with dispersion �(κ) in an obvious way
with a one-particle wave function �1(x) in first quantization
as

�1(x) = eiκx .

Adding a second particle can be done by only taking account of
the asymptotic part of the two-particle wave function [Eq. (20)]
(x1 < x2)

�2(x1,x2) = ei(κ1x1+κ2x2) + S(κ1,κ2)ei(κ2x1+κ1x2).

As we are working with identical particles, the wave function
in the other sector (x1 > x2) has to be determined from the
statistics of the particles. On the level of the spin system, the
addition of a particle is a local operation, so we will work with
bosonic many-particle wave functions.

The addition of a third particle can only be done approxi-
mately. Indeed, a three-particle wave function has the general
form [52]

�3(x1,x2,x3)

= ei(κ1x1+κ2x2+κ3x3) + S(κ1,κ2)ei(κ2x1+κ1x2+κ3x3)

+ · · · +
∫∫∫

dκ ′
1dκ ′

2dκ ′
3 S(κ ′

1κ
′
2κ

′
3) ei(κ ′

1x1+κ ′
2x2+κ ′

3x3)

+ other particle numbers. (22)
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The first terms represent a sum over all six permutations
of the three momenta, with the S matrices for all possible
two-particle scattering processes as prefactors. The next term
is the diffractive part, which accounts for the three-particle
scattering. For these scattering processes, the two conservation
laws are not enough to preserve individual momenta and
we can generate a whole continuum of other momenta. The
last term accounts for the nonparticle preserving scattering
processes, which can generate two- or four-particle states as
well. As a result, it is no longer possible to assign a set of
individual momenta {κ1,κ2,κ3} (or even a particle number)
to this wave function, because they are completely mixed up
with all other possible sets of momenta that are compatible
with conservation of total energy and momentum.

The crucial approximation of our approach is that we
neglect the two last terms in Eq. (22): every many-particle
scattering event can be decomposed into two-particle scatter-
ings that preserve particle number and individual momenta.
This implies that three-particle eigenstates can be labeled by
three individual momenta and that the three-particle wave
function is given by the permutation terms only. The absence
of diffractive scattering is the hallmark of integrability [52],
so we are essentially assuming that our many-particle system
is integrable [35–37].

If this approximation proves to be valid, we can apply the
Bethe ansatz machinery [52–54]. The first-quantized wave
function of an integrable N -particle system, unambiguously
defined by a set of momenta {λ1, . . . ,λM}, is a sum of plane
waves with all possible permutations of the momenta

�(x1, . . . ,xN ) =
∑
P

A(P)ei(λP1x1+···+λPNxN ), (23)

where A(P)/A(P ′) = S(λi,λj ) if the permutations P and P ′
differ by the interchange of the momenta λi and λj .

By imposing periodic boundary conditions on the Bethe
wave function in the thermodynamic limit, we arrive at a
description of the ground state as a Fermi sea of “pseudo-
momenta” filled up to a certain Fermi level q. In contrast to
the free-fermion case, the density of occupied modes is not
constant but given by the function ρ(λ) such that ρ(λ) = 0 for
|λ| > q. The energy of the modes ε(λ) can be determined from
the integral equation

ε(λ) − 1

2π

∫ q

−q

K(λ,μ)ε(μ)dμ = ε0(λ), (24)

where ε0(λ) is the “bare energy” of the particle, i.e., the energy
an isolated particle with momentum λ would have in an infinite
system. The kernel of the integral equation is given by the
derivative of the scattering phase K(λ,μ) = ∂λθ (λ,μ). The
value of the Fermi level is computed self-consistently from
this equation and the requirement that ε(±q) = 0. Once q has
been determined, the density ρ(λ) is the solution of a similar
integral equation [55]

ρ(λ) − 1

2π

∫ q

−q

K(λ,μ)ρ(μ)dμ = 1

2π
. (25)

The total density and energy density are given by

D =
∫ q

−q

ρ(λ)dλ and E = 1

2π

∫ q

−q

ε(λ)dλ. (26)

(a)

(b)

FIG. 5. (a) The Fermi sea of pseudo momenta, filled up to the
Fermi level q. Physical excitations can be pictured as particle-hole
excitations close to the Fermi level. (b) The physical excitation
spectrum, the grey area represents a continuum of states. Because of
the fact that physical excitations always come in pairs, the spectrum
has its minima at momentum 0 and 2kF . The slope of the dispersion
relation at these momenta is the Fermi velocity u.

The excitation spectrum is easily characterized in terms
of the pseudoparticles of the Bethe ansatz. We can construct
two types of elementary excitations: either we take one
particle with momentum |λ| < q out of the Fermi sea (hole
excitation) or we add one particle with momentum |λ| > q

(particle excitation). These elementary particle and hole
excitations have a topological nature [54], so that the physical
excitations—the ones having a finite overlap with a local
operator—consist of an even number of particles and holes
[55]. This gives rise to the physical excitation spectrum as
shown in Fig. 5(b).

This critical one-dimensional Bose gas can be described
as a Luttinger liquid (LL) [55,56]. A first important quantity
is the Fermi momentum kF , the physical momentum of the
gapless particle and hole excitations. It is given by the dressed
momentum of the Fermi level and is directly related to the
density as

kF = πD. (27)

Since we have gapless excitations at 0 and ±2kF , the
correlation functions will have their oscillation periods at
these values. The slope of the dispersion relation is the Fermi
velocity u and can be calculated from the Bethe ansatz. The
third important characteristic quantity is the LL parameter
K , which determines the power-law decay of correlation
functions. In order to calculate it, we define the function SR(λ)
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as (h is a chemical potential for the particles)

SR(λ) = −∂ε(λ)

∂h
,

which [from Eq. (24)] follows the integral equation

SR(λ) − 1

2π

∫ q

−q

K(λ,μ)SR(μ)dμ = 1. (28)

In the context of a dilute gas of magnons (see Sec. IV D), SR(q)
can be interpreted as the renormalized spin of the magnon
close to the Fermi surface. With the low-energy excitations
just above the Fermi sea behaving as free fermions [57] (i.e.,
their S matrix is −1), one can show that the LL parameter K

is related to SR(q) as [58]

K = SR(q)2. (29)

By thus making the connection between the approximate Bethe
ansatz and the LL description, we can infer information on
the critical correlations in a system where a finite density of
excitations forms on top of a strongly correlated vacuum state.
More specifically, we can infer the long-range behavior of
one-particle and pair correlation functions as [59,60]

g1(x) = A0
1

x1/2K
− A1

cos(2πDx)

x2K+1/2K
+ · · · ,

(30)

D2(x) = D2 − K

2π2x2
+ B1

cos(2πDx)

x2K
+ · · · ,

where D is the density, A0, A1, and B1 are nonuniversal
constants and the dots denote higher-order terms. Depending
on whether the operator targets a particle or a pair, the
corresponding correlation functions will decay according to
one of these two forms.

D. Limiting cases

The Bethe ansatz equations of the previous section can be
greatly simplified if we assume that we work at very low densi-
ties. Indeed, assuming that only the lowest pseudomomentum
states are occupied, we can approximate the full dispersion
relation by its quadratic form ε0(λ) ≈ cλ2 − h, and the full
two-particle S matrix by its limiting value of S(θ,μ) ≈ −1.
With the kernel of the integral equation zero, we find easily
the density and the (physical) Fermi momentum

D = 1

π

√
h

c
, kF =

√
h

c

and the LL parameters

u = 2πcD, K = 1.

Upon increasing the density, the limiting value of the S

matrix will no longer apply. From Sec. III B, we know that
the first-order correction to the scattering phase is given by
the scattering length, so we can insert the form (21) into the
Bethe equations, while still assuming a quadratic dispersion
relation. The first-order correction to the Fermi level is linear
in the scattering length,

q = qFF + δq = qFF − ah

3πc
, (31)

so that the correction to the density is given by

D = 1

π

√
h

c
− 4ha

3π2c
+ O(a2). (32)

This result coincides with the one in Ref. [61]. The LL
parameters in first order in a are given by [62,63]

u = 2c

√
h

c
+ 4ah

3π
+ O(a2)

and

K = 1 − 2aD + O(a2).

E. Thermodynamic Bethe ansatz

At zero temperature, the coordinate Bethe ansatz describes
an integrable system in its ground state by filling up a Fermi
sea of quasimomentum states; its excitations are holes and
particles above this Fermi sea. When a finite temperature T is
applied, these particles and holes will have finite distribution
densities. By associating an entropy to these distributions and
minimizing the free energy, one arrives at the celebrated Yang-
Yang equation [64]

ε(λ) = ε0(λ) − T

2π

∫ +∞

−∞
K(λ,μ) ln(1 + e−ε(μ)/T )dμ,

a nonlinear integral equation for the dressed energy ε(λ) of the
quasimomentum states; the equation can be solved by iteration
[65]. The density of occupied vacancies ρ(λ) is given by

θ (λ) = ρ(λ)

ρv(λ)
= 1

1 + eε(λ)/T

with ρv(λ) the density of all (occupied and empty) vacancies.
Through this equation the density of occupied vacancies
satisfies the integral equation

ρ(λ) = θ (λ)

2π

(
1 +

∫ +∞

−∞
K(λ,μ)ρ(μ)dμ

)
, (33)

such that the total density can be calculated as

D =
∫ +∞

−∞
ρ(λ)dλ. (34)

F. Effective integrable field theories

Another way of dealing with a finite density of excitations,
based on information on the one-particle dispersion and
the two-particle S matrix, consists of mapping the system
to an effective integrable field theory. The parameters in
this effective theory should be tuned to fit the variational
information as good as possible. This approach has the
advantage that integrability is exact for the effective model,
but the mapping is typically only valid in some small region
(e.g., low density and/or low temperature).

One possible field theory is obtained by making the
approximation that the particles interact through a contact
potential [37,66], so that we end up with a Lieb-Liniger model
[55]. The first-quantized Hamiltonian for a collection of N
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bosons is given by

H = − 1

2m

N∑
j=1

∂2

∂x2
j

+ 2c

N∑
j<k=1

δ(xj − xk) (35)

with the mass m of the bosons and the interaction strength c as
the two tunable parameters. The two-boson S matrix is given
by S(λ1,λ2) = −eiθ(λ1−λ2) with

θ (λ) = 2 arctan

(
λ

c

)
, (36)

so that the scattering length for a δ potential is aδ = −2/c.
The boson dispersion relation is just quadratic, i.e., �(λ) =
λ2/(2m). By variationally calculating the dispersion relation
and the scattering length of the relevant excitations, we can
fix the two parameters and map the density of excitations to
a Lieb-Liniger model. At low densities, we expect that this
mapping is quantitatively correct.

Another possibility is the nonlinear sigma model, which has
proven to capture the qualitative behavior of Haldane-gapped
spin chains such as the spin-1 Heisenberg model [67] or two-
leg spin-1/2 ladders. In contrast to the Lieb-Liniger model,
however, we can not tune any parameters to fit the exactly
known [68] two-particle S matrix. The universal behavior of,
e.g., the magnon condensation of a gapped spin chain in a
magnetic field [58], can nonetheless be captured with this
mapping.

IV. APPLICATION TO SPIN LADDERS

We will study the spin-1/2 Heisenberg antiferromagnetic
(HAF) two-leg ladder in a magnetic field, defined by the
Hamiltonian

H =
∑
i,l

�Si,l · �Si+1,l + γ
∑

i

�Si,1 · �Si,2 − h
∑
i,l

Sz
i,l , (37)

where l = 1,2 denote the two legs of the ladder and �Si,l denotes
the spin operator at site i in the l’th leg (see Fig. 6).

The two-leg HAF ladder and its excitation spectrum have
been studied intensively for many reasons. First of all, it is the
first step to study the transition from one-dimensional systems
to higher-dimensional versions. Secondly, the excitation spec-
trum has a lot of interesting features, such as the presence of a
gap [69] and the existence of bound states, and can be studied
with a variety of methods depending on the parameter regime.
These features can also be observed experimentally [70–73], so
that ladders provide an ideal test for these theoretical methods

FIG. 6. The ladder geometry with J‖ and J⊥ the couplings along
the leg, respectively, rung. We will always put J‖ = 1 and define the
coupling ratio γ = J⊥/J‖.

[74,75]. Finally, the experimental realization of magnetized
spin ladders provides an ideal quantitative test of the Luttinger
liquid model [76–78].

In this section we will test our variational method on
the two-leg ladder. An MPS approximation for the ground
state can be found by first blocking two spins on a rung
into one four-level system and applying an MPS optimization
algorithm (we have used the TDVP algorithm [32,33]). In
this representation (to every rung there corresponds one MPS
tensor A), we find a ground state that is invariant under
translations over one site in the leg direction; all momenta
in the following subsections are defined with respect to this
translation operator. The Hamiltonian and the ground state
are invariant under the reflection operator P , which flips the
two legs of the ladder. We impose no additional symmetries
[e.g., SU(2) invariance] on the MPS, but our variational
solution will of course have the right symmetries to high
precision.

In the first three sections, we will investigate the low-lying
spectrum of the ladder without magnetic field. In the following
two sections, we will apply the approximate Bethe ansatz to
the magnetization process, at zero and finite temperature.

A. One-particle excitations: elementary spectrum
and bound states

The nature of the elementary excitations in the ladder
can be understood starting from different limits. At zero
coupling (γ → 0), we have two independent spin-1/2 Heisen-
berg chains where the elementary excitations are spinons
(carrying spin 1/2). These spinons are topologically nontrivial
excitations and can only be created in pairs by the action of
a local operator. Upon coupling the chains, the spinons are
confined into magnons carrying integer spin. This picture has
been studied with bosonization techniques [79], showing that
the interchain coupling opens up a gap to a triplet of massive
magnons (triplons) and a higher-up singlet.

At infinite coupling (γ → ∞), we have a collection of
independent rungs with antiferromagnetic interaction. In the
ground state, all rungs are in a singlet state and an elementary
excitation is constructed by promoting one rung to a triplet
state. When the leg coupling J⊥ is turned on, this triplet
obtains a kinetic energy and we get a nontrivial dispersion.
This qualitative picture survives for intermediate couplings:
through perturbative continuous unitary transformations an
effective particle picture can be established and very accurate
results on, e.g., the elementary dispersion relation and bound
states can be obtained [80,81].

In Fig. 7, we have plotted the gap as a function of the
interchain coupling. One can observe that the gap goes to
zero in the weak-coupling limit, while it grows to the constant
value that one expects from a strong-coupling expansion. Our
variational results smoothly interpolates between these two
limits.

A typical excitation spectrum in the intermediate region
(γ = 2) is shown in Fig. 8. The lowest-energy state is an
elementary triplet excitation (magnon) with a minimum at
momentum π . The magnon has odd parity under the reflection
operator P . The lowest-energy state around momentum zero
is a two-magnon scattering state and has even parity. Because
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FIG. 7. (Color online) The rescaled gap �√
1+γ 2

as a function of

the interchain coupling γ . The blue dashed lines are the first-order
correction from the strong-coupling limit (γ → ∞) and results from
bosonization in the weak-coupling limit (γ → 0) [79,82].

the one- and two-magnon states have different parity, the
elementary magnon cannot decay and is stable in the whole
Brillouin zone. From Fig. 9, where we have plotted the variance
of the excitation ansatz, we can indeed see that the magnon
is a bona fide particle excitation for all momenta. Note that
under a parity-breaking interaction the stability of the magnon
inside the continuum breaks down [83] and it might prove an
interesting question whether we can capture its decay within
our framework.

