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Gutzwiller wave-function solution for Anderson lattice model:
Emerging universal regimes of heavy quasiparticle states
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The recently proposed diagrammatic expansion (DE) technique for the full Gutzwiller wave function (GWF) is
applied to the Anderson lattice model. This approach allows for a systematic evaluation of the expectation values
with full Gutzwiller wave function in finite-dimensional systems. It introduces results extending in an essential
manner those obtained by means of the standard Gutzwiller approximation (GA), which is variationally exact
only in infinite dimensions. Within the DE-GWF approach we discuss the principal paramagnetic properties
and their relevance to heavy-fermion systems. We demonstrate the formation of an effective, narrow f band
originating from atomic f -electron states and subsequently interpret this behavior as a direct itineracy of f

electrons; it represents a combined effect of both the hybridization and the correlations induced by the Coulomb
repulsive interaction. Such a feature is absent on the level of GA, which is equivalent to the zeroth order of our
expansion. Formation of the hybridization- and electron-concentration-dependent narrow f band rationalizes the
common assumption of such dispersion of f levels in the phenomenological modeling of the band structure of
CeCoIn5. Moreover, it is shown that the emerging f -electron direct itineracy leads in a natural manner to three
physically distinct regimes within a single model that are frequently discussed for 4f - or 5f -electron compounds
as separate model situations. We identify these regimes as (i) the mixed-valence regime, (ii) Kondo/almost-Kondo
insulating regime, and (iii) the Kondo-lattice limit when the f -electron occupancy is very close to the f -state
half filling, 〈n̂f 〉 → 1. The nonstandard features of the emerging correlated quantum liquid state are stressed.
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I. INTRODUCTION AND MOTIVATION

Heavy-fermion systems (HFS) belong to the class of
quantum materials with strongly correlated 4f or 5f electrons.
They exhibit unique properties resulting from their universal
electronic features (e.g., very high density of states at the
Fermi level) almost independent of their crystal structure.
Among those unique properties are (i) enormous effective
masses in the Fermi-liquid state, as demonstrated through
the linear specific-heat coefficient [1–5], and their direct spin
dependence in the de Haas–van Alphen measurements [6–8],
(ii) Kondo-type screening of localized or almost localized f -
electron magnetic moments by the conduction electrons [9,10],
(iii) unconventional superconductivity, appearing frequently
at the border or coexisting with magnetism [11], and (iv)
an abundance of quantum critical points and, associated with
them, non-Fermi (non-Landau) liquid behavior [12–14].

The Anderson lattice model (ALM), also frequently re-
ferred to as the periodic Anderson model, and its derivatives,
the Kondo [15–17] and the Anderson-Kondo [18,19] lattice
models, capture the essential physics of HFS. Although the
class of exact solutions is known for this model [20–23],
the solutions are restricted in the parameter space. Thus, for
thorough investigation of the model properties the approximate
methods are needed. One of the earliest theoretical approaches
for models with a strong Coulomb repulsion was the variational
Gutzwiller wave-function (GWF) method [24–29]. However,
despite its simple and physically transparent form, a direct
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analytic evaluation of the expectation values with full GWF
cannot be carried out rigorously for arbitrary dimension and
spatially unbound systems.

One of the ways to overcome this difficulty is the so-called
Gutzwiller approximation (GA), in which only local two-
particle correlations are taken into account when evaluating
the expectation values. GA provides substantial insight into the
overall properties of strongly correlated systems [9,10,26,30–
35]. Moreover, this approach has been reformulated recently to
the so-called statistically consistent Gutzwiller approximation
(SGA) scheme and has been successfully applied to a number
of problems involving correlated electron systems [19,36–43].
Among those, a concrete application has been the microscopic
description of the fairly complete magnetic phase diagram of
UGe2 [42,43] which provided quantitatively correct results,
even without taking into account the 5f -orbital degeneracy
due to uranium atoms.

An advanced method of evaluating the expectation values
for GWF is the variational Monte Carlo technique (VMC) [44–
52]. However, this method is computationally expensive and
suffers from the system-size limitations. On the other hand,
the VMC method allows for extension of GWF by including
additional Jastrow factors [53].

Here we use an alternative method of evaluating the ex-
pectation values for GWF, namely, a systematic diagrammatic
expansion for the Gutzwiller wave function (DE-GWF) [54–
58]. This method was formulated initially for the Hubbard
model in two dimensions in the context of Pomeranchuk
instability [54] and was applied subsequently to the description
of high-temperature superconductivity for the Hubbard [55,58]
and the t-J [56] models. In the zeroth order of the expansion
this approach straightforwardly reduces to the GA [56]. For the
one-dimensional Hubbard model it converges [54] to the exact
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GWF results. Within DE-GWF a larger variational space can
be sampled than within the alternative VMC technique because
the long-range components of the effective Hamiltonian are
accounted for naturally. The DE-GWF method (truncated
to match the variational spaces) reproduces the results of
VMC with improved accuracy (as shown for the t-J [56] and
Hubbard models [55]). Additionally, the method also works in
the thermodynamic limit. In effect, the approach is well suited
to capture subtle effects, e.g., those related to the topology of
the Fermi surface in the correlated state [54] or the formation
of a narrow f -electron band investigated herein.

In this study, we extend the DE-GWF approach to discuss
the principal paramagnetic properties within ALM. The emer-
gence of the quasiparticle picture is schematically illustrated in
Fig. 1. Explicitly, we investigate the shape of the quasiparticle
density of states (DOS) ρ(E), which evolves with the increase
of the order of the expansion k. For k > 0 the hybridization gap
widens up with respect to that in GA (k = 0 case), and DOS
peaks are significantly pronounced. Moreover, we investigate
the evolution of the DOS at the Fermi level ρ(EF ) on
the hybridization strength-total-electron-concentration plane,
|V |-n, as it is a direct measure of the heavy-quasiparticle
effective mass. We find that this parameter is significantly
enhanced for k > 0, mainly in the low hybridization limit and
at the border of the Kondo-insulating state. Furthermore, we
trace the contribution coming from the originally localized
f electrons (see Fig. 1, top) to the quasiparticle spectrum
with the increasing order of the expansion. For k > 0, f

quasiparticles effectively acquire a nonzero bandwidth (up to
6% of the conduction bandwidth) as a combined effect of both
interelectronic correlations and hybridization.