The elementary excitation spectrum at γ = 2 has two more
elementary particle excitations, a singlet and a triplet, which
are stable in a limited region around momentum π . Both are
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FIG. 8. (Color online) The one-particle spectrum consists of a
triplet (magnon), which is stable over the whole Brillouin zone (lowest
lying blue curve), a singlet (bound state), which is stable for momenta
between κBS1 ≈ 0.39π and π (second blue curve), and a triplet (bound
state), which is stable for momenta between κBS2 ≈ 0.46π and π

(third blue curve). Note that the determination of κBS1 and κBS2 is
not very precise because the one-particle ansatz is not accurate near
the transition. The red region is the two-magnon continuum and the
green region is the three-magnon continuum; the other continua (e.g.,
triplet-singlet continuum) are not shown.
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FIG. 9. (Color online) The (log10 of the modulus of the) variance
of the one-particle excitations; dots and crosses are positive and
negative variances, respectively (see Appendix A4 for the meaning
of a negative variance). The magnon (green) is clearly a well-defined
particle excitation in the whole Brillouin zone. The singlet (red)
and triplet (blue) get larger variances as they come closer to the
two-particle band, until they actually dive in and are no longer stable.
Calculations were done at γ = 2 with bond dimension D = 30; the
ground-state variance density is 2.27×10−8 at that bond dimension.

even under the parity operator P . From the strong-coupling
expansion, we can interpret them as two-magnon bound states
[80], hence the even parity (without a well-defined particle
number, we cannot make this interpretation, so we regard
these branches as elementary particles). The variance of the
bound states is sufficiently small in the stable region, but it
grows larger as the momentum approaches the continuum.
From Ref. [9], we know that the localized nature of an
elementary excitation is related to the gap below and above
the excitation branch, so we expect the bound state to
become wider as the gap to the continuum closes. This
explains the increasing variance of the bound states in Fig. 9.
Upon entering the continuum, the bound state has become
completely delocalized and no longer exists as a stationary
eigenstate of the Hamiltonian.

As a last illustration of the one-particle ansatz, we have
included Table I with excitation energies and variances in
the weak-coupling region, showing the elementary triplet
and singlet excitations that we expect from a bosonization
calculation. We observe that the variances are some orders of
magnitude larger in this weak-coupling region. Since the gaps
above and below these excitations are a lot smaller at small
γ , this is not unexpected. Note that both the energies and the
variances have the right degeneracies, even though we never
imposed the corresponding symmetries explicitly.

B. Two-particle S matrix

In this section we will look at the two-magnon S matrix;
the scattering of, e.g., an elementary magnon with a bound
state will not be considered. The S matrix was defined in
Secs. II F and III A; in our setting, we have three types of
particles (the three components of the magnon triplet) and
they all have the same dispersion relation. This implies that,
for every combination of total momentum K and total energy

125136-13



VANDERSTRAETEN, VERSTRAETE, AND HAEGEMAN PHYSICAL REVIEW B 92, 125136 (2015)

TABLE I. Excitation energy and variance of the first 6 solutions
of the one-particle problem for the HAF (γ = 0.2) at momentum π

with bond dimension D = 108. The variance density of the ground
state is 9.28×10−6. The first triplet has negative variance, which
shows that this excitation is closer to an exact eigenstate locally
than the ground state (see Appendix A4). The fourth solution is also
a true one-particle (singlet) excitation. All other solutions have a
considerably larger variance and correspond to artificial two-particle
states. Further up in the continuum, however, we have another triplet
with quite small variance, although it is difficult to say whether this
corresponds to a true bound state.

Energy Variance

0.081841224772803 − 0.000178252361115
0.081841224779434 − 0.000178252351941
0.081841224792513 − 0.000178252347304
0.331378942771407 0.000337897356458
0.367322866763615 0.029803975299627
0.410460620351393 0.044970779553592
. . . . . .

0.513408977989184 0.014052233372105
0.513408978649963 0.014052233100514
0.513408978939573 0.014052232922150
. . . . . .

ω within the two-magnon continuum, we can build nine
scattering states. The relative coefficients of the asymptotic
modes in these scattering states give rise to a (9×9) unitary
S matrix (the group velocities will factor out, as all particles
have the same dispersion). Furthermore, instead of labeling
these scattering states with momentum and energy (K,ω), we
can equally well label them with total and relative momentum
(K,κ1 − κ2) where κ1 and κ2 are the two momenta that show
up in the asymptotic modes (there is still an ambiguity in the
ordering of the momenta, we will always take the convention
that κ1 > κ2, i.e., positive relative momentum).

We can simplify the S matrix by making use of SU(2)
invariance. Indeed, if we make linear combinations of the
asymptotic modes that diagonalize the total spin S2

T and its
projection Sz

T , the S matrix should be diagonal. Moreover,
since the magnon interactions are SU(2) invariant (both
Hamiltonian and ground state are), the S matrix elements
should be constant within every sector of total spin. This means
that the general expression for the magnon-magnon S matrix
in this representation should reduce to

S =
⎛
⎝−eiθ0 × 11×1

−eiθ1 × 13×3

−eiθ2 × 15×5

⎞
⎠,

i.e., the S matrix reduces to three phases for every sector of
total spin. In our simulations, we always found this reduced
form to high precision, so in the following, we can restrict to
plotting these three phases.

In Fig. 10, we have plotted the S matrix as a function of the
relative momentum κ1 − κ2 for total momentum K = 0. One
can observe (i) the limit S = −1 for the relative momentum
going to zero, and (ii) the linear region around this limit (the
slope is the scattering length). The sign of the phase is positive
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FIG. 10. (Color online) The S matrix as a function of relative
momentum κ1 − κ2 at total momentum K = 0. Plotted are the phases
of the S matrix in the S = 0 (red), S = 1 (blue), and S = 2 (green)
sector. Calculations were done at γ = 2 and with bond dimension
D = 32.

for all three sectors (although this does not have to be the case,
see Figs. 11 and 12).

In Fig. 11, we have plotted the S matrix in the S = 2 sector
for different values of the total momentum. We observe that
the S matrix depends strongly on K in a nontrivial way, but
there seems to be a small region around K = 0 where it is
quasiconstant. This points to the presence of a region around
the minimum of the dispersion relation where the interaction is
Galilean invariant (note that the dispersion should be quadratic
in this region). At larger momenta, this Galilean invariance is
broken, as one expects in a lattice system.

Even more spectacular things can happen when we vary
the total momentum, such as the formation of a bound state.
In Fig. 12, we have plotted the scattering lengths in all three
sectors as a function of the total momentum. We can see that
the scattering lengths in the S = 0 and S = 1 sectors diverge,
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FIG. 11. (Color online) The scattering phase in the S = 2 sector
for eight equally spaced values of the total momentum between K = 0
(upper line) and K = π/3 (lower line). Around K = 0, there is
a region where the S matrix is independent of total momentum,
which points to some Galilean invariance around the minimum of
the dispersion relation. Calculations were done at γ = 2 and with
bond dimension D = 32.

125136-14



SCATTERING PARTICLES IN QUANTUM SPIN CHAINS PHYSICAL REVIEW B 92, 125136 (2015)

0 0.1 0.2 0.3 0.4 0.5

−10

0

10

total momentum

sc
a
tt

er
in

g
le

n
g
th

s

FIG. 12. (Color online) The scattering lengths a0 (red), a1 (blue),
and a2 (green) as a function of the total momentum K . In the S = 2
sector, nothing spectacular happens, although it does change sign.
In the other sectors we see a divergence at the momentum where a
bound state forms. The plotted range does not show all data points
around the divergences, the full lines are a guide to the eye and give an
indication on where the other points are situated. Calculations were
done at γ = 2 and bond dimension D = 32.

signaling the formation of the singlet and triplet bound states
(in agreement with the discussion in Sec. III B).

C. Spectral function

Since we have a two-leg ladder system, we can look at
spectral functions with transversal momentum q equal to 0 or
π . We define the two rung operators (defined on rung i)

(
Sz

0

)
i
= Sz

i,1 + Sz
i,2, (38)(

Sz
π

)
i
= Sz

i,1 − Sz
i,2. (39)

These operators have respectively even and odd parity under
the action of the reflection operator P . We will look at spectral
functions S0/π (κ,ω) with respect to these two operators,

S0/π (κ,ω) =
∑

n

∫
dt ei(ωt−κn)

×〈�0|e−iH t
(
Sz

0/π

)†
n
eiH t

(
Sz

0/π

)
0|�0〉, (40)

where
∑

n represents a sum over rungs.
Let us first look at the one-particle contributions. Since

the elementary magnon is odd under P , it can only carry
spectral weight with respect to the odd operator. From SU(2)
symmetry, we know that the singlet bound state does not carry
any spectral weight with respect to both operators (they are
both spin-1 operators). Lastly, the triplet bound state is even
under P , so it only contributes to the even operator spectral
function S0(κ,ω). These considerations lead to the picture in
Fig. 13. One can see that the spectral weight of the bound state
goes to zero as it approaches the continuum.

Next, we look at the two-magnon contribution, which has
only overlap with the even parity operator. In Fig. 14, we have
plotted different momentum slices of the spectral function. At
momentum zero, the spectral function is identically zero (the
ground state is a singlet) and grows for small momenta as ∝κ2
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FIG. 13. (Color online) The one-particle spectral weights; these
appear in the spectral functions S0/π (κ,ω) as the prefactor of the
2πδ(ω − �(κ)) function [where �(κ) is the dispersion relation of
the particle]. We have plotted the magnon weights with respect to
the odd operator (green) and the weight of the triplet bound state
with respect to the even operator (blue). All the other one-particle
spectral weights are identically zero. These results are in accordance
with Ref. [81]. Note that the one-particle description of the bound
state gets worse when coming closer to the continuum, so that the
calculation of its spectral weight loses accuracy in this region. It is
nevertheless clear that the spectral weight goes to zero as the bound
state loses stability.

(cf. Ref. [84]). For larger momenta, we see that the spectral
function gets strongly peaked at some value for κ , after which
the peak again disappears. The origin of this resonance is of
course the formation of the bound state: before it is stable,
the bound state is already visible in the spectral function as a
resonance.

To further confirm this picture, we have plotted the
maximum of the peak as a function of the momentum in
Fig. 15. One can see the resonance clearly diverging at the
point where the bound state reaches stability: from that point
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FIG. 14. (Color online) The two-particle contribution to the spec-
tral function S0(κ,ω) for equally spaced values of the momentum
between κ = 0 and π/2. The κ = 0 curve is not shown as it is
equal to zero everywhere. Calculations were done at γ = 2 with
bond dimension D = 32.
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FIG. 15. (Color online) The maximum of the two-particle con-
tribution to the spectral function S0(κ,ω) for different momentum
slices. The full line is a guide to the eye. In the inset, we show a
close-up of the small momentum region, the full line is a quadratic
fit. Calculations were done at γ = 2 with bond dimension D = 32.

on the stable bound state contributes a delta peak to the spectral
function.

We have also plotted the integrated spectral function in
Fig. 16. Before the formation of the bound state, we see
that the sum rules are completely satisfied (up to numerical
errors), which shows that the one- and two-particle sectors
indeed capture the full spectral function, at least in this
momentum range (see also Ref. [81]). Again, we clearly see
the ∝κ2 dependence at small momenta. After the bound state
has formed, however, the two-magnon part loses increasing
spectral weight to the bound state.

D. Magnetization process

Let us now turn on the magnetic field. For SU(2) invariant
systems, this perturbation does not affect the singlet ground
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FIG. 16. (Color online) The integrated spectral function
∫

dω/

2πS(κ,ω) as a function of the momentum κ (red dots) compared with
the momentum space correlation function s0(κ) (blue line). In the
inset, we plot the (log10 of the) difference between the two; values
below 10−2 are not shown. Calculations were done at γ = 2 with
bond dimension D = 32.

state and induces a Zeeman splitting of the elementary
magnon excitation. When the magnetic field reaches the
value of the gap, one of the components of the triplet
forms a pseudocondensate (no real condensate can form in
one dimension); the system undergoes a continuous phase
transition from a commensurate phase with zero magnetization
to an incommensurate phase with nonzero magnetization [85].

The physical picture of this condensation can be understood
from the approximate Bethe ansatz that was developed in
Sec. III C. Indeed, once it crosses the gap, the magnetic
field serves as a chemical potential for the +1 compo-
nent of the magnon triplet (the other components remain
gapped, so we will not consider them in our calculations).
The information on the magnon dispersion relation and
the magnon-magnon S matrix we have gathered in the
previous sections will allow us to compute both thermody-
namic properties and correlation functions for the magnetized
chain.

We start very close to the phase transition, where only the
momenta around the minimum will be occupied, so that we
can approximate them as free fermions. If we introduce a
characteristic velocity v for the magnon dispersion around its
minimum as

�(κ) = � + v2

2�
(κ − κmin)2,

the magnetization (i.e., the density of condensed magnons)
will be given by [86–88]

m(h) =
√

2�

πv

√
(h − hc). (41)

When more pseudomomentum levels are filled up, the two-
particle S matrix will deviate from its limiting value of −1
and the free-fermion approximation will no longer hold. As a
first order correction, we can assume a linear scattering phase
with the scattering length a as the slope (and still a quadratic
dispersion). From Eq. (32), it follows that the correction to the
magnetization curve is given by

m(h) =
√

2�

πv

√
(h − hc) − 8�a

3π2v2
(h − hc), (42)

a result which was obtained in Ref. [61] by a similar reasoning.
When even higher momenta are occupied these approxi-

mations (quadratic dispersion relation, linear scattering phase
and Galilean invariance) will get worse and only a full Bethe
ansatz calculation will give the correct magnetization curve.
In Fig. 17, we have plotted this.

Next, we look at the correlation functions of the magnetized
ladder. With our methods, we have no direct access to these
correlation functions, but we can infer their form by combining
the Luttinger liquid formalism with the thermodynamic prop-
erties computed from the approximate Bethe ansatz. Indeed,
since we have seen in Sec. IV C that the Sx

π operator essentially
creates a magnon out of the vacuum at momentum π and the Sz

0
operator creates a two-magnon state at momentum 0, we can
translate the expressions for the Bose gas correlators [Eq. (30)]
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FIG. 17. (Color online) The magnetization of the ladder (γ =
2) as a function of the applied magnetic field h. The dots are
calculated with a direct MPS optimization (using an adapted version
of Ref. [32]), the red line is the free-fermion result [Eq. (41)], the
green one is with the scattering length correction [Eq. (42)], and the
blue line is a full approximate Bethe ansatz calculation.

to the magnetized ladder as

〈(
Sx

π

)
i ′
(
Sx

π

)
i

〉 = Ax

(−1)i−i ′

|i − i ′|1/2K

−Bx(−1)i−i ′ cos(2πm(i − i ′))
|i − i ′|2K+1/2K

, (43)

〈(
Sz

0

)
i ′
(
Sz

0

)
i

〉 = m2 − K

2π2|i − i ′|2

+Az

cos(2πm(i − i ′))
|i − i ′|2K

, (44)

in accordance with Ref. [89]. The power-law decay of these
correlation functions is controlled by the LL parameter K . In
Fig. 18, we have plotted K as a function of the magnetization
m for the ladder at different values of γ . At very low magneti-
zation m → 0, the LL parameter reaches the universal value of
1, but it appears that, beyond this limiting value, K(m) changes
qualitatively as we vary γ . The same behavior was observed
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FIG. 18. (Color online) The LL parameter as a function of the
magnetization for γ = 5 (blue), γ =2 (red), γ =1 (green) and γ =1/2
(magenta).
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FIG. 19. (Color online) The scattering length for different values
of the interchain coupling γ .

in Ref. [89] by fitting the analytic form of the correlation
functions (43) and (44) with numerical calculations.

This behavior can again be explained by starting with the
free-fermion limit at very low densities. In Sec. III D, we
have shown that the LL parameter equals K = 1 in this case.
The first-order correction on this value is determined by the
magnon-magnon scattering length; in first order in m the LL
parameters are given by [62]

K(m) = 1 − 2am. (45)

In Fig. 19, we have plotted the scattering length as a function
of the interchain coupling γ . Based on Eq. (45), the change
of the sign of a confirms the varying qualitative behavior of
K(m) as observed in Fig. 18 and in Ref. [89].

Finally, we can study the magnetization process at finite
temperatures using the thermodynamic Bethe ansatz. In
Fig. 20, we have plotted the magnetization curve for different
temperatures, showing that the zero-temperature square-root
dependence around the phase transition is smoothed out at
finite temperature. Note that we have included the other
components of the magnon triplet—they are thermally excited
as well—in a decoupled fashion. In a more correct analysis we
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FIG. 20. (Color online) The magnetization as a function of the
magnetic field h for three values of the temperature: T = 0.01�

(blue), 0.045� (green), and 0.08� (red).
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would have to solve the fully coupled Bethe equations for the
three components, but this falls outside the scope of this paper.

V. FUTURE DIRECTIONS

In the previous sections, we have shown how to vari-
ationally determine all properties of one- and two-particle
excitations of generic quantum spin chains. In this last section,
we show how our framework can be extended to study domain
wall excitations and bound states and how to compute spectral
functions at finite temperature. Since we believe that our work
provides a crucial step towards the construction of an effective
Fock space of interacting, particlelike excitations, we provide
some further steps in this direction. Lastly, we reflect shortly
on the application of our methods to two-dimensional systems.

A. Topological excitations and bound states

In the previous sections, we have restricted our framework
to the case where we have a unique ground state. We can easily
extend the framework, however, to situations where we have
symmetry breaking and the elementary excitations are domain
walls rather than localized particles.

Suppose we have a doubly degenerate ground state, approx-
imated by two MPS |�[A1]〉 and |�[A2]〉. The obvious ansatz
for a domain wall excitation is

|�κ [B]〉 =
∑

n

eiκn
∑
{s}

v
†
L

[∏
m<n

A
sm

1

]
Bsn

[∏
m>n

A
sm

2

]
vR|{s}〉,

(46)

i.e., the domain wall interpolates between the two ground
states. The ansatz has been successfully applied to the gapped
XXZ model in Ref. [23], where the elementary excitations are
spinons, and to the Lieb-Liniger model in Ref. [28], where
topological excitations are elementary.

Strictly speaking, however, the momentum of the ansatz
[Eq. (46)] is not well defined: multiplying the tensor A2 with an
arbitrary phase factor A2 ← A2eiφ shifts the momentum with
κ ← κ + φ. The origin of this ambiguity is the fact that one
domain wall cannot be properly defined when using periodic
boundary conditions.

Physically, however, domain walls should come in pairs.
The procedure for constructing a scattering state of two
domain walls is completely analogous as in Sec. II. For
these states the total momentum is well-defined, although the
individual momenta can be arbitrarily transferred between the
two domain walls. Scattering states of two domain walls are
especially relevant as they are the first excitations that carry any
spectral weight. Consequently, a first nontrivial contribution
to dynamical correlation functions asks for a solution of the
scattering problem.

A second extension of the scattering formalism is towards
the study of bound states. As we explained above, a bound
state should be interpreted as a one-particle excitation and
described by a one-particle ansatz. Yet, in the case where the
bound state becomes very wide—e.g., when it is close to a
two-particle continuum—the one-particle ansatz is not able to
capture its delocalized nature. One possible extension consists
of working on multiple MPS tensors at once, leading to the

ansatz [9,25] (see Fig. 21)

|�κ [B]〉 =
∑

n

eiκn
∑
{s}

v
†
L

[∏
m<n

Asm

]

×Bsn,sn+1,...,sn+N

[ ∏
m>N+n

Asm

]
vR|{s}〉. (47)

The number of the variational parameters in the big B tensor
grows exponentially in the number of sites, so that we cannot
systematically grow the block as the bound state gets wider.

As a more systematic way to study wide bound states, we
should use the two-particle ansatz (5) to describe them. In
contrast to a scattering state, the energy of a bound state is
not known from the one-particle dispersions, so that we will
have to scan a certain energy range in search of bound state
solutions—of course, with the one-particle ansatz we can get
a pretty good idea where to look. A bound state corresponds to
solutions for the eigenvalue equation (8) with only decaying
modes in the asymptotic regime. In principle we should even
be able to find bound state solutions within a continuum of
scattering states (i.e., a stationary bound-state, not a resonance
within the continuum) by the presence of additional localized
solutions for the scattering problem.

B. Spectral functions at finite temperature

At finite temperatures, the thermally excited density of exci-
tations already present in the thermal state destroys the perfect
coherence of one-particle contributions to spectral functions:
the delta peaks at zero temperature will get smeared out in finite
temperature spectral functions. It appears that this thermal
broadening depends heavily on the interactions between the
particles [90,91], so that a full quantum mechanical treatment
is needed to accurately resolve it.

At zero temperature, the spectral function S(κ,ω) can be
expressed in terms of the spectral weights of the low-energy
excitations of the system. At finite temperatures, this is no
longer true as we generally need form factors corresponding
to states with arbitrarily high energies. In gapped integrable
systems—where the higher energy states can be labeled with
a particle number n and have an energy of the order n�—the
higher-energy form factors are suppressed with a Boltzmann
factor O(e−n�/T ), so one can restrict to low-particle form
factors at low enough temperatures (compared to the gap)
[90–92].

In this paper, we have shown that, even in nonintegrable
systems, the particle picture remains valid at low densities (low
temperatures), which makes the low-temperature expansion in
O(e−�/T ) possible for the nonintegrable case as well (see also
Ref. [93] for a similar expansion for nonintegrable systems).
So we can associate a particle number to higher excitations
and we can write down the finite temperature expression for
the spectral function in the Lehmann representation as

S(κ,ω) = 1

Z

∑
mn

∑
{α}{β}

2πδ[E({α}) − E({β}) − ω]

× 2πδ[K({α}) − K({β}) − κ]

× e−βE({α})|〈m,{αm}|O|n,{βn}〉|2, (48)
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FIG. 21. Graphical representation of the bound state ansatz. The B tensor of the one-particle ansatz in Fig. 3 is spread over more than one
site.

where
∑

mn is a double sum over particle numbers ranging to
∞ and {αm} is a set of m particle types: the states |m,{αm}〉
can then be identified with the multiparticle states in the
approximate Bethe ansatz picture of Sec. III C. We can see
that, for gapped systems, the Boltzmann factor provides a
small parameter, so that excitations with many particles only
play a limited role at low temperatures. In the thermodynamic
limit, two difficulties remain: (i) when coming close to the
one-particle dispersion curve (where the zero-temperature
spectral function has its δ peak divergence) we have to perform
a resummation in order to take into account an infinite number
of terms, and (ii) the form factors appearing in Eq. (48) can
be divergent in the thermodynamic limit. A careful analysis
shows that both difficulties can be overcome in the case of
integrable (free and interacting) massive field theories [94].
Within our framework, it should prove possible to calculate
finite-temperature spectral functions for generic spin chains
(nonintegrable) and go beyond the perturbative approaches of
Refs. [95] and [96].

C. Effective-field theory

Whereas the approximate Bethe ansatz provides a way
to construct an effective first-quantized wave function for
a finite density of excitations, a systematic construction of
an interacting many-particle model should be formulated
in second quantization [25,27,34]. We introduce momentum
space creation and annihilation operators that act on the ground
state as

c†α(κ)|�[A]〉 = |�α(κ)〉,
cα(κ)|�[A]〉 = 0,

and write down an effective interacting theory

H =
∑

α

∫
dκ

2π
�α(κ)c†α(κ)cα(κ) +

∑
α′β ′αβ

∫
dκ

2π

dκ1

2π

dκ2

2π

×Vα′β ′,αβ(κ,κ1,κ2)c†α′ (κ1 + κ2 − κ)c†β ′(κ)cβ(κ2)cα(κ1).

(49)

Since we only have explicit access to the operator acting on
the ground state and not the operator itself, it is a priori
not clear how to determine the c†α(κ) and cα(κ) in a unique
way. Moreover, there seems to be no trivial way for imposing
the correct commutation relations. Thirdly, because these
operators will be momentum dependent, the transition to a
local, real-space representation of the Fock operators might
not be well-defined. The construction of Wannier states out
of the momentum eigenstates might provide a good starting
point [27], although it is still not clear how to find the

unique real-space operators that are essential for computing
the interaction term in Eq. (49).

A different approach can be taken by starting from a free
theory of particles with generalized statistics that match the
two-particle S matrix. The following effective Hamiltonian,

H0 =
∑

α

∫
dκ

2π
�α(κ)Z†

α(κ)Zα(κ),

indeed captures the low-lying spectrum of the original
Hamiltonian if the Zα and Z†

α are the so-called Faddeev-
Zamolodchikov (FZ) operators obeying the following com-
mutation relations:

Zα(κ1)Zβ(κ2) = S
γ δ

αβ (κ1,κ2)Zδ(κ2)Zγ (κ1),

Zα(κ1)†Zβ(κ2)† = S
γ δ

αβ (κ1,κ2)Zδ(κ2)†Zγ (κ1)†,

Zα(κ1)Zβ(κ2)† = 2πδ(κ1 − κ2)δαβ

+ Sδα
βγ (κ1,κ2)Zδ(κ2)†Zγ (κ1).

The idea is to look at perturbations of H0 and express them
in terms of these FZ operators. Indeed, when applying a
noncommuting perturbation, we could have a new Hamiltonian
of the form

H = H0 +
∑
αβ

∫
dκ

2π

(
Mαβ

p Z†
α(κ)Zβ(κ)

+Mαβ
n Zα(−κ)Zβ(κ) + H.c.

)
, (50)

where

Mαβ
p (κ) = 〈�α(κ)|M̂|�β(κ)〉,

Mαβ
n (κ) = 〈�[A]|M̂|ϒβα(κ, − κ)〉

are the particle preserving, respectively, particle nonpreserving
parts of the perturbation. For small perturbations, we can
assume that only small momentum states will be occupied
and that the S matrix is approximately −1. In that case, the FZ
operators reduce to fermion creation and annihilation operators
and we can diagonalize the Hamiltonian [Eq. (50)] with a Bo-
goliubov rotation. In general, this proves not to be possible [97]
and a more sophisticated strategy will have to be developed.

When studying the time evolution of integrable systems, the
occupation numbers nα(κ) = Z†

α(κ)Zα(κ) corresponding to
the FZ operators are integrals of motion [98]. For nonintegrable
systems, this is no longer the case, although the observation
of so-called prethermalization plateaus might point to the fact
that they are almost preserved. Indeed, the mode occupation
numbers nα(κ) provide a way to distinguish a thermal Gibbs
ensemble from a generalized Gibbs ensemble [99]. Conse-
quently, by finding an explicit (real-space) representation of the
FZ operators we could follow the occupation numbers nα(κ)
through time, also when starting from an interacting theory.
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D. Breaking of integrability and Yang-Baxter equation

Integrable systems possess a number of interrelated
properties—diffractionless scattering, local conservation laws,
etc.—that makes them amenable to a number of analytical
techniques. Once the integrability is broken, these techniques
are no longer applicable. An important question is to what
extent the different manifestations of integrability survive in
an approximate way close to an integrable point.

One simple consistency condition for integrability is the
Yang-Baxter equation [100,101], expressing that three-particle
scattering should be indepedent of the order in which it is
decomposed into consecutive two-particle processes. As such,
it is a condition on the two-particle S matrix. Our methods
provide a way to test this condition for nonintegrable systems,
and, more specifically, to study the breaking of the Yang-
Baxter equation for systems close to integrable points [102].

E. Higher dimensions

Matrix product states have a higher-dimensional general-
ization called projected entangled-pair states (PEPS) [103].
Just as in one dimension, it has been shown that PEPS

are able to capture the ground state properties of generic
two-dimensional quantum spin systems [104], so it should
be able to straightforwardly generalize the one-particle ansatz
of Eq. (3) to the PEPS formalism. Compared to the MPS
setting, however, the computation of the effective one-particle
Hamiltonian is a lot more involved, because of the fact that
the environment in a PEPS contraction is a one-dimensional
object itself (compared to the zero-dimensional environment
in MPS).

In Refs. [26] and [105], elementary particle excitations in
two dimensions were studied by looking at the spectrum of the
transfer matrix. The next step, i.e., a full variational calculation
of the effective Hamiltonian matrix, should lead to quantitative
estimates of the gap and full dispersion relations of generic
two-dimensional spin systems [106].
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APPENDIX A: GROUND STATE AND ONE-PARTICLE EXCITATIONS: TECHNICAL DETAILS

1. Uniform matrix product states

Consider a one-dimensional quantum spin system with N sites and physical dimension d. In the thermodynamic limit
(N → ∞), we can define a uniform matrix product state (uMPS) as

|�[A]〉 =
d∑

{s}=1

v
†
L

[ +∞∏
m=−∞

Asm

]
vR|{s}〉, (A1)

which is parametrized by the set of D × D complex matrices As for s = 1, . . . ,d or, equivalently, the tensor A ∈ CD×d×D . It
can be shown that all local expectation values are independent of the D-dimensional boundary vectors v

†
L and vR if the MPS is

injective or pure [31,38]. This is the case if the transfer matrix, which is defined as E = ∑
s As ⊗ A

s
and acts as an operator in

a D × D dimensional vector space, has a nondegenerate largest eigenvalue ω and the corresponding left and right eigenvectors
(l| and |r) are full rank when written as semipositive definite Hermitian (D × D) matrices l and r . A proper normalization of the
uMPS amounts to rescaling the A tensor as As → As/

√
ω, so the spectral radius of the transfer matrix rescales to unity. Indeed,

the norm of the uMPS can be formally computed as

〈�[A]|�[A]〉 = (v†
L ⊗ v

†
L)E∞(vR ⊗ vR) ∝ (l|r) = tr(lr)

so that a proper rescaling of l and r suffices to fix the norm to unity (the proportionality factor is unimportant as all expectation
values will contain this same factor). The parametrization of (A1) has a redundancy: the state |�[A]〉 is invariant under a gauge
transformation As → G−1AsG with G an invertible matrix. There are different ways for fixing this gauge freedom and we will
not specify which one to choose.

The other eigenvalues of the transfer matrix E have significance as well; the second eigenvalue ω(2) determines the correlation
length ξ of the uMPS as

ξ = − 1

ln(ω(2))
. (A2)

Uniform matrix product states prove to offer a very accurate description of ground states of gapped, translation invariant
Hamiltonians in the thermodynamic limit. For simplicity’s sake, we will restrict to nearest-neighbor interactions, so that Ĥ =∑

n ĥn,n+1. Having found a variationally optimal tensor A for this Hamiltonian (with variational energy density e0), we can
calculate its variance with respect to the state |�[A]〉 to get an idea of how well it approximates the true ground state. This
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variance scales with the system size, however, so we should define a local state error as

εGS = 1

|Z|�HGS = 1

|Z| 〈�[A]|Ĥ 2|�[A]〉,

where |Z| represents the diverging system size and we have redefined the Hamiltonian as hn,n+1 → hn,n+1 − e0. A simple
calculation shows that the local state error is equal to

εGS = 1

|Z|
∑

n

∑
n′

〈�[A]|ĥn,n+1ĥn′,n′+1|�[A]〉 =
∑
n′

〈�[A]|ĥ0,1ĥn′,n′+1|�[A]〉

= 2 × (l|HAA
AA

+∞∑
n=0

EnHAA
AA |r) + (l|HAA(A)

(A)AA |r) + (l|H (A)AA
AA(A) |r) + (l|JAA

AA |r),

where we have used the following notations:

HAB
CD =

∑
ss ′t t ′

AsBt ⊗ C
s ′
D

t ′ 〈s ′t ′|ĥ|st〉,

H
(A)BC
DE(F ) =

∑
ss ′t t ′uu′

AsBtCu ⊗ D
s ′
E

t ′
F

u′
×
∑

v

〈vu′|ĥ|tu〉〈s ′t ′|ĥ|sv〉,

JAB
CD =

∑
ss ′t t ′

AsBt ⊗ C
s ′
D

t ′ ×
∑
vw

〈vw|ĥ|st〉〈s ′t ′|ĥ|vw〉 =
∑
ss ′t t ′

AsBt ⊗ C
s ′
D

t ′ × 〈s ′t ′|ĥ2|st〉.