FIG. 1. (Color online) (top) Schematic representation of the two-
orbital Anderson lattice model with initially localized f and delocal-
ized c electrons and hybridization between them. (bottom) Emerging
quasiparticle states in the hybridized bands of correlated particles. The
left panel shows the shapes of the density of states in the respective
situations.

The assumption of the existence of a narrow f band has
recently been made in phenomenological modeling of the
heavy-fermion compound CeCoIn5 band structure [59–61].
We show that the emergence of such a band, absent in
GA (k = 0), is evidence of the f -electron direct itineracy,
which will be explained later. To quantify this itineracy
we introduce the parameter wf , the width of the effective,
narrow f band. On the hybridization-strength–total-electron-
concentration, |V |-n, plane, wf is significantly enlarged in
three distinct regimes, which we identify as the mixed-
valence, Kondo/almost-Kondo insulating, and Kondo-lattice
regimes (when the f -electron concentration is close to
half filling, i.e., when 〈n̂f 〉 → 1). These physically distinct
regimes are frequently discussed and identified in various
experiments [2,11,62–66] and in theory [19,33,67,68].

The structure of the paper is as follows. In Sec. II we
describe the ALM Hamiltonian and define the Gutzwiller
variational wave function in a nonstandard manner. In Sec. III
we derive the DE-GWF method for ALM and determine the
effective single-particle two-band Hamiltonian. In Sec. IV
we present results concerning the paramagnetic properties:
the quasiparticle spectrum, the resultant density of states at
the Fermi level, and the formation of an effective narrow
f -electron band out of initially localized states. In Appendix A
we discuss the equivalence of the zeroth-order DE-GWF
approach with GA. In Appendix B we present some technical
details of the DE-GWF technique.

II. MODEL HAMILTONIAN AND GUTZWILLER
WAVE FUNCTION

Our starting point is the ALM with the chemical potential
μ, expressed through the Hamiltonian

Ĥ =
∑
i,j,σ

tijĉ
†
iσ ĉjσ −

∑
i,σ

μn̂c
iσ +

∑
i,σ

(εf − μ)n̂f
iσ

+U
∑

i

n̂
f

i↑n̂
f

i↓ +
∑
i,j,σ

(Vijf̂
†
iσ ĉjσ + V ∗

ij ĉ
†
iσ f̂jσ ), (1)

where i = (ix,iy) (and, similarly, j) is the two-dimensional site
index, f̂iσ (f̂ †

iσ ) and ĉiσ (ĉ†iσ ) are the annihilation (creation)
operators related to f and c orbitals, respectively, and σ =↑
, ↓ is the z-component direction of the spin. We assume that the
hopping in the conduction band takes place between only the
nearest-neighbor sites, tij ≡ tδ|i−j|,1; the hybridization has the
simplest on-site character [69], Vij = V δi,j; the local Coulomb
repulsion on the f orbital has the amplitude U ; and the initially
atomic f states are located at the energy εf . In the following
|t | is used as the energy unit.

The GWF is constructed from the uncorrelated Slater
determinant |ψ0〉 by projecting out the fraction of the local
double f occupancies by means of the Gutzwiller projection
operator P̂G,

|ψG〉 ≡ P̂G|ψ0〉 ≡
∏

i

P̂G;i|ψ0〉. (2)

In the GA approach when only a single f orbital (as in the
present case) is correlated, the projection operator can be
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defined by

P̂G;i ≡ 1 − (1 − g)n̂f

i↑n̂
f

i↓, (3)

where g is a variational parameter. Such a form allows for
interpolating between the fully correlated (g = 0) and the
uncorrelated (g = 1) limits. Equivalently, one can consider
the average number of doubly occupied states, 〈n̂f

i↑n̂
f

i↓〉 ≡ d2,
as a variational parameter.

The Gutzwiller projection operator can be selected in a
different manner as proposed in Ref. [70], namely,

P̂
†
G;iP̂G;i ≡ P̂ 2

G;i = 1 + xd̂HF
i . (4)

In the above relation x is a variational parameter, and for the
paramagnetic and translationally invariant system we define
Hartree-Fock (HF) operators of the form

d̂HF
i ≡ n̂HF

i↑ n̂HF
i↓ = (

n̂
f

i↑ − n0f

)(
n̂

f

i↓ − n0f

)
, (5)

where n0f denotes the average occupation of a single f state
and spin σ in the uncorrelated state |ψ0〉, i.e., n0f = 〈f̂ †

iσ f̂iσ 〉0.
Hereafter shortened notation for the expectation values is used,
i.e., 〈ψ0| · · · |ψ0〉 ≡ 〈· · · 〉0. Strictly speaking, although d̂HF

i
does not have the Hartree-Fock form of the double-occupancy
operator, the HF superscript has its meaning as the property,
〈d̂HF

i 〉0 ≡ 0 is preserved.
On the other hand, the Gutzwiller projection operator can

be defined in general form as

P̂G;i =
∑

�

λ�|�〉i〈�|i, (6)

with variational parameters λ� ∈ {λ0,λ↑,λ↓,λd} that char-
acterize the possible occupation probabilities for the four
possible atomic Fock f states |�〉i ∈ {|0〉i,|↑〉i,|↓〉i,|↑↓〉i}.

Relation (4) couples λ� and x, reducing the number of
independent variational parameters to one. Explicitly, we may
express the parameters λ� by the coefficient x,

λ2
0 = 1 + xn2

0f ,

λ2
σ = λ2

σ̄ ≡ λ2
s = 1 − xn0f (1 − n0f ),

λ2
d = 1 + x(1 − n0f )2.

(7)

As the parameters λ� and x are coupled by the conditions (7),
there is freedom of choice of the variational parameter; in this
work we have selected x. The parameter x covers the same
variational space as g in GA. Additionally, the projector (4)
leads to much faster convergence than (3) (cf. Ref. [54]).
From (4) it is clear that x = 0 corresponds to the uncorrelated
limit. The other extremity, the fully correlated state, is reached
for x = max{x(λd = 0),x(λ0 = 0)}. This leads to the bounds
max{ −1

(1−n0f )2 ,
−1

(n0f )2 } � x � 0. The minimal value is x = −4
for n0f = 0.5.

This method is suitable for an arbitrary filling of the f

orbital. However, because the present work mainly addresses
the description of Ce-based compounds, we study the regime
in which the f -orbital filling either does not exceed unity or is
only slightly larger. Precisely, in the all figures presented here
the f -orbital filling is never larger than 1.05.

III. DE-GWF METHOD

A. General scheme

In this section we present general implementation of the
DE-GWF method. The procedure is composed of the following
steps: (1) choice of the initial state |ψ0〉, (2) evaluation

of 〈Ĥ〉G ≡ 〈ψG|Ĥ|ψG〉
〈ψG|ψG〉 for selected |ψ0〉 (see Sec. III B), (3)

minimization of 〈Ĥ〉G with respect to the variational pa-
rameter (here x), (4) construction of the effective single-
particle Hamiltonian determined by δĤeff(|ψ0〉) = δĤ(|ψ0〉)
(see Sec. III C), (5) determination of |ψ ′

0〉 as a ground state of
the effective Hamiltonian (see Sec. III D), and (6) execution of
the self-consistent loop, starting again from step 1 with |ψ ′

0〉
until a satisfactory convergence, i.e., |ψ ′

0〉 = |ψ0〉, is reached.
Steps 4 and 5 ensure that the final form of |ψ0〉 represents
the optimal choice which minimizes the ground-state energy
〈Ĥ〉G. The DE-GWF method with respect to other related
methods, GA and VMC, introduces a new technique for
evaluating the expectation value of the correlated Hamiltonian
with GWF (step 2 of the above procedure). In particular, it
provides an important improvement because, e.g., for GA
only single sites in the lattice contain the projection, whereas
the remaining environment does not. GA leads, e.g., to
the inability of obtaining the superconducting phase in the
Hubbard model [55]. On the other hand, the VMC method
tackles that problem properly, but at the price of extremely
large computing power. This leads to the lattice size limitations
(typically up to 20 × 20 sites) and a limited distance of
real-space intersite correlations taken into account.

In this respect, DE-GWF introduces, in successive orders
of the expansion, correlations to the environment of individual
sites (beyond GA), and also converges in a systematic manner
to the full GWF solution. Also, DE-GWF was shown to provide
more accurate results than VMC [56] and, additionally, is free
from the finite-size limitations. It also demands significantly
less computational power than VMC. Thus, in general, this
method is capable of treating more complex problems with
GWF. On the other hand, DE-GWF is tailored specifically for
GWF, while VMC allows for starting from different forms
of the variational wave function, e.g., adding the Jastrow
factors [52,53].

B. Diagrammatic expansion

The key point of the variational procedure is the calculation
of the expectation value of Hamiltonian (1) with GWF |ψG〉
(point 1 from the scheme in Sec. III A) by starting from the
expression

〈Ĥ〉G ≡ 〈ψG|Ĥ|ψG〉
〈ψG|ψG〉 = 〈ψ0|P̂GĤP̂G|ψ0〉

〈ψ0|P̂ 2
G|ψ0〉

. (8)

We use the DE-GWF technique [54–57] based on the
expansion of the expectation values appearing in Eq. (8) in
the power series in the variational parameter x, with the
highest power representing the number of correlated vertices
assumed to be correlated in the environment, except for
local ones. This method is systematic in the sense that the
zeroth order corresponds to GA [47], whereas the full GWF
solution is approached as the order increases. Explicitly, we
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determine the expectation values with respect to GWF of any
product operator originating from the starting Hamiltonian (1)
Ôi(j) = {ĉ†iσ ĉjσ ,n̂c

iσ ,n̂
f
iσ ,n̂

f

i↑n̂
f

i↓,f̂
†
iσ ĉjσ ,ĉ

†
iσ f̂jσ }. This is executed

by first accounting for the projection part on site i (j), external
vertices [e.g., computing ÔG

i(j) ≡ P̂G;i(P̂G;j)Ôi(j)(P̂G;j)P̂G;i; see
below], and then including correlations (terms) to the other
sites l �= i,j, internal vertices, one by one.

Formally, the procedure starts with the effective power
expansion in x of all relevant expectation values

〈ψG|Ôi(j)|ψG〉 =
〈
ÔG

i(j)

∏
l�=i,j

P̂ 2
G;l

〉
0

=
∞∑

k=0

xk

k!

∑
l1,...,lk

′〈
ÔG

i(j)d̂
HF
l1,...,lk

〉
0, (9)

where d̂HF
l1,...,lk ≡ d̂HF

l1 · · · d̂HF
lk . The prime in the multiple

summation denotes restrictions: lp �= lp′ , and lp �= i,j for
all p,p′. k is the order of the expansion. Note that for
k = 0 we obtain 〈ψG|Ôi(j)|ψG〉 = 〈ÔG

i(j)〉0. This means that
the projection operators act only locally (i.e., only sites i and
j are affected), and in this case we recover the GA results
(for a detailed discussion of the equivalence see Appendix A).
Expectation values in (9) can now be calculated by means of
Wick’s theorem in its real-space version because they involve
only products averaged with |ψ0〉. Such a power expansion in x

allows for taking into account long-range correlations between
k internal sites (l1, . . . ,lk) and the external ones (i,j). It must
be noted that it is not a perturbative expansion with respect
to the small parameter x. Instead, the expansion should be
understood as an analytic series with the order determined by
the number of correlated internal vertices taken in the nonlocal
environment. For k = ∞, the full GWF solution would be
obtained. However, on the basis of our results, satisfactory
results for the expansion in the ALM case are already reached
starting at k = 3.

As noted above, the expectation values 〈· · · 〉0 in Eq. (9)
can be evaluated by means of Wick’s theorem. Then, the terms
with k internal sites can be visualized as diagrams with k

internal and 1 (or 2) external vertices. The lines connecting
those vertices are defined as

Cij ≡ 〈ĉ†iσ ĉjσ 〉0,

Wij ≡ 〈f̂ †
iσ ĉjσ 〉0, (10)

Fij ≡ 〈f̂ †
iσ f̂jσ 〉0 − δijn0f .