As the transfer matrix has spectral radius 1, the infinite sum does not converge. On every encounter of a geometric sum over E,
we will separate it into a disconnected part corresponding to the rank 1 projector Q = |r)(l| onto its eigenspace with eigenvalue
1, and a connected part corresponding to Ẽ = E − Q = PE = EP = PEP with P = 1 − Q the complementary projector.
Since Ẽ has a spectral radius smaller than 1, the geometric series over the latter can be safely calculated and we obtain

+∞∑
n=0

En =
+∞∑
n=0

|r)(l| + P

+∞∑
n=0

ẼnP =
+∞∑
n=0

|r)(l| + (1 − E)P ,

where the extra projector P in the second term is only necessary to ensure the correct results for the n = 0 term, and we have
introduced the notation

(1 − E)P = P (1 − Ẽ)−1P = (1 − Ẽ)−1P. (A3)

(1 − E)P is zero in the eigenspace of (1 − E) with eigenvalue zero, and acts as the inverse of (1 − E) in the complementary space.
It thus acts as a kind of pseudoinverse, although we will also use the (. . . )P notation more generally below as (1 − eiκE)P =
P (1 − eiκ Ẽ)−1P . Now using that (l|HAA

AA |r) = 0 through the redefinition of the Hamiltonian, we can conclude that any geometric
series of E, which has (l|HAA

AA to its left or HAA
AA |r) to its right will have no contribution from the disconnected part, and yield a

convergent (finite) result. In particular, the result for the “state error density” is

εGS = 2 × (l|HAA
AA (1 − E)P HAA

AA |r) + (l|HAA(A)
(A)AA |r) + (l|H (A)AA

AA(A) |r) + (l|JAA
AA |r).

2. The particle ansatz

The ansatz for an elementary excitation on top of the uMPS ground state, parametrized by the tensor A, is given by

|�κ [B]〉 =
+∞∑

n=−∞
eiκn

∑
{s}

v
†
L

[∏
m<n

Asm

]
Bsn

[∏
m>n

Asm

]
vR|{s}〉. (A4)

It is the momentum superposition of a localized disturbance, parametrized by the tensor B (same dimensions as A). At zero
momentum, this excitation lives in the tangent space of the uMPS manifold with fixed bond dimension, at the point |�[A]〉 (see
Ref. [25] for more details). The gauge freedom within this manifold has its reflection in the tangent plane: the state |�κ [B]〉 is
invariant under the transformation

Bs → Bs + XAs − eiκAsX

with X a general (D×D) matrix. The tensors B̃s = XAs − eiκAsX give rise to so-called null modes. Getting rid of them is
possible by imposing a gauge fixing condition on the tensors B and introducing a corresponding restricted parametrization. Two
choices are especially convenient. (1) Left gauge. We construct the (qD×D) matrix La,(b,s) = ((A†)s l1/2)a,b and find the right
null space VL of L, so that LVL = 0. This matrix VL has dimensions qD×(q − 1)D and is orthonormalized: V

†
LVL = 1. The left

gauge fixing condition and its reduced parametrization in terms of the (D(d − 1)×D) matrix X are then given by

(l|EB
A = 0 → BL[X] = l−1/2V s

LXr−1/2.
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(2) Right gauge. We construct the (qD×D) matrix R(a,s),b = (r1/2(A†)s)a,b and find the left null space VR of R, so that VRR = 0.
This matrix VR has dimensions (q − 1)D×qD and is orthonormalized VRV

†
r = 1. The right gauge fixing condition and its

reduced parametrization in terms of the (D×D(d − 1)) matrix X are then given by

EB
A |r) = 0 → BR[X] = l−1/2XV s

Rr−1/2.

The expression for the norm of the state |�κ [B]〉 is simplified with one of these choices to be just the Euclidian norm in terms
of the parameters X (up to momentum δ factor):

〈�κ ′[BL/R(X′)]|�κ [BL/R(X)]〉 = 2πδ(κ ′ − κ) × tr(X′X). (A5)

Moreover, with either of these gauge conditions, the excitation is orthogonal to the ground state, so that 〈�κ [B]|�[A]〉 =
2πδ(κ)(l|EA

B |r) = 0. The overlap of the Hamiltonian between two excited states can be calculated to be (see Ref. [25])

〈�κ ′ [B ′]|Ĥ |�κ [B]〉 = 2πδ(κ − κ ′)
[
(l|HBA

B ′A|r) + (l|HAB
AB ′ |r) + e−iκ (l|HBA

AB ′ |r) + eiκ (l|HAB
B ′A|r)

+ (l|EB
B ′ (1 − E)P HAA

AA |r) + (l|HAA
AA (1 − E)P EB

B ′ |r)

+ e−iκ (l|HAB
AA (1 − e−iκE)P EA

B ′ |r) + e−2iκ (l|HBA
AA (1 − e−iκE)P EA

B ′ |r)

+ eiκ (l|HAA
AB ′(1 − eiκE)P EB

A |r) + e2iκ (l|HAA
B ′A(1 − eiκE)P EB

A |r)

+ e−iκ (l|HAA
AA (1 − E)P EB

A (1 − e−iκE)P EA
B ′ |r)

+ eiκ (l|HAA
AA (1 − E)P EA

B ′(1 − eiκE)P EB
A |r)

]
(A6)

for B and B ′ in the left gauge and

〈�κ ′ [B ′]|Ĥ |�κ [B]〉 = 2πδ(κ − κ ′)
[
(l|HBA

B ′A|r) + (l|HAB
AB ′ |r) + e−iκ (l|HBA

AB ′ |r) + eiκ (l|HAB
B ′A|r)

+ (l|EB
B ′ (1 − E)P HAA

AA |r) + (l|HAA
AA (1 − E)P EB

B ′ |r)

+ e−iκ (l|EB
A (1 − e−iκE)P HAA

B ′A|r) + e−2iκ (l|EB
A (1 − e−iκE)P HAA

AB ′ |r)

+ eiκ (l|EA
B ′(1 − eiκE)P HBA

AA |r) + e2iκ (l|EA
B ′(1 − eiκE)P HAB

AA |r)

+ e−iκ (l|EB
A (1 − e−iκE)P EA

B ′ (1 − E)P HAA
AA |r)

+ eiκ (l|EA
B ′(1 − eiκE)P EB

A (1 − E)P HAA
AA |r)

]
. (A7)

for a right-gauge fixed B and B ′. We have introduced the notation for a “generalized” transfer matrix EA
B = ∑

s As ⊗ B
s
.

Because of the linear parametrization of (A4) in terms of B, variationally optimizing this ansatz can be reformulated as an
eigenvalue problem:

min
X

〈�κ [BL/R(X)]|Ĥ |�κ [BL/R(X)]〉
〈�κ [BL/R(X)]|�κ [BL/R(X)]〉 → H1p,effX = λNeff,1pX

with H1p,eff the Hamiltonian overlap matrix between two excited states [Eqs. (A6) and (A7)] and the effective norm matrix N1p,eff

equal to the identity matrix because of Eq. (A5). The eigenvalue λ is the excitation energy. By repeating this procedure for
different momenta, we can trace out the excitation spectrum. Note that the interpretation of the solutions in terms of one- and
multiparticle excitations can be made on the basis of the computation of the variance, as explained in Sec. A 4. Indeed, it might
very well be that the lowest eigenvalue at a certain momentum corresponds to a two-particle scattering state.

3. One-particle form factors

The states (A4) provide a variational approximation for the true low-lying excitations of the full Hamiltonian. Their overlaps
with a local operator acting on the ground state (their spectral weights) provide an important contribution to the spectral function:

S(κ,ω) =
+∞∑

n=−∞

∫ +∞

−∞
dt ei(ωt−κn)〈�0|O†

n(t)O0(0)|�0〉.

By inserting a projector on the one-particle subspace, the one-particle contribution can be written as (�1(κ) denotes the set of
one-particle states at momentum κ)

S(κ,ω)1p =
∑

α∈�1(κ)

2πδ(�α(κ) − ω)|〈�κ [Bα]|Ô0|�[A]〉|2.

The overlap is given by (with Bα in the left gauge)

〈�κ [Bα]|Ô0|�[A]〉 = (l|OA
Bα

|r) + (l|OA
A (1 − E)P EA

Bα
|r),

where we have again generalized our notation to an “operator transfer matrix” OA
B = ∑

s,t A
s ⊗ B

t 〈t |Ô|s〉.
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4. Variance of the one-particle ansatz

If we write the one-particle ansatz as

|�κ [B]〉 =
∑

n

eiκn|χ (n)〉 with |χ (n)〉 =
∑
{s}

v
†
L

[∏
m<n

Asm

]
Bsn

[∏
m>n

Asm

]
vR|{s}〉,

where B is in the left gauge, such that the site dependent states are orthonormalized as 〈χ (n′)|χ (n)〉 = δnn′ . The variance of the
Hamiltonian with respect to this state can be calculated as (we denote �(κ) = 〈�κ [B]|H |�κ [B]〉)

εEX = 〈�κ ′[B]|(Ĥ − �(κ))2|�κ [B]〉 =
∑

n

eiκn
∑
n′

e−iκ ′n′ 〈χ (n′)|Ĥ 2|χ (n)〉 − �(κ)2〈�κ ′[B]|�κ [B]〉

= 2πδ(κ − κ ′)

( +∞∑
n′=−∞

e−iκn′ 〈χ (n′)|Ĥ 2|χ (0)〉 − �(κ)2

)
.

Does this expression make sense? First of all, the sum breaks off for high enough n′, i.e., 〈χ (n′)|Ĥ 2|χ (0)〉 → 0 for n′ large
enough, as we will see later on. The infinite δ prefactor is also no problem as this is just the norm of the momentum superposition
state. The contribution 〈χ (0)|Ĥ 2|χ (0)〉 is somewhat more problematic, however, as it contains an infinite contribution from the
ground state error. Therefore we subtract the (infinite) ground-state variance from this expression. We get the following:

εEX = 2πδ(κ − κ ′)

[
〈χ (0)|Ĥ 2 − �HGS|χ (0)〉 +

+∞∑
n′=1

(e−iκn′ 〈χ (n′)|Ĥ 2|χ (0)〉 + c.c.) − �(κ)2

]
.

In the calculations it will become clear that this is indeed a finite expression.
The first contribution. We will first calculate the contribution 〈χ (0)|Ĥ 2 − �HGS|χ (0)〉. We have two infinite sums and one

infinite quantity in this contribution, so we have to be precise in our summations. We have

〈χ (0)|Ĥ 2 − �HGS|χ (0)〉 =
∑
n,n′

(〈χ (0)|ĥn,n+1ĥn′,n′+1|χ (0)〉 − 〈�[A]|ĥn,n+1ĥn′,n′+1|�[A]〉〈χ (0)|χ (0)〉).

Every term for n can be calculated individually, making sure that the right number of ground state errors εGS is subtracted:

〈χ (0)|Ĥ 2 − �HGS|χ (0)〉 =
−3∑

n=−∞

[
(l|(HAA

AA (1 − E)P HAA
AA EA

A + H
AA(A)
(A)AA EA

A + JAA
AA EA

A + H
(A)AA
AA(A)

)(
EA

A

)|n|−3
EB

B |r)

+ (l|HAA
AA

−2∑
n′=n+2

(
EA

A

)|n|−|n′|−2
HAA

AA

(
EA

A

)|n′|−2
EB

B |r)

+ (l|HAA
AA

(
EA

A

)|n|−3(
HAB

AB + EA
AHBA

BA + EA
AEB

B (1 − E)P HAA
AA

)|r) − εGS(l|EB
B |r)

]

+ (l|(HAA
AA (1 − E)P HAA

AA EB
B + H

(A)AA
AA(A) E

B
B + JAA

AA EB
B + H

AA(B)
(A)AB

+ HAA
AA HBA

BA + HAA
AA EB

B (1 − E)P HAA
AA

)|r) − εGS
(
l
∣∣EB

B

∣∣r)
+ (l|(HAA

AA (1 − E)P HAB
AB + H

(A)AB
AA(B) + JAB

AB + H
AB(A)
(A)BA + HAB

AB (1 − E)P HAA
AA

)|r) − εGS
(
l|EB

B |r)
+ (l|(HAA

AA (1 − E)P HBA
BA + H

(A)BA
AB(A) + JBA

BA + H
BA(A)
(B)AA + HBA

BA (1 − E)P HAA
AA

)|r) − εGS
(
l
∣∣EB

B

∣∣r)
+ (l|(HAA

AA (1 − E)P EB
B HAA

AA + HAB
AB HAA

AA + H
(B)AA
BA(A) + EB

B JAA
AA

+ EB
B H

AA(A)
(A)AA + EB

B HAA
AA (1 − E)P HAA

AA

)|r) − εGS
(
l|EB

B |r)
+

+∞∑
n=2

[
(l|(HAA

AA (1 − E)P EB
B EA

A + HAB
AB EA

A + HBA
BA

)(
EA

A

)n−2
HAA

AA |r)

+ (l|EB
B

n−2∑
n′=1

(
EA

A

)n′−1
HAA

AA

(
EA

A

)n−n′−2
HAA

AA |r)

+ (l|EB
B

(
EA

A

)n−2(
H

(A)AA
AA(A) + EA

AJAA
AA + EA

AH
AA(A)
(A)AA + EA

AHAA
AA (1 − E)P HAA

AA

)|r) − εGS(l|EB
B |r)

]
.

125136-23



VANDERSTRAETEN, VERSTRAETE, AND HAEGEMAN PHYSICAL REVIEW B 92, 125136 (2015)

The infinite sums on the first and last three lines need to be investigated further. Separating all powers of EA
A into connected and

disconnected parts, the connected parts will yield finite results. This also enables us to interchange the sums (with appropriate
redefinition of the summation boundaries) in the double sum on the second and second to last line, so as to obtain for, e.g., the
latter:

(l|EB
B (1 − E)P HAA

AA (1 − E)P HAA
AA |r).

The disconnected and potentially diverging contributions that survive in, e.g., the last three lines are given by

(l|EB
B |r)

+∞∑
n=2

[
n−2∑
n′=1

(l|HAA
AA

(
EA

A

)n−n′−2
HAA

AA |r) + (l|(H (A)AA
AA(A) + JAA

AA + H
AA(A)
(A)AA + HAA

AA (1 − E)P HAA
AA

)|r) − εGS

]
.

By writing the
∑n−2

n′=1 = ∑n−2
n′=−∞ −∑0

n′=−∞ and substituting n′ → −n′ in the last sum, we obtain

(l|EB
B |r)

+∞∑
n=2

[
(l|HAA

AA (1 − E)P HAA
AA |r) + (l|(H (A)AA

AA(A) + JAA
AA + H

AA(A)
(A)AA + HAA

AA (1 − E)P HAA
AA

)|r) − εGS
]

− (l|EB
B |r)(l|HAA

AA (1 − E)P (1 − E)P HAA
AA |r).