By constructing the projector operator (4), we have elimi-
nated all the diagrams with the local f -orbital contractions
(〈f̂ †

iσ f̂iσ 〉0), the so-called Hartree bubbles. This procedure, as
discussed explicitly in Ref. [54], leads to significantly faster
convergence than that with the usual Gutzwiller projector, with
the variational parameter g [71]. It constitutes the main reason
for the efficiency of the DE-GWF method. Finally, all the
expectation values with respect to GWF are normalized by
〈ψG|ψG〉 [see Eq. (8)]. However, through the linked-cluster
theorem [72], the terms coming from expansion of 〈ψG|ψG〉 ≡
〈ψ0|P̂ 2

G|ψ0〉 cancel out with all disconnected diagrams appear-
ing in the numerator of Eq. (8). In effect, the expectation values
can be expressed in the closed form by the diagrammatic

sums S ∈ {T cc(1,1)
ij ,T f c(1,1),T f c(3,1),I c(2),I f (2),I f (4)}, defined

in Appendix B, which leads to the following resultant
expression for the ground-state energy:

〈Ĥ〉G
L

= 2

L

∑
i,j

tijT
cc(1,1)

ij − 2μIc(2)

+ 2(εf − μ)[n0f + (1 + xm)I f (2) + γ If (4)]

+Uλ2
d [d0 + 2n0f I f (2) + (1 − xd0)I f (4)]

+ 4V (αT f c(1,1) + βT f c(3,1)), (11)

where the trivial sums
∑

σ = 2 and
∑

i = L have already
been included. Parameters {α,β,γ,m,d0} are all functions of
n0f and x [see Appendix B, Eq. (B2)]. For k = 0, only the
diagrammatic sums T

cc(1,1)
ij ,I c(2), and T f c(1,1) do not vanish,

and we reproduce the standard GA result; the Coulomb
energy reduces to Uλ2

dd0, and the hybridization reduces to
4V α〈f̂ †

i ĉi〉0, whereas the diagrammatic sums for the c band
are only trivial (see the discussion in Appendix A).

The expectation value 〈Ĥ〉G calculated diagrammatically
is minimized next with respect to the variational parameter x

(step 3 in the scheme in Sec. III A).

C. Effective quasiparticle Hamiltonian

The next step in our procedure (step 4 in the scheme
in Sec. III A) is mapping the correlations contained in
〈ψG|Ĥ|ψG〉/〈ψG|ψG〉 onto the corresponding uncorrelated
expectation value 〈ψ0|Ĥeff|ψ0〉. It is realized via the condition
that the minima of the expectation values of both Hamiltonians
coincide for the same equilibrium values of lines (10) and
n0f , which define |ψ0〉. Note that the present formulation of
this step of our minimization procedure is equivalent to those
previously used [54–58]. Explicitly,

δ〈Ĥeff〉0(C,F,W,n0f )

= δ〈Ĥ〉G(C,F,W,n0f )

= ∂〈Ĥ〉G
∂C

δC + ∂〈Ĥ〉G
∂W

δW + ∂〈Ĥ〉G
∂F

δF + ∂〈Ĥ〉G
∂n0f

δn0f ,

(12)

where skipping lattice indices for lines means that we consider
each of them separately. This condition leads directly to
the following form of the effective single-particle two-band
Hamiltonian with nonlocal interband hybridization:

Ĥeff =
∑
i,j,σ

t cijĉ
†
iσ ĉjσ +

∑
i,j,σ

t
f

ij f̂
†
iσ f̂jσ

+
∑
i,j,σ

(V f c

ij ĉ†iσ f̂jσ + H.c.), (13)

where the effective hopping and hybridization parameters are
derivatives with respect to lines,

t cij = ∂〈Ĥ〉G
∂Cij

, V
f c

ij = ∂〈Ĥ〉G
∂Wij

,

t
f

ij = ∂〈Ĥ〉G
∂Fij

, tfii = ∂〈Ĥ〉G
∂n0f

. (14)
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D. Determination of |ψ ′
0〉

In this section we determine |ψ ′
0〉 as a ground state of Ĥeff

(step 5 of the scheme in Sec. III A).
In order to obtain the effective dispersion relations for c

and f electrons and the k-dependent hybridization we use the
lattice Fourier transform

ε
c(f )
k = 1

L

∑
i,j

ei(i−j)kt
c(f )
ij ,

V
cf

k = 1

L

∑
i,j

ei(i−j)kV
f c

ij . (15)

In this manner, we reduce the many-body problem to the
effective single-quasiparticle picture (see Fig. 1) described
by the effective two-band Hamiltonian. The 2 × 2 matrix
representation of Eq. (13) resulting from such a transform
has the following form:

Ĥeff =
∑
k,σ

(ĉ†kσ f̂
†
kσ )

(
εc

k V
cf

k

V
cf

k ε
f

k

)(
ĉkσ

f̂kσ

)

=
∑
k,σ

(ĉ†kσ f̂
†
kσ )T †

(
Ek+ 0

0 Ek−

)
T

(
ĉkσ

f̂kσ

)
, (16)

where the eigenvalues Ek± of the above Hamiltonian are

Eka = ξ+
k + a

√
(ξ−

k )2 + (
V

cf

k

)2
, (17)

where a ≡ ±1 differentiate between the two hybridized bands.
For convenience, we have defined

ξ+
k ≡ εc

k + ε
f

k

2
, ξ−

k ≡ εc
k − ε

f

k

2
. (18)

T in Eq. (16) is the unitary transformation matrix to the basis
in which Ĥeff is diagonal, defined as

T =
(

u+ u−
u− −u+

)
, (19)

where

u± =
√

1
2

(
1 ± ξ−

k√
(ξ−

k )2+(V cf

k )2

)
. (20)

It is now straightforward to obtain the principal correlation
functions (lines),

〈ĉ†kσ ĉkσ 〉0 = u2
+�(Ek+) + u2

−�(Ek−),

〈f̂ †
kσ ĉkσ 〉0 = u+u−[�(Ek+) − �(Ek−)], (21)

〈f̂ †
kσ f̂kσ 〉0 = u2

−�(Ek+) + u2
+�(Ek−),

where �(E) denotes the Heaviside step function and plays
the role of an energy cutoff for respective quasiparticle band
energies (17). Using the inverse Fourier transformation, we
obtain self-consistent equations for lines and n0f ,

Cij = 1

L

∑
ka

〈ĉ†kσ ĉkσ 〉0 ei(i−j)k,

Wij = 1

L

∑
ka

〈f̂ †
kσ ĉkσ 〉0 ei(i−j)k,

Fij = 1

L

∑
ka

〈f̂ †
kσ f̂kσ 〉0 ei(i−j)k,

n0f = 1

L

∑
ka

〈f̂ †
kσ f̂kσ 〉0. (22)

To determine the properties of the model, we solve in the
self-consistent loop the system of Eqs. (14) and (22) [54–58]
(step 6 in the scheme in Sec. III A).

Finally, the ground-state energy EG is defined by

EG = 〈Ĥ〉G|0 + Lnμ, (23)

where 〈Ĥ〉G|0 denotes the expectation value (11) of the starting
Hamiltonian for the equilibrium values of the lines and the
total number of particles is defined by n ≡ 2〈n̂f

iσ + n̂c
iσ 〉G. The

f -orbital filling is defined by nf ≡ 2〈n̂f
iσ 〉G.

IV. RESULTS AND DISCUSSION

A. System description and technical remarks

In our analysis we consider a square, translationally
invariant, and infinite (L → ∞) lattice, with two orbitals (f
and c) per site. The square-lattice consideration is justified
by the common quasi-two-dimensional layered structure of f

atoms in the elementary cell of many Ce-based heavy-fermion
systems [2,11] for which our studies are relevant.

While proceeding with the diagrammatic expansion (DE),
in principle, two approximations need to be made. First,
only the lines (10) satisfying the relation |i − j|2 = (ix −
jx)2 + (iy − jy)2 � 10 are taken into account (i.e., we make a
real-space cutoff; see Fig. 2). For comparison, in VMC lines
farther than these connecting nearest-neighbor sites (more
precisely, only the lines corresponding to the hopping-term
range of the starting Hamiltonian) are only rarely taken into
account [49,50]. From our numerical calculations it follows
that the nearest- and the second-nearest-neighbor contractions
compose the dominant contributions [see Fig. 7(b) below].

The second limitation in DE is the highest order of
the expansion k taken into account. Starting at k = 3, the
asymptotic behavior of some properties such as the DOS at

1

0

1

2

1 0 1 2 3

|j y
-i y

|

|jx-ix|

i

FIG. 2. Schematic illustration of the real-space cutoff on the
lattice. The solid lines denote exemplary, in terms of distance,
correlation functions (referred to as lines) taken into account between
the i site (in the center) and the j sites (on the periphery). Farther
connections are not considered.
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the Fermi level ρ(Ef ) and the width of the effective f band
wf [see Figs. 4, 5(c), and 6 below] speak in favor of the
calculation reliability, which has already been achieved in that
order. Therefore, if not otherwise specified, the expansion is
carried out up to the third order (k = 3), i.e., with the three
internal vertices taken into account. We stress again that the
zeroth-order approximation (k = 0) is equivalent to the GA
approach (see Appendix A for details). The results of GA are
regarded here as a reference point for determining a systematic
evolution, including both qualitative and quantitative changes,
when the higher-order contributions are implemented.

The parameters of the ALM Hamiltonian (1) are taken in
units of |t |: a strong Coulomb repulsion is taken as U = 10,
the reference energy for f electrons εf = −3, the on-site
hybridization is assumed to be negative and varies in the range
|V | ∈ (0.8,2.5), and the total band filling (n ≡ 2〈n̂f

iσ + n̂c
iσ 〉G)

is in the range allowed by the condition that the f -level occu-
pancy per site (nf ≡ 2〈n̂f

iσ 〉G) roughly does not exceed unity.
The reason for considering this regime is the circumstance that
for the Ce-based compounds that interest us the concentration
of f electrons per cerium atom should not exceed 1 (i.e.,
with only the Ce3+ and Ce4+ configurations). However, from
the construction of the method the regime for nf > 1 is fully
accessible and physically correct. In carrying out the DE-GWF
procedure we adjust the chemical potential μ ≡ EF for the
fixed total filling n. Numerical integration of Eq. (22) and the
self-consistent loop were both performed with precision of the
order of 10−6 or better with the help of Gnu Scientific Library
(GSL) procedures [73].

B. Correlated Fermi liquid

Before a detailed analysis is carried out, a methodological
remark is needed. The effective Hamiltonian (13) is of single-
particle form but coupled to the self-consistent procedure for
evaluating the relevant averages (22). However, this does not
compose the full picture. The physical quantities are those
obtained with a projected wave function. For example, nf ≡∑

σ 〈ψG|f̂ †
iσ f̂iσ |ψG〉 = ∑

σ 〈PGn̂
f
iσPG〉0, which, in general, is

slightly different from
∑

σ 〈n̂f
iσ 〉0. The situation is illustrated

explicitly in Fig. 3. In effect, the quasiparticle picture is
amended with the nonstandard features of this correlated
(quantum) liquid (CL). Parenthetically, the same difference
will appear when considering magnetic and superconducting
states, where the magnetic moments, 〈Ŝz

i 〉G vs. 〈Ŝz
i 〉0, and the

superconducting gaps, 〈�̂ij〉G and 〈�̂ij〉0, will be different.
Thus, we have a mapping of the correlated onto quasiparticle
states but not of the physical properties. In brief, we have to
distinguish between the correlated and uncorrelated f -electron
occupancy or other property even though, from the way (13)
was constructed, the density of quasiparticle states [coming
from (13)] represents that in the correlated state.

C. Quasiparticle density of states

We start with an analysis of the quasiparticle DOS emerging
from the DE-GWF method in successive orders of the
expansion (see Fig. 4). For k > 0 and total filling n = 1.97
(i.e., near half filling), the hybridization peaks become more

-1

-0.5
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 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1.2  1.4  1.6  1.8  2  2.2  2.4  2.6

10
3 Δn

f

n

|V|=1.3

re
gi

on
 IV

FIG. 3. (Color online) Difference between uncorrelated and cor-
related f -electron numbers, �nf ≡ ∑

σ 〈n̂f
iσ 〉G − ∑

σ 〈n̂f
iσ 〉0, along

the line of constant hybridization, |V | = 1.3, with respect to changing
total filling. The specific character of region IV is explained in Sec. IV.

pronounced (see the table in the inset in Fig. 4), and the
hybridization gap increases.

For k > 0 the overall shape of DOS changes only quan-
titatively (see Fig. 4). However, the value of the DOS at the
Fermi level ρ(EF ) changes remarkably (see the inset in Fig. 4).
Although it is underestimated for k = 1 and overestimated for
k = 2, for k = 4 we see no significant difference with respect
to the k = 3 case. For this reason, if not specified explicitly,
the subsequent analysis is carried out in the third order, k = 3.