The terms in the remaining infinite sum exactly cancel thanks to presence of εGS and the finite result of the second line is obtained.
A similar result is obtained from the disconnected part of the first three lines. Inserting this in the complete expression yields

〈χ (0)|Ĥ 2 − �HGS|χ (0)〉
= (l|(HAA

AA (1 − E)P HAA
AA EB

B + H
(A)AA
AA(A) E

B
B + JAA

AA EB
B + H

AA(B)
(A)AB + HAA

AA HBA
BA + HAA

AA EB
B (1 − E)P HAA

AA

)|r)

+ (l|(HAA
AA (1 − E)P HAB

AB + H
(A)AB
AA(B) + JAB

AB + H
AB(A)
(A)BA + HAB

AB (1 − E)P HAA
AA

)|r)

+ (l|(HAA
AA (1 − E)P HBA

BA + H
(A)BA
AB(A) + JBA

BA + H
BA(A)
(B)AA + HBA

BA (1 − E)P HAA
AA

)|r)

+ (l|(HAA
AA (1 − E)P EB

B HAA
AA + HAB

AB HAA
AA + H

(B)AA
BA(A) + EB

B JAA
AA + EB

B H
AA(A)
(A)AA + EB

B HAA
AA (1 − E)P HAA

AA

)|r)

− 4 × εGS + (l|(HAA
AA (1 − E)P HAA

AA EA
A + HAA

AA (1 − E)P HAA
AA + H

(A)AA
AA(A) E

A
A + JAA

AA EA
A + H

AA(A)
(A)AA

)
(1 − E)P EB

B |r)

+ (l|HAA
AA (1 − E)P

(
HAB

AB + EA
AHBA

BA + EA
AEB

B (1 − E)P HAA
AA

)|r)

+ (l|EB
B (1 − E)P

(
H

(A)AA
AA(A) + EA

AJAA
AA + EA

AH
AA(A)
(A)AA + HAA

AA (1 − E)P HAA
AA + EA

AHAA
AA (1 − E)P HAA

AA

)|r)

+ (l|(HAA
AA (1 − E)P EB

B EA
A + HAB

AB EA
A + HBA

BA

)
(1 − E)P HAA

AA |r) − 2 × (l|HAA
AA (1 − E)P (1 − E)P HAA

AA |r).

All other contributions. Next, we calculate 〈χ (0)|Ĥ 2|χ (1)〉. No problems with subtracting an infinite amount of ground-state
errors is present here, so we have

〈χ (1)|Ĥ 2|χ (0)〉 = (l|(2 × HAA
AA (1 − E)P HAA

AA (1 − E)P EB
A + H

(A)AA
AA(A) (1 − E)P EB

A + JAA
AA (1 − E)P EB

A

×H
AA(A)
(A)AA (1 − E)P EB

A + 2 × HAA
AA (1 − E)P HAB

AA + H
AA(B)
(A)AA + H

(A)AB
AA(A) + JAB

AA

)
EA

B |r)

+ (l|(2 × HAA
AA (1 − E)P HBA

AB + H
AB(A)
(A)AB + JBA

AB + H
(A)BA
AA(B)

)|r)

+ (l|(2 × HAA
AA (1 − E)P EB

AHAA
BA + 2 × HAB

AA HAA
BA + H

BA(A)
(A)BA + H

(B)AA
AB(A)

)|r)

+ 2 × (l|(HAA
AA (1 − E)P EBA

AB + HAB
AA EA

B + HBA
AB

)
(1 − E)P HAA

AA |r).

Analogously,

〈χ (2)|Ĥ 2|χ (0)〉 = (l|(2 × HAA
AA (1 − E)P HAA

AA (1 − E)P EB
A + H

(A)AA
AA(A) (1 − E)P EB

A + JAA
AA (1 − E)P EB

A + H
AA(A)
(A)AA (1 − E)P EB

A

+ 2 × HAA
AA (1 − E)P HAB

AA + H
AA(B)
(A)AA + H

(A)AB
AA(A) + JAB

AA

)(
EA

A

)
EA

B |r)

+ (l|(2 × HAA
AA (1 − E)P HBA

AA + H
AB(A)
(A)AA + JBA

AA + H
(A)BA
AA(A)

)
EA

B |r)

+ (l|(2 × HAA
AA (1 − E)P EB

AHAA
AB + 2 × HAB

AA HAA
AB + H

BA(A)
(A)AB + H

(B)AA
AA(B)

)|r)

+ 2 × (l|(HAA
AA (1 − E)P EBA

AA + HAB
AA EA

A + HBA
AA

)(
HAA

BA + EA
B (1 − E)P HAA

AA

)|r),
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and for n > 2

〈χ (n)|Ĥ 2|χ (0)〉 = (l|(2 × HAA
AA (1 − E)P HAA

AA (1 − E)P EB
A + H

(A)AA
AA(A) (1 − E)P EB

A + JAA
AA (1 − E)P EB

A + H
AA(A)
(A)AA (1 − E)P EB

A

+ 2 × HAA
AA (1 − E)P HAB

AA + H
AA(B)
(A)AA + H

(A)AB
AA(A) + JAB

AA

)(
EA

A

)n−1
EA

B |r)

+ (l|(2 × HAA
AA (1 − E)P HBA

AA + H
AB(A)
(A)AA + JAB

AA + H
(A)BA
AA(A)

)(
EA

A

)n−2
EA

B |r)

+ (l|(2 × HAA
AA (1 − E)P EB

AHAA
AA + 2 × HAB

AA HAA
AA + H

BA(A)
(A)AA + H

(B)AA
AA(A)

)(
EA

A

)n−3
EA

B |r)

+ 2 × (l|(HAA
AA (1 − E)P EBA

AA + HAB
AA EA

A + HBA
AA

)(n−4∑
i=0

(
EA

A

)i
HAA

AA

(
EA

A

)n−4−i
EA

B + (
EA

A

)n−3
HAA

AB

+ (
EA

A

)n−2
HAA

BA + (
EA

A

)n−2
EA

B (1 − E)P HAA
AA

)
|r).

We can throw everything together in order to obtain

∞∑
n=1

e−iκn〈χ (n)|Ĥ 2|χ (0)〉

= e−iκ (l|(2 × HAA
AA (1 − E)P HAA

AA (1 − E)P + H
(A)AA
AA(A) (1 − E)P + JAA

AA (1 − E)P + H
AA(A)
(A)AA (1 − E)P

)
×EB

A (1 − e−iκE)−1EA
B |r) + e−iκ (l|(2 × HAA

AA (1 − E)P HAB
AA + H

AA(B)
(A)AA + H

(A)AB
AA(A) + JAB

AA

)
(1 − e−iκE)−1EA

B |r)

+ e−iκ (l|(2 × HAA
AA (1 − E)P HBA

AB + H
AB(A)
(A)AB + JBA

AB + H
(A)BA
AA(B)

)|r)

+ e−2iκ (l|(2 × HAA
AA (1 − E)P HBA

AA + H
AB(A)
(A)AA + JAB

AA + H
(A)BA
AA(A)

)
(1 − e−iκE)−1EA

B |r)

+ e−iκ (l|(2 × HAA
AA (1 − E)P EB

AHAA
BA + 2 × HAB

AA HAA
BA + H

BA(A)
(A)BA + H

(B)AA
AB(A)

)|r)

+ e−2iκ (l|(2 × HAA
AA (1 − E)P HAA

AB EB
A + 2 × HAB

AA HAA
AB + H

BA(A)
(A)AB + H

(B)AA
AA(B)

)|r)

+ e−3iκ (l|(2 × HAA
AA (1 − E)P EB

AHAA
AA + 2 × HAB

AA HAA
AA + H

BA(A)
(A)AA + H

(B)AA
AA(A)

)
(1 − e−iκE)−1EA

B |r)

+ 2 × e−iκ (l|(HAA
AA (1 − E)P EBA

AB + HAB
AA EA

B + HBA
AB

)
(1 − E)P HAA

AA |r)

+ 2 × e−2iκ (l|(HAA
AA (1 − E)P EBA

AA + HAB
AA EA

A + HBA
AA

)
(1 − e−iκE)−1

(
HAA

BA + EA
B (1 − E)P HAA

AA

)|r)

+ 2 × e−3iκ (l|(HAA
AA (1 − E)P EBA

AA + HAB
AA EA

A + HBA
AA

)
(1 − e−iκE)−1HAA

AB |r)

+ 2 × e−4iκ (l|(HAA
AA (1 − E)P EBA

AA + HAB
AA EA

A + HBA
AA

)
(1 − e−iκE)−1HAA

AA (1 − e−iκE)−1EA
B |r).

Note that the infinite sum could give rise to one potential divergence coming from the disconnected contribution of the last line
of 〈χ (n)|Ĥ 2|χ (0)〉 corresponding to

∞∑
n=3

n−4∑
i=0

(l|(HAA
AA (1 − E)P EB

A + HAB
AA + HBA

AA

)|r)(l|(HAA
AA

(
EA

A

)n−4−i
EA

B + HAA
AB + HAA

BA

)|r).

However, the first factor is automatically zero if |�[A]〉 is a variational minimum within the MPS manifold, as it corresponds
exactly to the directional derivative of the energy expectation value in the direction of B.

APPENDIX B: TWO-PARTICLE EXCITATIONS: TECHNICAL DETAILS

In this appendix, we give all technical details concerning the two-particle ansatz that was defined as

|ϒ(K,ω)〉 =
+∞∑
n=0

Mn∑
j=1

c
j

K,ω(n)|χj,K (n)〉

125136-25



VANDERSTRAETEN, VERSTRAETE, AND HAEGEMAN PHYSICAL REVIEW B 92, 125136 (2015)

with

|χj,K (0)〉 =
+∞∑

n=−∞
eiKn

d∑
{s}=1

v
†
L

[∏
m<n

Asm

]
B

sn

j

[∏
m>n

Asm

]
vR|{s}〉

|χ(j1,j2),K (n)〉 =
+∞∑

n1=−∞
eiKn1

d∑
{s}=1

v
†
L

[∏
m<n1

Asm

]
B

sn1
j1

[ ∏
n1<m<n1+n

Asm

]
B

sn1+n

j2

[ ∏
m>n1+n

Asm

]
vR|{s}〉.

Just as in the case of a one-particle excitation, there is a gauge freedom in this ansatz. We can again choose a left or right
gauge fixing condition on the tensors Bj , depending on the situation. We will choose to put all B tensors in the left gauge fixing
condition, which has the consequence that the states |χj (n)〉 are not orthogonal for different n (see further). As was argued in the
main body, this choice allows for the strictly local term, for which we keep all variational parameters, to correct for the inability
of the other terms to describe the deformation of the particles as they approach. Alternatively, one could choose the left tensor
Bj1 to be in the left gauge and the right tensor Bj2 in the right gauge; this would make the states |χj (n)〉 orthogonal for different
n. When studying bound states with the two-particle ansatz, this might prove to be a better choice.

Similar to the one-particle case, we can enforce the gauge fixing conditions by implementing an effective parametrization in
terms of a matrix X with D2(d − 1) elements. As we keep all variational freedom in the strictly local term |χj,K (0)〉, this will
correspond to D2(d − 1) variational parameters. In the nonlocal terms |χ(j1,j2),K (n)〉, we insert a basis of left-gauged tensors Bj1

and Bj2 , which both describe the (relevant part of the) one-particle spectrum. If we have L particles in the system and we need M

basis vectors to describe the dispersion of each, we will have (L × M) × (L × M) basis states |χ(j1,j2),K (n)〉. The gauge fixing
and normalization conditions on all the B tensors can be summarized as

(l|EBj

A = (l|EBj1
A = (l|EBj2

A = 0 and (l|EBj1
Bj2

|r) = δj1,j2 .

1. Effective norm matrix

The effective norm matrix (Neff)n′j ′,nj = 〈χj ′,K (n′)|χj,K (n)〉 has matrix elements

〈χj ′,K (0)|χj,K (0)〉 = 2πδ(K − K ′)(l|EBj

Bj ′ |r) = 2πδ(K − K ′)δj,j ′ ,

〈χj ′,K (n′)|χj,K (0)〉 = 2πδ(K − K ′)(l|EBj

Bj ′
1

(
EA

A

)n′−1
EA

Bj ′
2

|r),

〈χj ′,K (n)|χj,K (n)〉 = 2πδ(K − K ′)(l|EBj1
Bj ′

1

(
EA

A

)n−1
E

Bj2
Bj ′

2

|r),

〈χj ′,K (n′)|χj,K (n)〉 = 2πδ(K − K ′)(l|EBj1
Bj ′

1

(
EA

A

)n−1
E

Bj2
A

(
EA

A

)n′−n−1
EA

Bj ′
2

|r) (n′ > n).

2. Effective Hamiltonian matrix

The effective Hamiltonian matrix (Heff)n′j ′,nj = 〈χj ′,K (n′)|Ĥ |χj,K (n)〉 has matrix elements

〈χj ′,K ′ (0)|Ĥ |χj,K (0)〉
= 2πδ(K − K ′)

[
(l|HBj A

Bj ′A|r) + (l|HABj

ABj ′ |r) + e−iK (l|HBj A

ABj ′ |r) + eiK (l|HABj

Bj ′A|r)

+ (l|EBj

Bj ′ (1 − E)P HAA
AA |r) + (l|HAA

AA (1 − E)P E
Bj

Bj ′ |r) + e−iK (l|HABj

AA (1 − e−iKE)P EA
Bj ′ |r)

+ e−2iK (l|HBj A

AA (1 − e−iKE)P EA
Bj ′ |r) + eiK (l|HAA

ABj ′ (1 − eiKE)P E
Bj

A |r) + e2iK (l|HAA
Bj ′A(1 − eiKE)P E

Bj

A |r)

+ e−iK (l|HAA
AA (1 − E)P E

Bj

A (1 − e−iKE)P EA
Bj ′ |r) + eiK (l|HAA

AA (1 − E)P EA
Bj ′ (1 − eiKE)P E

Bj

A |r)
]
,

〈χ(j ′
1,j

′
2),K ′ (1)|Ĥ |χj,K (0)〉

= 2πδ(K − K ′)
[
(l|HAA

AA (1 − E)P E
Bj A

Bj ′
1
Bj ′

2

|r) + (l|HABj

ABj ′
1

EA
Bj ′

2

|r) + (l|HBj A

Bj ′
1
Bj ′

2

|r)

+ (l|EBj

Bj1
HAA

Bj ′
2
A|r) + (l|EBj A

Bj ′
1
Bj ′

2

(1 − E)P HAA
AA |r)

+ e−iK
(
(l|HAA

AA (1 − E)P E
Bj

A EAA
Bj ′

1
Bj ′

2

|r) + (l|HABj

AA EAA
Bj ′

1
Bj ′

2

|r) + (l|HBj A

ABj ′
1

EA
Bj ′

2

|r)
)

+ e−2iK (l|(HAA
AA (1 − E)P E

Bj

A EA
A + H

ABj

AA EA
A + H

Bj A

AA

)
(1 − e−iKE)P EAA

Bj ′
1
Bj ′

2

|r)

+ eiK
(
(l|HAA

AA (1 − E)P E
ABj

Bj ′
1
Bj ′

2

|r) + (l|HAA
ABj ′

1

E
Bj

Bj ′
2

|r) + (l|HABj

Bj ′
1
Bj ′

2

|r)
)

+ e2iK (l|(HAA
AA (1 − E)P EAA

Bj ′
1
Bj ′

2

+ HAA
ABj ′

1

EA
Bj ′

2

+ HAA
Bj ′

1
Bj ′

2

)
(1 − eiKE)P E

Bj

A |r)
]
,
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〈χ(j ′
1,j

′
2),K ′ (n′)|Ĥ |χj,K (0)〉

= 2πδ(K − K ′)