0

1

2

3

4

5

6

7

8

-4 -3 -2 -1 0 1 2 3 4

ρ(
E)

E - EF

|V|=1.5

n=1.97

k ρ(EF) 
0 2.17
1 5.35
2 12.93
3 7.60
4 7.23

FIG. 4. (Color online) Density of states (DOS) near the half
filling (n = 1.97) at |V | = 1.5 for selected orders of the diagrammatic
expansion (k = 0,3). Explicit values of ρ(EF ) are also listed in the
inset table (for 0 � k � 4). For k = 3 a satisfactory convergence
of the expansion is reached. The k = 1,2,4 plots are not included
for clarity because, apart from peak heights, they are practically the
same as the plot for k = 3. For k > 0 (beyond GA) the hybridization
peaks are more pronounced [large DOS at the Fermi level ρ(EF )],
which is related directly to the increased by correlation effective-mass
enhancement for quasiparticles.
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(a)

(b) (c)

FIG. 5. (Color online) (a) Density of states at the Fermi level
ρ(EF ) on the hybridization-strength–total-electron-concentration
plane, |V |-n. Additionally (not marked), for n = 2 we always obtain
the Kondo insulating state. By region IV (labeled for consistency
with Fig. 7) we have marked a V-shaped region where we have no
numerical convergence due to the presence of singular hybridization
peaks for low |V | and with n near half filling (see main text). (b)
Evolution of ρ(EF ) in the half-logarithmic scale near region IV [along
the vertical arrow labeled (b) in (a)]. By extrapolation [dashed line in
(b)], for the almost-half-filled situation, ρ(EF ) can even be enhanced
by a factor of 1000 relative to its lowest values on the |V |-n plane. (c)
Evolution of ρ(EF ) with decreasing |V | [along the horizontal arrow
labeled (c) in (a)], within successive orders of the expansion (k � 4).
For large |V | � 1.8, GA (k = 0 order) provides realistic values of
ρ(EF ).

The value of ρ(EF ) is of crucial importance. This parameter
is a measure of the quasiparticle effective mass, as the latter is
inversely proportional to the second derivative of the energy
∇2

kEk at the Fermi surface and thus is determined by ρ(EF ).
In Fig. 5(a) we draw the value of ρ(EF ) on the

hybridization–total-electron-number (per site) plane, V -n.
This quantity is particularly strongly enhanced near half filling
(n � 2). In comparison to the lowest value ρ(EF ) ≈ 0.75, the
maximal enhancement is of the order of 40. In Fig. 5(b) we
present the evolution of ρ(EF ) on the logarithmic scale as
total filling decreases and approaches n = 2 (vertical arrow
in Fig. 5(a) marked (b)]. The extrapolated value of ρ(EF )
may reach the extremely high value of 1000 or even greater
[dashed line in Fig. 5(b)] in region IV. Such a feature could
explain extremely the high mass renormalization in some HFS
for a large but finite value of the Coulomb interaction U .

The region where ρ(EF ) is enhanced strongly is that with
low hybridization |V | values and for total filling n � 1. This
region is strictly correlated with the position of the second
pronounced peak in DOS (see Fig. 4), which therefore has
the meaning of the Van Hove singularity. Additionally, for
nf � 1, where the effects of correlations are the strongest, we

also observe a large value of ρ(EF ). In that limit the stability
of magnetic phases should be studied separately [18,19].

As marked in Fig. 5(a), near the total half filling, n � 2,
we could not obtain a satisfactory convergence of our self-
consistent procedure. This is attributed to the position of
the chemical potential extremely close to the hybridization-
induced peaks (significant when nf � 0.9). Technically, this
leads to extreme fluctuations (out of our numerical precision)
of the filling, effective hopping parameters, and the lines
coming from the effective Hamiltonian (13), as they are
sensitive to a slight change in the chemical-potential position.
For n = 2 and nonzero hybridization, we always obtain the
Kondo-insulating state. However, strictly speaking, the true
Kondo-type compensated state is demonstrated explicitly only
if magnetic structure is taken into account explicitly [9,10,18].

In Fig. 5(c) we depict the ρ(EF ) evolution with decreasing
hybridization amplitude |V | for k � 4. Our results show that
for large |V |, GA (k = 0) already is a reasonable approxima-
tion. The situation changes as we approach the low-|V | regime
near half filling, where inclusion of higher-order contributions
leads to a strong enhancement of ρ(EF ), as discussed above.

In summary, the quasiparticle mass is enhanced signifi-
cantly near n = 2 and in the regime of small hybridization |V |.
The f -state occupancy is then nf � 0.9. This is the regime
associated with the heavy-fermion and Kondo-insulating
states. We discuss those states in detail below.

D. f -electron direct itineracy

As stated already, the DE-GWF method is used here to map
the correlated (many-body) system, described by the original
Hamiltonian (1) with the help of the Gutzwiller wave function
|ψG〉, onto that described by the effective quasiparticle
Hamiltonian (13) with an uncorrelated wave function |ψ0〉. By
constructing the effective Hamiltonian it is possible to extract
the explicit contribution to the quasiparticle picture that comes
from a direct hopping between the neighboring f sites. By
contrast, in the GA (k = 0) case, the f -electron itineracy is
only due to the admixture of c states when the quasiparticle
states are formed. Once we proceed with the diagrammatic
expansion to higher order (k > 0), they start contributing to
the quasiparticle spectrum in the form of a dispersive f band
(see Fig. 6). The resulting band is narrow, wf � 0.5, whereas
the starting conduction (c) band has a width of wc = 8. As
was mentioned in Sec. I, we interpret the parameter wf as a
measure of the emerging degree of direct itineracy, i.e., the
presence of direct hoppings between the neighboring f states
in the effective Hamiltonian.

Again, a methodological remark on the numerical conver-
gence of the results with respect to k is needed. Namely, the
f -bandwidth already appears for k = 1, but both its width and
the curvature stabilize only from k = 3.

In the recent phenomenological modeling of CeCoIn5 [59–
61] the band structure used was the hybridized-two-band
independent-particle model with a dispersive f band, even
though the Ce 4f states can be placed well above the so-called
Hill limit, where no direct hopping between the original
neighboring f states should exist. The fit presented there gives
wf of the same order of magnitude as that obtained here. As
those phenomenological models do not include the Coulomb
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FIG. 6. (Color online) The f -electron density of states ρf (E)
within successive orders of expansion (k � 4). For k = 1 and higher,
formation of the effective f band can be clearly observed. For k = 3
the final shape of ρf (E) and the value of the f -band width wf

stabilize.

interaction, the ground state is determined with the uncor-
related wave function. Hence, our analysis of the effective
Hamiltonian resulting from ALM provides a direct micro-
scopic rationalization of the narrow dispersive f -band pres-
ence assumed ad hoc in the fitting procedure in Refs. [59–61].

In Fig. 7(a) we display a diagram comprising the width of
the f band wf on the |V |-n plane, with contours with constant
values of nf . We observe the appearance of some regions
where the f quasiparticles have a sizable bandwidth (bright
color) and others where they remain localized (dark regimes).
We expect that in the regions where the f electrons are
forming a band, nontrivial unconventional superconductivity
and/or magnetism may appear. These topics should be treated
separately as they require a substantial extension of the present
approach (incorporating a new type of lines) [55–58].

With the help of the width wf we may single out three
physically distinct regimes [see Fig. 7(a)]. We identify those
regions as the mixed-valence regime (III), the Kondo/almost-
Kondo insulating regime (II), and the Kondo-lattice regime
(I) with nf → 1 − δ, with δ � 1 [see Fig. 7(a)]. These
universal regions are usually discussed independently within
different specific models and methods. In regime I the role
of f -c Coulomb interactions (the Falicov-Kimball term) may
be needed for completeness (cf. Ref. [74]), whereas in the
Kondo-lattice regime the transformation to the Anderson-
Kondo model is appropriate (cf. Refs. [18,19]). In the extreme
situation, the heavy-fermion states are modeled with a pure
Kondo-lattice model [75–77]. However, strictly speaking, the
last model applies only in the limit of localized f electrons
(nf = 1) since the total numbers of f and c electrons are
conserved separately.

In Fig. 7(b) we present the effective hopping parameters
for f states for |V | = 1.3, i.e., along the vertical line marked
in Fig. 7(a). This line crosses three regions of the itineracy.
The leading contribution to the f -electron band energy arises
from the nearest- and the second-nearest-neighbor hoppings.
This outcome confirms that our earlier assumption about
the real-space cutoff shown in Fig. 2 has been selected

(a)

(b)

FIG. 7. (Color online) (a) Effective bandwidth of f states wf

on the hybridization-strength–electron-concentration plane, |V |-n.
wf is regarded as a measure of the direct itineracy of f -electron
states. Three separate disjoint regions (light color) are regarded
as universal and frequently discussed as separate limits, both in
theory and experiment, namely, the mixed-valence regime (III), the
Kondo/almost-Kondo insulating regime (II), and the Kondo-lattice
regime (I) with nf → 1 − δ, δ � 1. (b) Effective f -electron intersite
hoppings t

f

ij along the marked vertical line in (a) for |V | = 1.3. The
energy dispersion for f quasiparticles is determined mainly by the
nearest and the second-nearest hoppings t

f

ij . Region IV, near n = 2,
is marked separately due to the lack of convergence of the numerical
results (see main text).

properly. Moreover, it points to the importance of including
the components beyond those of the starting Hamiltonian,
which are only rarely taken into account within the VMC
method [49,50].

In Fig. 8 we show the contributions to the effective
hybridization. The initial (bare) local hybridization acquires
momentum dependence. Nevertheless, the local part is still
dominant since the nonlocal terms are at least two orders of
magnitude smaller.

The emerging in our model f band introduces a new def-
inition of the f -electron itineracy because it is not connected
so much to the Fermi-surface size [78], but rather to the
appearance of direct hoppings between f sites. This difference
is highly nontrivial, especially in the limit nf = 1, where we
obtain the largest bandwidth wf . Such behavior is attributed
to the specific character of our approach. Namely, we consider
here the processes within our initial Hamiltonian (1), but under
the assumption that the neighboring sites are also correlated.
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FIG. 8. (Color online) Spatial contributions V
cf

ij to the effective
hybridization normalized by the first on-site (i = j) V00 term along
the vertical line in Fig. 7(a) for |V | = 1.3. Note that due to correlation
initially local, on-site hybridization effectively acquires momentum
dependence. However, the nonlocal contributions constitute only up
to 2% of the local one.

This, as we have shown directly, also leads to the finite f band
in the effective single-particle Hamiltonian (13). The results
thus throw new light on the longstanding issue of the dual
localized-itinerant nature of f electrons in HFS [79,80]. While
the magnetism can be attributed to the almost localized nature
of f electrons, unconventional superconductivity requires
their itineracy in an explicit manner, which will be discussed
elsewhere [81].

V. SUMMARY

We have applied a recently developed diagrammatic tech-
nique (DE-GWF) for evaluating the expectation values with
the full Gutzwiller wave function for the case of a two-
dimensional Anderson lattice. We have analyzed the properties
of the model by discussing the most important features of the
heavy-fermion systems in the paramagnetic state. We have also
shown that by approaching the full Gutzwiller-wave-function
solution in successive orders of the expansion, we obtain a
systematic convergence. In the zeroth order of the expansion
our method reduces to the standard Gutzwiller approximation.

In contrast to GA, DE-GWF does not overestimate the
hybridization narrowing factor. Furthermore, our method
produces unusually enhanced peaks at the Fermi level in the
density of states, particularly near the half filling, n → 2. This,
in turn, is connected to the value of the effective mass, and
by analyzing this region in detail we can explain the very
large mass enhancement observed in heavy-fermion systems
as described by ALM with a large, but finite, Coulomb-
interaction value, here U = 10|t |. The regions with sizable
ρ(EF ) enhancement are also found in the small-hybridization
limit and are connected to the presence of both the Van Hove
singularity and strong correlations in the limit of nf → 1.

The f -electron contribution to the full quasiparticle spec-
trum has been analyzed in detail. For nonzero order of the
expansion (k > 0) we observe a systematic formation of the

effective f band with increasing k. Although the bare electrons
are initially localized, f quasiparticles contribute to the total
density of states as they become itinerant. We interpret this
property as the emerging direct f -electron itineracy. As a
measure of this behavior, we introduce the the width wf of
the effective f band. The formation of such a narrow f band
rationalizes, e.g., the recent phenomenological modeling of
the CeCoIn5 band structure [59–61].

The nonstandard character of the resultant correlated Fermi
liquid (FL), which differs from both the Landau FL and the spin
liquid (SL), should be stressed. The FL represents a weakly
correlated state (no localization), and the SL represents a fully
correlated state. Our CL state has an intermediate character in
this respect. Namely, the quasiparticle states are formed (as
exemplified by, e.g., the density of states), but the physical
properties such as the occupancy nf , the magnetic moment
〈Ŝz

i 〉, and the pairing gap in real space 〈�̂ij〉 are strongly
renormalized by the correlations. Such a situation is often
called an almost-localized Fermi-liquid state [4,9,10,16,17].