⎡
⎣(l|(HAA

AA (1 − E)P E
Bj

Bj ′
1

EA
A + H

ABj

ABj ′
1

EA
A + H

Bj A

Bj ′
1
A

)(
EA

A

)n′−2
EA

Bj ′
2

|r)

+ (l|EBj

Bj ′
1

(
n′−3∑
i=0

(
EA

A

)i
HAA

AA

(
EA

A

)n′−3−i

)
EA

Bj ′
2

|r) + (l|EBj

Bj ′
1

(
EA

A

)n′−2(
HAA

ABj ′
2

+ EA
AHAA

Bj ′
2
A

+EA
AEA

Bj ′
2

(1 − E)P HAA
AA

)|r) + e−iK (l|(HAA
AA (1 − E)P E

Bj A

ABj ′
1

+ H
ABj

AA EA
Bj ′

1

+ H
Bj A

ABj ′
1

)(
EA

A

)n′−1
EA

Bj ′
2

|r)

+ e−2iK (l|(HAA
AA (1 − E)P E

Bj

A EA
A + H

ABj

AA EA
A + H

Bj A

AA

)
(1 − e−iKE)P EA

Bj ′
1

(
EA

A

)n′−1
EA

Bj2 p|r)

+ eiK (l|(HAA
AA (1 − E)P EA

Bj ′
1

E
Bj

A + HAA
ABj ′

1

E
Bj

A + H
ABj

Bj ′
1
A

)(
EA

A

)n′−2
EA

Bj ′
2

|r)

+ (l|(HAA
AA (1 − E)P EA

Bj ′
1

EA
A + HAA

ABj ′
1

EA
A + HAA

Bj ′
1
A

)⎛⎝n′−1∑
j=2

eijK
(
EA

A

)j−2
E

Bj

A

(
EA

A

)n′−j−1
EA

Bj ′
2

+ ein′K(EA
A

)n′−2
E

Bj

Bj ′
2

+ ei(n′+1)K
(
EA

A

)n′−2
EA

Bj ′
2

(1 − eiKE)P E
Bj

A

⎞
⎠|r)

⎤
⎦,

〈χ(j ′
1,j

′
2),K ′ (1)|Ĥ |χ(j1,j2),K (1)〉

= 2πδ(K − K ′)
[
(l|HAA

AA (1 − E)P E
Bj1
Bj ′

1

E
Bj2
Bj ′

2

|r) + (l|HABj1
ABj ′

1

E
Bj2
Bj ′

2

|r) + (l|HBj1 Bj2
Bj ′

1
Bj ′

2

|r) + (l|EBj1
Bj ′

1

H
Bj2 A

Bj ′
2
A |r)

+(l|EBj1
Bj ′

1

E
Bj2
Bj ′

2

(1 − E)P HAA
AA |r) + e−iK (l|(HAA

AA (1 − E)P E
Bj1
A E

Bj2
Bj ′

1

+ H
ABj1
AA E

Bj2
Bj ′

1

+ H
Bj1 Bj2
ABj ′

1

)
EA

Bj ′
2

|r)

+ e−i2K (l|(HAA
AA (1 − E)P E

Bj1
A E

Bj2
A + H

ABj1
AA E

Bj2
A + H

Bj1 Bj2
AA

)
(1 − e−iKE)P EA

Bj ′
1

EA
Bj ′

2

|r)

+ eiK (l|(HAA
AA (1 − E)P EA

Bj ′
1

E
Bj1
Bj ′

2

+ HAA
ABj ′

1

E
Bj1
Bj ′

2

+ H
ABj1
Bj ′

1
Bj ′

2

)
E

Bj2
A |r)

+ ei2K (l|(HAA
AA (1 − E)P EA

Bj ′
1

EA
Bj ′

2

+ HAA
ABj ′

1

EA
Bj ′

2

+ HAA
Bj ′

1
Bj ′

2

)
(1 − eiKE)P E

Bj1
A E

Bj2
A

)|r)
]
,

〈χ(j ′
1,j

′
2),K ′ (n)|Ĥ |χ(j1,j2),K (n)〉

= 2πδ(K − K ′)

⎡
⎣(l|(HAA

AA (1 − E)P E
Bj1
Bj ′

1

(
EA

A

)n−1 + H
ABj1
ABj ′

1

(
EA

A

)n−1 + H
Bj1 A

Bj ′
1
A

(
EA

A

)n−2

+E
Bj1
Bj ′

1

n−3∑
i=0

(
EA

A

)i
HAA

AA

(
EA

A

)n−i−3)
E

Bj2
Bj ′

2

|r)+(l|EBj1
Bj ′

1

(
EA

A

)n−2(
H

ABj2
ABj ′

2

+EA
AH

Bj2 A

Bj ′
2
A +EA

AE
Bj2
Bj ′

2

(1−E)P HAA
AA

)|r)

+ e−iK (l|(HAA
AA (1 − E)P E

Bj1
A EA

Bj ′
1

+ H
ABj2
AA EA

Bj ′
1

+ H
Bj1 A

ABj ′
1

)(
EA

A

)n−2
E

Bj2
A EA

Bj ′
2

|r)

+ (l|(HAA
AA (1 − E)P E

Bj1
A EA

A + H
ABj1
AA EA

A + H
Bj1 A

AA

)⎛⎝n−1∑
j=2

e−ijK
(
EA

A

)j−2
EA

Bj ′
1

(
EA

A

)n−j−1
E

Bj2
A

(
EA

A

)j−1

+ e−inK
(
EA

A

)n−2
E

Bj2
Bj ′

1

(
EA

A

)n−1 + e−i(n+1)K
(
EA

A

)n−2
E

Bj2
A (1 − e−iKE)P EA

Bj ′
1

(
EA

A

)n−1

⎞
⎠EA

Bj ′
2

|r)

+ eiK (l|(HAA
AA (1 − E)P EA

Bj ′
1

E
Bj1
A + HAA

ABj ′
1

E
Bj1
A + H

ABj1
Bj ′

1
A

)(
EA

A

)n−2
EA

Bj ′
2

E
Bj2
A |r)

+ (l|(HAA
AA (1 − E)P EA

Bj ′
1

EA
A + HAA

ABj ′
1

EA
A + HAA

Bj ′
1
A

)⎛⎝n−1∑
j=2

eijK
(
EA

A

)j−2
E

Bj1
A

(
EA

A

)n−j−1
EA

Bj ′
2

(
EA

A

)j−1

+ einK
(
EA

A

)n−2
E

Bj1
Bj ′

2

(
EA

A

)n−1 + ei(n+1)K
(
EA

A

)n−2
EA

Bj ′
2

(1 − eiKE)P E
Bj1
A

(
EA

A

)n−1

⎞
⎠E

Bj2
A |r)

⎤
⎦,
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〈χ(j ′
1,j

′
2),K ′ (2)|Ĥ |χ(j1,j2),K (1)〉

= 2πδ(K − K ′)
[
(l|(HAA

AA (1 − E)P E
Bj1
Bj ′

1

E
Bj2
A + H

ABj1
ABj ′

1

E
Bj2
A + H

Bj1 Bj2
Bj ′

1
A

)
EA

Bj ′
2

|r)

+ (l|EBj1
Bj ′

1

(
H

Bj2 A

ABj ′
2

+ E
Bj2
A HAA

Bj ′
2
A + E

Bj2
A EA

Bj ′
2

(1 − E)P HAA
AA

)|r)

+ e−iK (l|(HAA
AA (1 − E)P E

Bj1
A E

Bj2
Bj ′

1

+ H
ABj1
AA E

Bj2
Bj ′

1

+ H
Bj1 Bj2
ABj ′

1

)
EA

AEA
Bj ′

2

|r)

+ e−i2K (l|(HAA
AA (1 − E)P E

Bj1
A E

Bj2
A + H

ABj1
AA E

Bj2
A + H

Bj1 Bj2
AA

)
(1 − e−iKE)P EA

Bj ′
1

EA
AEA

Bj ′
2

|r)

+ eiK (l|(HAA
AA (1 − E)P EA

Bj ′
1

E
Bj1
A + HAA

ABj ′
1

E
Bj1
A + H

ABj1
Bj ′

1
A

)
E

Bj2
Bj ′

2

|r)

+ (l|(HAA
AA (1 − E)P EA

Bj ′
1

EA
A + HAA

ABj ′
1

EA
A + HAA

Bj ′
1
A

)(
ei2KE

Bj1
Bj2 pE

Bj2
A + ei3KEA

Bj2 p(1 − eiKE)P E
Bj1
A E

Bj2
A

)|r)
]
,

〈χ(j ′
1,j

′
2),K ′ (n + 1)|Ĥ |χ(j1,j2),K (1)〉

= 2πδ(K − K ′)

⎡
⎣(l|(HAA

AA (1 − E)P E
Bj1
Bj ′

1

(
EA

A

)n−1 + H
ABj1
ABj ′

1

(
EA

A

)n−1 + H
Bj1 A

Bj ′
1
A

(
EA

A

)n−2)
E

Bj2
A EA

Bj ′
2

|r)

+ (l|EBj1
Bj ′

1

(
n−3∑
i=0

(
EA

A

)i
HAA

AA

(
EA

A

)n−i−3

)
E

Bj2
A EA

Bj ′
2

|r)

+ (l|EBj1
Bj ′

1

(
EA

A

)n−2(
H

ABj2
AA EA

Bj ′
2

+ EA
AH

Bj2 A

ABj ′
2

+ EA
AE

Bj2
A HAA

Bj ′
2
A + EA

AE
Bj2
A EA

Bj ′
2

(1 − E)P HAA
AA

)|r)

+ e−iK (l|(HAA
AA (1 − E)P E

Bj1
A EA

Bj ′
1

+ H
ABj1
AA EA

Bj ′
1

+ H
Bj1 A

ABj ′
1

)(
EA

A

)n−2
E

Bj2
A EA

AEA
Bj2 p|r)

+ (l|(HAA
AA (1 − E)P E

Bj1
A EA

A + H
ABj1
AA EA

A + H
Bj1 A

AA

)⎛⎝n−1∑
j=2

e−ijK
(
EA

A

)j−2
EA

Bj ′
1

(
EA

A

)n−j−1
E

Bj2
A

(
EA

A

)n′−n+j−1
EA

Bj ′
2

+ e−inK
(
EA

A

)n−2
E

Bj2
Bj ′

1

(
EA

A

)n′−1
EA

Bj ′
2

+ e−i(n+1)K
(
EA

A

)n−2
E

Bj2
A (1 − e−iKE)P EA

Bj ′
1

(
EA

A

)n′−1
EA

Bj ′
2

⎞
⎠|r)

+ eiK (l|(HAA
AA (1 − E)P EA

Bj ′
1

E
Bj1
A + HAA

ABj ′
1

E
Bj1
A + H

ABj1
Bj ′

1
A

)(
EA

A

)n−1
E

Bj2
Bj ′

2

|r)

+ (l|(HAA
AA (1 − E)P EA

Bj ′
1

EA
A + HAA

ABj ′
1

EA
A + HAA

Bj ′
1
A

)⎛⎝n′−1∑
j=2

eijK
(
EA

A

)j−2
E

Bj1
A

(
EA

A

)n′−j−1
EA

Bj ′
2

(
EA

A

)n−n′+j−1
E

Bj2
A

+ ein′K(EA
A

)n′−2
E

Bj1
Bj ′

2

(
EA

A

)n−1
E

Bj2
A + ei(n′+1)K

(
EA

A

)n′−2
EA

Bj ′
2

(1 − eiKE)P E
Bj1
A

(
EA

A

)n−1
E

Bj2
A

⎞
⎠|r)

⎤
⎦,

〈χ(j ′
1,j

′
2),K ′ (n′)|Ĥ |χ(j1,j2),K (1)〉

= 2πδ(K − K ′)

⎡
⎣(l|(HAA

AA (1 − E)P E
Bj1
Bj ′

1

E
Bj2
A + H

ABj1
ABj ′

1

E
Bj2
A + H

Bj1 Bj2
Bj ′

1
A

)
(EA

A)n
′−2EA

Bj ′
2

|r)

+ (l|EBj1
Bj ′

1

H
B

jA
2

AA

(
EA

A

)n′−3
EA

Bj ′
2

|r) + (l|EBj1
Bj ′

1

E
Bj2
A

n′−4∑
i=0

(
EA

A

)i
HAA

AA

(
EA

A

)n′−4−i
EA

B ′
j2
|r)

+ (l|EBj1
Bj ′

1

E
Bj2
A

(
EA

A

)n′−3(
HAA

ABj ′
2

+ EA
AHAA

Bj ′
2
A + EA

AEA
Bj ′

2

(1 − E)P HAA
AA

)|r)

+ e−iK (l|(HAA
AA (1 − E)P E

Bj1
A E

Bj2
Bj ′

1

+ H
ABj1
AA E

Bj2
Bj ′

1

+ H
Bj1 Bj2
ABj ′

1

)(
EA

A

)n′−1
EA

Bj ′
2

|r)

+ e−i2K (l|(HAA
AA (1 − E)P E

Bj1
A E

Bj2
A + H

ABj1
AA E

Bj2
A + H

Bj1 Bj2
AA

)
(1 − e−iKE)P EA

Bj ′
1

(
EA

A

)n′−1
EA

Bj ′
2

|r)

+ eiK (l|(HAA
AA (1 − E)P EA

Bj ′
1

E
Bj1
A + HAA

ABj ′
1

E
Bj1
A + H

ABj1
Bj ′

1
A

)
E

Bj2
A

(
EA

A

)n′−3
EA

Bj ′
2

|r)
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+ (l|(HAA
AA (1 − E)P EA

Bj ′
1

EA
A + HAA

ABj ′
1

EA
A + HAA

Bj ′
1
A

)⎛⎝n′−2∑
j=2

eijK
(
EA

A

)j−2
E

Bj1
A E

Bj2
A

(
EA

A

)n′−j−2
EA

B ′
j2

+ ei(n′−1)K
(
EA

A

)n′−3
E

Bj1
A E

Bj2
Bj ′

2

+ ein′K(EA
A

)n′−2
E

Bj1
Bj ′

2

E
Bj2
A + ei(n′+1)K

(
EA

A

)n′−2
EA

Bj ′
2

(1 − eiKE)P E
Bj1
A E

Bj2
A

⎞
⎠|r)

⎤
⎦,

〈χ(j ′
1,j

′
2),K ′ (n′)|Ĥ |χ(j1,j2),K (n)〉

= 2πδ(K − K ′)

⎡
⎣(l|(HAA

AA (1 − E)P E
Bj1
Bj ′

1

EA
A + H

ABj1
ABj ′

1

EA
A + H

Bj1 A

Bj ′
1
A

)(
EA

A

)n−2
E

Bj2
A EA

A

(
EA

A

)n′−n−2
EA

Bj ′
2

|r)

+ (l|EBj1
Bj ′

1

(
n−3∑
i=0

(
EA

A

)i
HAA

AA

(
EA

A

)n−i−3

)
E

Bj2
A EA

A

(
EA

A

)n′−n−2
EA

Bj ′
2

|r)

+ (l|EBj1
Bj ′

1

(
EA

A

)n−2(
H

ABj2
AA EA

A + EA
AH

Bj2 A

AA

)(
EA

A

)n′−n−2
EA

Bj ′
2

|r) + (l|EBj1
Bj ′

1

(
EA

A

)n−1
E

Bj2
A

(
n′−n−3∑

i=0

(
EA

A

)i
HAA

AA

(
EA

A

)n′−n−3−i
EA

Bj ′
2

+ (
EA

A

)n′−n−2
HAA

ABj ′
2

+ (
EA

A

)n′−n−1
HAA

Bj ′
2
A + (

EA
A

)n′−n−1
EA

Bj ′
2

(1 − E)P HAA
AA

)
|r)

+ e−iK (l|(HAA
AA (1 − E)P E

Bj1
A EA

Bj ′
1

+ H
ABj1
AA EA

Bj ′
1

+ H
Bj1 A

ABj ′
1

)(
EA

A

)n−2
E

Bj2
A

(
EA

A

)n′−n
EA

Bj ′
2

|r)

+ (l|(HAA
AA (1 − E)P E

Bj1
A EA

A + H
ABj1
AA EA

A + H
Bj1 A

AA

)⎛⎝
⎛
⎝n−1∑

j=2

e−ijK
(
EA

A

)j−2
EA

Bj ′
1

(
EA

A

)n−j−1
E

Bj2
A

(
EA

A

)j⎞⎠(EA
A

)n′−n−1
EA

Bj ′
2

+ e−inK
(
EA

A

)n−2
E

Bj2
Bj ′

1

(
EA

A

)n′−1
EA

Bj ′
2

+ e−i(n+1)K
(
EA

A

)n−2
E

Bj2
A (1 − e−iKE)P EA

Bj ′
1

(
EA

A

)n′−1
EA

Bj ′
2

⎞
⎠|r)

+ eiK
(
l|(HAA

AA (1 − E)P EA
Bj ′

1

E
Bj1
A + HAA

ABj ′
1

E
Bj1
A + H

ABj1
Bj ′

1
A

)
Bj ′

1

EA
A + HAA

ABj ′
1

EA
A + HAA

Bj ′
1
A

)

×
⎛
⎝n′−n−1∑

j=2

eijK
(
EA

A

)j−2
E

Bj1
A

(
EA

A

)n−1
E

Bj2
A

(
EA

A

)n′−n−j−1
EA

Bj ′
2

+ ei(n′−n)K
(
EA

A

)n′−n−2
E

Bj1
A

(
EA

A

)n−1
E

Bj2
Bj ′

2

+
n′−1∑

j=n′−n+1

eijK
(
EA

A

)j−2
E

Bj1
A

(
EA

A

)n′−j−1
EA

Bj ′
2

(
EA

A

)n−n′+j−1
E

Bj2
A

+ ein′K(EA
A

)n′−2
E

Bj1
Bj ′

2

(
EA

A

)n−1
E

Bj2
A + ei(n′+1)K

(
EA

A

)n′−2
EA

Bj ′
2

(1 − eiKE)P E
Bj1
A

(
EA

A

)n−1
E

Bj2
A

⎞
⎠|r)

⎤
⎦.

3. Asymptotic regime

The expressions for the effective norm and Hamiltonian matrices above are largely determined by powers of the transfer
matrices. The power of the transfer matrices behaves as

(
EA

A

)n = |r)(l| + O(e−n/ξ ) as n → ∞,

where the correlation length ξ of the MPS was defined in Eq. (A2). The asymptotic regime in Neff and Heff is reached when the
corrections can be safely neglected, i.e., n > ξ × log(1/ε), where ε is the allowed error.

The effective norm matrix reduces to the unit matrix in this regime,

〈χ(j ′
1,j

′
2),K ′ (n′)|χ(j1,j2),K (n)〉 = 2πδ(K − K ′)δn′,nδj ′

1,j1δj ′
2,j2 ,
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and the effective Hamiltonian matrix is greatly simplified:

〈χ(j ′
1,j

′
2),K ′ (n)|Ĥ |χ(j1,j2),K (n)〉 = 2πδ(K − K ′)

[
δj1,j

′
1
(l|(HABj2

ABj ′
2

+ H
Bj2 A

Bj ′
2
A + E

Bj2
Bj ′

2

(1 − E)P HAA
AA

+HAA
AA (1 − E)P E

Bj2
Bj ′

2

)|r) + δj2,j
′
2
(l|(HAA

AA (1 − E)P E
Bj1
Bj ′

1

+ H
ABj1
ABj ′

1

+H
Bj1 A

Bj ′
1
A + E

Bj1
Bj ′

1

(1 − E)P HAA
AA

)|r)
]
,

〈χ(j ′
1,j

′
2),K ′ (n + 1)|Ĥ |χ(j1,j2),K (n)〉 = 2πδ(K − K ′)

[
δj1,j

′
1
(l|(HAA

AA (1 − E)P E
Bj2
A EA

Bj ′
2

+ H
ABj2
AA EA

Bj ′
2

+ H
Bj2 A

ABj ′
2

)|r)

+ δj2,j
′
2
eiK (l|(HAA

AA (1 − E)P EA
Bj ′

1

E
Bj1
A + HAA

ABj ′
1

E
Bj1
A + H

ABj1
Bj ′

1
A

)|r)
]
,

〈χ(j ′
1,j

′
2),K ′ (n′)|Ĥ |χ(j1,j2),K (n)〉 = 2πδ(K − K ′)

[
δj1,j

′
1
(l|(HAA

AA (1 − E)P E
Bj2
A EA

A + H
ABj2
AA EA

A + H
Bj2 A

AA

)(
EA

A

)(n′−n−2)
EA

Bj ′
2

|r)

+ eiK(n′−n)δj2,j
′
2
(l|(HAA

AA (1 − E)P EA
Bj ′

1

EA
A + HAA

ABj ′
1

EA
A + HAA

Bj ′
1
A

)(
EA

A

)(n′−n−2)
E

Bj1
A |r)

]
.

One can observe that the matrix elements indeed form a repeating row of block matrices, centered around the diagonal and
exponentially decaying

(Heff)n′j ′
1j

′
2,nj1j2 = 〈χ(j ′

1,j
′
2),K ′ (n′)|Ĥ |χ(j1,j2),K (n)〉 = (An′−n)j ′

1j
′
2,j1j2 = O(e−|n′−n|/ξ ) as |n − n′| → ∞.

4. Two-particle form factors

Again we start from the spectral function

S(κ,ω) =
+∞∑

n=−∞

∫ +∞

−∞
dt ei(ωt−κn)〈�0|O†

n(t)O0(0)|�0〉.

Inserting a projector on the two-particle subspace, the two-particle contribution to this function can be written as [�2(κ,ω) is the
set of all two-particle states at that momentum-energy combination]

S(κ,ω)2p =
∑

i∈�2(K,ω)

∣∣〈ϒγ (κ,ω)|Ô0|�0〉
∣∣2.

If we denote the coefficients cj (n) of the two-particle states as

cj (n) = c
j

local(n) +
2�∑

γ=1

qγ eiκγ nvj
γ

such that c
j

local(n) ≈ 0 if n > R for some value of R. The overlap appearing in the spectral functions can be calculated as

〈�[A]|Ô0|ϒ(K,ω)〉 =
∞∑

n=0

∑
j

cj (n)〈�[A]|Ô0|χj,K (n)〉,

where

〈�[A]|Ô0|χj,K (0)〉 = (l|OBj

A |r) + eiK (l|OA
A (1 − eiKE)P E

Bj

A |r)

〈�[A]|Ô0|χ(j1,j2),K〉 = (l|OBj1
A

(
EA

A

)n−1
E

Bj2
A |r) + eiK (l|OA

A (1 − eiKE)P E
Bj1
A

(
EA

A

)n−1
E

Bj2
A |r)

= (l|(OBj1
A + eiKOA

A (1 − eiKE)P E
Bj1
A

)(
EA

A

)n−1
E

Bj2
A |r).

We have

〈�[A]|Ô0|ϒ(K,ω)〉 =
∑

j

cj (0)
(
(l|OBj

A |r) + eiK (l|OA
A (1 − eiKE)P E

Bj

A |r)
)

+
R∑

n=1

∑
j1,j2

c
(j1,j2)
local (n)(l|(OBj1

A + eiKOA
A (1 − eiKE)P E

Bj1
A

)(
EA

A

)n−1
E

Bj2
A |r)

+
2�∑

γ=1

qγ
∑
j1,j2

v(j1,j2)
γ (l|(EBj1

A + eiKOA
A (1 − eiKE)P E

Bj1
A

)
(1 − eiκγ nE)P E

Bj2
A |r).
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APPENDIX C: PROOF OF EQUATION (19)

Let us start with the polynomial eigenvalue equation for the asymptotic solutions of the scattering problem, Eq. (13),

+M∑
m=−M

μmAmv = ωv.

For a given μ ∈ C, this equation is an ordinary eigenvalue problem with eigenvalue ω and eigenvector v. Given the property
A†

m = A−m, we are only assured of a Hermitian eigenvalue problem (and thus of real eigenvalues ω) if μ∗ = μ−1, i.e., if μ is on
the unit circle. So for any μγ = exp(iκ), let there be eigenvalues ωγ (κ) and the corresponding normalized eigenvectors vγ (κ).
The functions ωγ (κ) and vγ (κ) are assumed to be smooth such that at least the first derivatives are well defined. By taking the
derivative of the eigenvalue equation with respect to κ , we obtain

+M∑
m=−M

imAmeiκmvγ (κ) +
+M∑

m=−M

Ameiκm dvγ

dκ
(κ) = dωγ

dκ
(κ)vγ (κ) + ωγ (κ)

dvγ

dκ
(κ).

By multiplying this equation with vγ ′(κ)† and using the normalization vγ ′(κ)†vγ (κ) = δγ ′γ , we obtain the following relation for
later use:

+M∑
m=−M

imvγ ′(κ)†Ameiκmvγ (κ) = δγ ′γ
dωγ

dκ
(κ). (C1)

Now consider a two-particle eigenstate |ϒ(K,ω)〉, which has the asymptotic form

c(K,ω) =
2�∑

γ=1

qγ eiκγ nvγ .

We can introduce the projectors (we will omit all dependencies on the total momentum K)

PR =
R∑

n=0

Ln∑
j=1

|χj (n)〉〈χj (n)| and P ⊥
R =

∑
n>R

Ln∑
j=1

|χj (n)〉〈χj (n)|,

so that we have

〈ϒ(ω)|P ⊥
R HPR|ϒ(ω)〉 = 〈ϒ(ω)|PRHP ⊥

R |ϒ(ω)〉
upon the condition that |ϒ(ω)〉 is an eigenstate. If we choose R > M , we can insert the asymptotic form for the effective
Hamiltonian:

R∑
n=0

∑
n′>R

c(n′)†An−n′ c(n) − c(n)†An′−nc(n′) = 0.

Since Am = 0 for |m| > M , this allows to restrict the summations and rewrite this equality as

�
[

M∑
m=1

R∑
n=R+1−m

c(n)†Amc(n + m)

]
= 0.

We can insert the asymptotic form for c(n) to obtain for the “diagonal terms,” where γ has the same value for both sums,

�
⎡
⎣ 2�∑

γ=1

∣∣qγ

∣∣2 M∑
m=1

R∑
n=R+1−m

v†
γ Amvγ eiκγ m

⎤
⎦ = �

⎡
⎣ 2�∑

γ=1

|qγ |2
M∑

m=1

mv†
γ Amvγ eiκγ m

⎤
⎦

= −
2�∑

γ=1

|qγ |2
M∑

m=1

(imv†
γ Amvγ eiκγ m − imv†

γ Am
†vγ e−iκγ m)

= −
2�∑

γ=1

|qγ |2
M∑

m=−M

imv†
γ Amvγ eiκγ m = −

2�∑
γ=1

∣∣qγ

∣∣2 dωγ

dκ
(κγ ),

and this expression has to equal zero if we can show that the contributions of all “nondiagonal terms” (γ �= γ ′ in the two sums)
vanish. We look at a single contribution with γ �= γ ′ and the corresponding term with γ and γ ′ interchanged, and first assume
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κγ �= κγ ′ ,

�
[
q∗

γ ′qγ

M∑
m=1

R∑
n=R+1−m

v
†
γ ′Amvγ eiκγ mei(κγ −κγ ′ )n + q∗

γ qγ ′

M∑
m=1

R∑
n=R+1−m

v†
γ Amvγ ′eiκγ ′mei(κγ ′ −κγ )n

]

= �
[

ei(κγ −κγ ′ )(R+1)

ei(κγ −κγ ′ ) − 1
q∗

γ ′qγ

M∑
m=1

v
†
γ ′Amvγ (eiκγ m − eiκγ ′m) + ei(κγ ′ −κγ )(R+1)

ei(κγ ′ −κγ ) − 1
q∗

γ qγ ′

M∑
m=1

v†
γ Amvγ ′(eiκγ ′m − eiκγ m)

]

= 1

2 sin((κγ − κγ ′)/2)
�
[

ei(κγ −κγ ′ )(R+1/2)q∗
γ ′qγ

M∑
m=1

v
†
γ ′Amvγ (eiκγ m − eiκγ ′m)

− ei(κγ ′ −κγ )(R+1/2)q∗
γ qγ ′

M∑
m=1

v†
γ Amvγ ′(eiκγ ′m − eiκγ m)

]

= 1

2 sin((κγ − κγ ′)/2)
�
[

ei(κγ −κγ ′ )(R+1/2)q∗
γ ′qγ

M∑
m=1

v
†
γ ′Amvγ (eiκγ m − eiκγ ′m)

− ei(κγ −κγ ′ )(R+1/2)q∗
γ ′qγ

M∑
m=1

v
†
γ ′Am

†vγ (e−iκγ ′ m − e−iκγ m)

]

= 1

2 sin((κγ − κγ ′)/2)
�
[

ei(κγ −κγ ′ )(R+1/2)q∗
γ ′qγ

M∑
m=−M

v
†
γ ′Amvγ (eiκγ m − eiκγ ′ m)

]
.

Note that we are missing the term for m = 0, but that this term is zero anyway because of the factor (eiκγ m − eiκγ ′m). Finally,
noting that

∑M
m=−M Amvγ eiκγ m = ωvγ and

∑M
m=−M v

†
γ ′Ameiκγ ′m = ωv

†
γ ′ , it is clear that both contributions cancel and the total

expression evaluates to zero. Finally, we consider the case that κγ = κγ ′ = κ . We obtain

�
[
q∗

γ ′qγ

M∑
m=1

R∑
n=R+1−m

v
†
γ ′Amvγ eiκm + q∗

γ qγ ′

M∑
m=1

R∑
n=R+1−m

v†
γ Amvγ ′eiκm

]

= �
[
q∗

γ ′qγ

M∑
m=1

mv
†
γ ′Amvγ eiκm + q∗

γ qγ ′

M∑
m=1

mv†
γ Amvγ ′eiκm

]
= �

[
q∗

γ ′qγ

M∑
m=−M

mv
†
γ ′Amvγ eiκm

]
.

In the last line, we replaced the second term of the line before by the negative of its complex conjugate, since we are taking
the imaginary part of the whole expression anyway. Using that vγ and vγ ′ correspond to some vγ (κ) and vγ ′(κ) with different
γ �= γ ′ but equal ωγ (κ) = ωγ ′(κ), we can employ Eq. (C1) to conclude that this term is zero.

APPENDIX D: MØLLER OPERATORS, THE S MATRIX, AND SCATTERING STATES IN ONE DIMENSION

In this appendix, we will translate some basic notions of single-particle scattering theory from an external potential [51] to the
one-dimensional case where we have different types of particles with general dispersion relations. The two-particle scattering in
the many body Hilbert space considered in this manuscript can be mapped to this setting by taking out the conservation of total
momentum and only looking at the relative wave function, which is encoded in the coefficients cj (n). For the remainder of this
section, we assume to have a Hilbert space spanned by states {|x,j 〉} where x is a spatial coordinate that can be discrete (x ∈ Z)
or continuous (x ∈ R) and j = 1, . . . ,L labels different internal levels at every position (corresponding to different particle
types). We assume we have some Hamiltonian Ĥ , which can be written as the sum of a free part Ĥ0 and a potential V̂ . The
free Hamiltonian is translation invariant (〈x ′,j ′|Ĥ0|x,j 〉 = (Ax−x ′ )j ′,j with Ax = (A−x)†) and also assumed to be short-ranged
(Ax−x ′ = 0 for |x − x ′| > M). The potential is centered around x = 0 and goes to zero quickly, e.g., 〈x ′,j ′|V̂ |x,j 〉 = 0 for
|x| > M + N or |x ′| > M + N . The free Hamiltionian is diagonalized in momentum space and describes the free propagation of
a number of types of particles α = 1, . . . N with eigenvalues (dispersion relations) Eα(p). Indeed, by using the momentum states
|p,j 〉 = ∫

dxeipx |x,j 〉 (an integral over x should be read as a sum for the discrete case), the free Hamiltonian Ĥ0 is brought into
block-diagonal form:

〈p,j |Ĥ0|p′,j ′〉 = 2πδ(p − p′)(A(p))j,j ′ , (D1)
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where the L × L Hermitian matrix A(p) = ∫
dxeipxAx is an analytic function of p (since Ax vanishes for |x| > M + N ). Its

eigenvalues Eα(p) and corresponding eigenvectors vα(p) define the spectrum of Ĥ0. Also note for further reference the relation

vβ(p)†
dA
dp

(p)vα(p) = dEα

dp
(p)δα,β . (D2)

We will henceforth denote the eigenvalues of the free Hamiltonian Ĥ0 as E(pα) and the corresponding eigenstates as |pα〉 with
coordinate representation 〈x,j |pα〉 = v

j
α(p)eipx . By choosing vα(p)†vβ(p) = δα,β , the eigenstates |pα〉 of Ĥ0 are normalized as

〈p′
β |pα〉 = 2πδ(p′ − p)δα,β and span the whole Hilbert space,

1 =
∑

α

∫
dp

2π
|pα〉〈pα|.

The range of p determines whether we are dealing with a discrete or continuous system, and will not be specified. In order to
describe scattering experiments, one should build wave packets from these momentum eigenstates:

|φα〉 =
∫

dp

2π
φ(p)|pα〉.

Typically, we will be interested in wave packets φ(p) that are strongly centered around some momentum p0, so that it makes
sense to express the scattering amplitudes (S matrix elements) in the basis of momentum eigenstates.

Let U (t) and U0(t) denote the unitary evolution associated to respectively Ĥ and Ĥ0. We now want to describe some orbit
U (t)|ψ〉, which has an in-asymptote and an out-asymptote in the following sense:

U (t)|ψ〉 → U 0(t)|ψin〉 as t → −∞,

U (t)|ψ〉 → U 0(t)|ψout〉 as t → +∞.

For given |ψin〉 or |ψout〉, one can try to define

|ψ〉 = lim
t→−∞ U (t)†U 0(t)|ψin〉 = �+|ψin〉,

|ψ〉 = lim
t→+∞ U (t)†U 0(t)|ψout〉 = �−|ψout〉

with �± the Møller operators. The existence of these limits, and thus of the Möller operators, can be proven by studying wave
packets and linear combinations thereof. For a quadratic dispersion relation, the dispersive behavior of the wave packet is often
sufficient to guarantee convergence. Since we are studying general dispersion relations Eα(p), a sufficient condition can be
obtained by restricting to wave packets centered around momenta p0 with nonzero group velocity dEα/dp �= 0. As the limit of
unitary operators, the Möller operators �± are isometries. Finally, we need the condition of asymptotic completeness (which is
often harder to prove) to ensure that the range of �+ and �− is the same: they map every state to the space of scattering states
and satisfy the intertwining relations

H�± = �±H0.

The scattering operator or S matrix can then be defined as the operator mapping the in-asymptote to the out-asymptote:

|ψout〉 = �
†
−�+|ψin〉 = S|ψin〉 → S = �

†
−�+.

One can easily show that the free Hamiltonian commutes with S so it makes sense to represent the S matrix in the basis of free
momentum states:

〈qβ |S|pα〉 = 2πδ
(
E(qβ) − E(pα)

)× Sqβ,pα
.

If asymptotic completeness is obeyed, the S matrix is unitary, which can be expressed in the momentum basis as

〈qβ |S†S|pα〉 = 2πδ(pα − qβ)δαβ. (D3)
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We can translate this condition to the matrix elements Sqβ,pα
as

〈qβ |S†S|pα〉 =
∑

γ

∫
dr

2π
〈qβ |S†|rγ 〉〈rγ |S|pα〉

=
∑

γ

∫
dr

2π
4π2δ(E(pα) − E(rγ ))δ(E(qβ) − E(rγ ))Srγ ,qβ

Srγ ,pα

=
∑

γ

∫
dr

2π
Srγ ,qβ

Srγ ,pα

⎛
⎝ ∑

pα′ ∈A(pα )

∣∣∣∣dE

dp
(pα′)

∣∣∣∣
−1

2πδ(pα′ − rγ )

⎞
⎠ 2πδ(E(qβ) − E(rγ ))

=
⎛
⎝ ∑

rγ ∈A(pα )

Srγ ,qβ
Srγ ,pα

∣∣∣∣dE

dp
(rγ )

∣∣∣∣
−1
⎞
⎠× 2πδ(E(qβ) − E(pα))

= (S̃†S̃)qβpα
×
∣∣∣∣dE

dp
(qβ)

∣∣∣∣
1/2

2πδ(E(qβ) − E(pα))

∣∣∣∣dE

dp
(pα)

∣∣∣∣
1/2

,

where A(pα) is the set of momenta {qβ} such that E(qβ) = E(pα), and we have defined the matrix elements of S̃ as

S̃qβ ,pα
=
∣∣∣∣dE

dp
(qβ)

∣∣∣∣
−1/2

Sqβ,pα

∣∣∣∣dE

dp
(pα)

∣∣∣∣
−1/2

. (D4)

Unitariness of the S matrix, Eq. (D3), implies that S̃qβ ,pα
should be a unitary matrix.

There are different ways to calculate these S matrix elements; one way is to construct the stationary scattering states, i.e., the
eigenstates of the full Hamiltonian Ĥ = Ĥ0 + V̂ . One first introduces the Green’s operators as

G0(z) = (z − H 0)−1, G(z) = (z − H )−1,

which are related through the relation

G(z) = G0(z) + G0(z)V G(z) = G0(z) + G(z)V G0(z).

The T operator is defined as

T (z) = V + V G(z)V,

for which we can easily derive the Lippman-Schwinger equation [109]

T (z) = V + V G0(z)T (z)

and the equations

G0(z)T (z) = (G0(z) + G0(z)V G(z))V = G(z)V,

T (z)G0(z) = V (G0(z) + G(z)V G0(z)) = V G(z).

The Lippman-Schwinger equation can be rewritten as an integral equation for the matrix elements of T (z):

〈qβ |T (z)|pα〉 = 〈qβ |V |pα〉 +
∑

γ

∫
drγ

2π

〈qβ |V |rγ 〉
z − E(rγ )

〈rγ |T (z)|pα〉.

One can derive a related equation for the Møller operators:

�+|φ〉 = lim
t→−∞ U (t)†U 0(t)|φ〉

= |φ〉 − i

∫ 0

−∞
dτU (τ )†V U 0(τ )|φ〉

= |φ〉 − i

∫ 0

−∞
dτeετU (τ )†V U 0(τ )|φ〉

= |φ〉 − i
∑

α

∫
dp

2π

∫ 0

−∞
dτeετU (τ )†V U 0(τ )|pα〉〈pα|φ〉

= |φ〉 +
∑

α

∫
dp

2π
G(E(pα) + i0) V |pα〉〈pα|φ〉,
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where we have introduced the time-dependent damping factor to the potential V → V e−εt , which is allowed for ε → 0 according
to the adiabatic theorem. The S matrix

〈qβ |S|pα〉 = 〈qβ |�†
−�+|pα〉 = lim

t→∞ 〈qβ |eiH0te−2iH teiH0t |pα〉
can be worked out by writing it as the integral of its derivative:

〈qβ |S|pα〉 = 〈qβ |pα〉 − i

∫ ∞

0
dt〈qβ |(eiH0tV e−2iH teiH0t + eiH0te−2iH tV eiH0t

)|pα〉

= 〈qβ |pα〉 − i lim
ε→0

∫ ∞

0
dt〈qβ |(V ei(E(qβ )+E(pα )+iε−2H )t + ei(E(qβ )+E(pα )+iε−2H )tV

)|pα〉

= 〈qβ |pα〉 + 1

2
lim
ε→0

〈qβ |
{
V G

[
1

2

(
E(pα) + E(qβ)

)+ iε

]
+ G

[
1

2
(E(pα) + E(qβ)) + iε

]
V

}
|pα〉

= 〈qβ |pα〉 + lim
ε→0

(
1

E(qβ) − E(pα) + iε
+ 1

E(pα) − E(qβ) + iε

)
〈qβ |T

[
1

2
(E
(
pα) + E(qβ)

)+ iε

]
|pα〉

= 2πδ(qβ − pα)δβα − 2πδ(E(qβ) − E(pα)) i〈qβ |T (E(pα) + i0)|pα〉.
The off-diagonal elements of the S matrix are given by the on-shell T -matrix elements. We define the amplitudes f :

f (qβ ← pα) = −i

∣∣∣∣dE

dp
(pα)

∣∣∣∣
−1/2

〈qβ |T (E(pα) + i0)|pα〉
∣∣∣∣dE

dp
(qβ)

∣∣∣∣
−1/2

,

which are the off-diagonal elements of S̃ as defined in the unitary matrix (D4).
We can now define the scattering states

|pα±〉 = �±|pα〉, H |pα±〉 = E(pα)|pα±〉,
which, through the Lippmann-Schwinger equation for the Møller operators, obey the relation

|pα±〉 = |pα〉 + G(E(pα) ± i0)V |pα〉 = |pα〉 + G0(E(pα) ± i0)V |pα±〉.
Another important relation is

〈qβ |T (E(pα) ± i0)|pα〉 = 〈qβ |(V + V G(E(pα) ± i0)V )|pα〉 = 〈qβ |V |pα±〉. (D5)

An explicit expression for the asymptotic wave functions of the scattering states can thus be obtained:

〈x,j |pα+〉 = 〈x,j |pα〉 +
∑
j ′

∫
dx ′〈x,j |G0(E(pα) + i0)|x ′,j ′〉〈x ′,j ′|V |pα+〉

= eipαxvj
α(p) +

∫
dx ′ ∑

j ′
〈x,j | 1

E(pα) − Ĥ0 + i0
|x ′,j ′〉〈x ′,j ′|V |pα+〉. (D6)

Since we know the exact eigenvalues and eigenvectors of H0, we will now first introduce a resolution of the identity∑
j

∫
dq

2π
|q,j 〉〈q,j |,

which brings the Green’s function in block-diagonal form:

〈x,j |pα+〉 = eipxvj
α(p) +

∫
dx ′ ∑

j ′

∫
dq

2π

(
1

E(pα) − A(q) + i0

)
j,j ′

eiq(x−x ′)〈x ′,j ′|V |pα+〉

with the matrix A(q) an analytic function of q, as defined at the beginning of this section. The integral over q can be calculated
with the residue theorem. For continuous systems, where q ranges over the real axis, we will have to close the contour in the
upper or lower half plane depending on the whether x − x ′ > 0 or x − x ′ < 0. A first set of poles will be close to the real axis
and can be obtained from the eigenvalue decomposition of A(q). Together with the analytic dependence on q and Eq. (D2), we
obtain

A(q ± i0) =
∑

β

(
E(qβ) ± i0

dE

dp
(qβ)

)
vβ(q)vβ(q)†. (D7)

We should therefore separate the set A(pα) of all solutions qβ for which E(qβ) = E(pα) into two parts A±(pα) corresponding to
solutions for which the energy derivative dE

dp
(qβ) is positive (+) or negative (−). We then find a first set of poles of ( 1

E(pα)−A(q)+i0 )
j,j ′ ,
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which are of the form qβ + i0 for qβ ∈ A+(pα) and of the form qβ − i0 for qβ ∈ A−(pα). The corresponding residues are given
by

lim
q→qβ±i0

qβ∈A±(pα )

(q − (qβ ± i0))

(
1

E(pα) − A(q) + i0

)
j,j ′

eiq(x−x ′) = −
(

dE

dp
(qβ)

)−1

v
j

β(p)vj ′
β (p)eiqβ (x−x ′).

Aside from those solutions, there could be other solutions q = iλγ further away from the real axis (�λ �= 0). These correspond
to values of λ where the analytically continued (but non-Hermitian) matrix A(iλ) has a real eigenvalue Eγ (iλ) = E(iλγ ) that
equals E(pα); we denote the corresponding left and right eigenvectors as w̃γ (λ)† and wγ (λ) (which will in general not be

related by Hermitian conjugation). The corresponding residue is then given by − dE
dp

(λγ )wj
γ w̃

j ′

γ e−λγ (x−x ′) or more generally

− dE
dp

(λγ )Pj,j ′ (iλγ )e−λγ (x−x ′) with P(iλγ ) the corresponding eigenspace projector.
Let us now return to the evaluation of the integral over q. Depending on the sign of x − x ′, we will close the contour in the

upper or lower half plane and pick up the contributions of the poles in those respective domains. Since we also have an integral
over x ′, it seems we will need to split this into the two regions x < x ′ and x > x ′. However, we can make use of the locality of
the potential to conclude that 〈x ′,j ′|V |pα+〉 is only nonzero for |x ′| � M + N . Thus, if |x| > M + N , then x − x ′ will have a
fixed sign throughout the integral over x ′. For example, x − x ′, we will need to sum up the contributions of all the poles in the
upper half plane, corresponding to qβ + i0 for pβ ∈ A+(pα) and all iλγ with �λγ > 0. The latter contributions will actually
vanish if we now take the limit x → ∞. We can then write the asymptotic wave function as

〈x,j |pα+〉 ≈ vj
α(p)eipαx − i

⎧⎨
⎩
∑

qβ∈A−(pα ) v
j

β(q)eiqβx
∣∣ dE

dp
(qβ)

∣∣−1〈qβ |V̂ |p±〉 x → −∞∑
qβ∈A+(pα ) v

j

β(q)eiqβx
∣∣ dE

dp
(qβ)

∣∣−1〈qβ |V̂ |p±〉 x → +∞
and with Eq. (D5),

〈x,j |pα+〉 ≈ vj
α(p)eipαx − i

⎧⎨
⎩
∑

qβ∈A−(pα ) v
j

β(q)eiqβx
∣∣ dE

dp
(qβ)

∣∣−1〈qβ |T (E(pα) + i0)|pα〉 x → −∞∑
qβ∈A+(pα ) v

j

β(q)eiqβx
∣∣ dE

dp
(qβ)

∣∣−1〈qβ |T (E(pα) + i0)|pα〉 x → +∞
.

The coefficients that appear are the amplitudes that were defined earlier, so we have the nice final result

〈x,j |pα+〉 = vj
α(p)eipαx +

∑
qβ∈A±(pα )

∣∣∣∣dE

dp
(pα)

∣∣∣∣
1/2

f (qβ ← pα)

∣∣∣∣dE

dp
(qβ)

∣∣∣∣
−1/2

eiqβxv
j

β(q), x → ±∞. (D8)

For discrete systems, we can proceed in a similar way. Momentum integrals now range from 0 to 2π and we automatically obtain
a contour around the unit circle in the complex plane by going to the complex variable μ = eiq (for x − x ′ > 0) or μ = e−iq (for
x − x ′ < 0). The derivation then follows analogously.
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Thielemann, C. Rüegg, E. Orignac, R. Citro, M. Klanjsek,
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