By analyzing the results on the hybridization-strength–
total-band-filling plane, |V |-n, we single out explicitly three
physically distinct regions, which we regard as three separate
universality limits. Namely, we have linked those disjoint
regions with the regimes frequently discussed as separate
classes in heavy-fermion systems: the mixed-valence regime,
the Kondo/almost-Kondo insulating regime, and the Kondo-
lattice regime for nf → 1. We suggest that the regions of
significant f -electron itineracy can be connected to the un-
conventional heavy-fermion superconductivity, which requires
separate studies.

We have also commented on the longstanding issue of the
dual localized-itinerant nature of f electrons in heavy-fermion
systems. Our definition of itineracy is in agreement with their
(almost) localized nature.
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APPENDIX A: EQUIVALENCE OF THE k = 0 ORDER
DE-GWF EXPANSION AND THE GUTZWILLER

APPROXIMATION

Here we show the equivalence of the zeroth-order DE-GWF
and the standard Gutzwiller approximation (GA). In both
methods (DE-GWF in the zeroth order of expansion k = 0) the
effect of the projection can be summarized by the expressions
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for evaluating the following expectation values: 〈n̂i↑n̂i↓〉G
and 〈f̂ †

iσ ĉiσ + H.c.〉G. The remaining averages in ALM are
unchanged under the projection.

Explicitly, in the DE-GWF for k = 0 the resulting averages
are expressed as follows:

〈n̂i↑n̂i↓〉(k=0)
G = λ2

dn
2
0f , (A1a)

〈f̂ †
iσ ĉiσ + H.c.〉(k=0)

G = α〈f̂ †
iσ ĉiσ + H.c.〉0, (A1b)

where α [see also Appendix B, Eqs. (B1) and (B2)] is
defined as

α ≡ (1 − n0f )λ0λs + n0f λdλs. (A2)

On the other hand, in GA the resulting averages are expressed
as [26]

〈n̂i↑n̂i↓〉(GA)
G = 〈nf

i↑n̂
f

i↓〉0 ≡ d2, (A3a)

〈f̂ †
iσ ĉiσ + H.c.〉(GA)

G = √
q〈f̂ †

iσ ĉiσ + H.c.〉0, (A3b)

where d2 is the double-occupancy probability and q is the so-
called Gutzwiller factor reducing the hybridization amplitude,
which for an equal number of particles for each spin is defined
as

√
q =

√
(n0f − d2)(1 − 2n0f + d2) + √

(n0f − d2)d2√
n0f (1 − n0f )

.

(A4)

If we identify double-occupancy probabilities expressed by
both methods in (A3a) and (A1a) to be equal, yielding d2 =
λ2

dn
2
0f , then α in (A2) exactly reduces to

√
q in (A4).

GA procedure results in the effective single-particle Hamil-
tonian of the form

ĤGA ≡
∑
k,σ

�̂
†
kσ

(
εc

k − μ
√

qσ V√
qσ V εf − μ

)
�̂kσ + LUd2

− λf
n

( ∑
k,σ

n̂
f

k,σ − Ln0f

)
− λf

m

( ∑
k,σ

σ n̂
f

k,σ − Lmf

)
.

(A5)

In the above Hamiltonian it is necessary to add constraints
for the number and the magnetization of f electrons in order
to satisfy consistency of the procedure [27,82]. In effect, the
whole variational problem is reduced to minimization of the
ground-state energy with respect to d2, n0f , mf , and the res-
pective Lagrange multipliers λ

f
n and λ

f
m, which play the role

of the effective molecular fields [82]. However, the effect of a
constraint on f -electron magnetization is relevant only when
magnetism is intrinsic [42,43] or induced by applied magnetic
field [41]. Here the paramagnetic state mf = λ

f
m = λ

f
n = 0.

The DE-GWF method, by construction, guarantees that
the variationally obtained f -electron occupancy number nf

coincides with that obtained self-consistently [57]. We have
thus provided an analytical argument for the equivalence of the
DE-GWF method for k = 0 and the standard GA procedure.
Also, using an independent numerical cross-check, we have
verified that all the observables calculated within both methods
indeed coincide.

APPENDIX B: DIAGRAMMATIC SUMS

We start with expressions for the following projected
operators originating from the ALM Hamiltonian (1):

P̂G;id̂iP̂G;i = λ2
d

[
2n0f n̂HF

i + (1 − xd0)d̂HF
i + d0P̂

2
G;i

]
,

P̂G;in̂iσ P̂G;i = (1 + xm)n̂HF
i + γ d̂HF

i + n0f P̂ 2
G;i,

P̂G;if̂
(†)
iσ P̂G;i = αf̂ (†)

iσ + βf̂ (†)
iσ n̂HF

i , (B1)

where, additionally, we have defined

n̂HF
i ≡ n̂HF

iσ = n̂HF
iσ̄ ,

β ≡ λs(λd − λ0),

α ≡ λsλ0 + βn0f ,

γ ≡ x(1 − 2n0f ), (B2)

d0 ≡ n2
0f ,

m ≡ n0f (1 − n0f ).

As mentioned in the main text, such a form of the pro-
jected operators significantly speeds up the convergence of
the numerical results [54] since by construction all two-
operator averages for a single site and f orbital, the so-
called Hartree bubbles, vanish. The above operator algebra

T =                    +                  +cc(1,1)

T       =                    +                  +fc(1,1)

T       =                    +                  +                 +fc(1,1)

 I         =                    +                  +c(2)

 I         =                    +                  +(2)

 I         =                    +                  +(4)

k=0 k=1 k=2

i         j(1)

i         i(1)

i         j(-2)

i         i(-2)

i         i(-2) i         i(-2) i         i(4)

ij

i 
(4)

i 
(4)

i 
(-2)

i 
(-2)

l1 l2 

l2 

l2 l2 

l2 

l2 

l1 

l1 
l1 

l1 l1 l1 

l1 

l1 

l2 

FIG. 9. (Color online) Diagrammatic sums to the second order,
k = 2. The c- and f -orbital sites are denoted with empty and solid
circles, respectively. Solid black, dashed blue, and dotted orange
connections represent F , W , and C lines, respectively [see Eq. (10)].
The numbers in parentheses under the diagrams indicate their
multiplicity resulting from Wick’s theorem. Note that by construction
of our sums we have no diagrams with so-called Hartree bubbles,
namely, loop lines within the same site and orbital.

125135-10



GUTZWILLER WAVE-FUNCTION SOLUTION FOR . . . PHYSICAL REVIEW B 92, 125135 (2015)

leads to the compact definition of the diagrammatic sums,
S ∈ {T cc(1,1)

ij ,T
f c(1,1)

ij ,T
f c(3,1)

ij ,I c(2),I (2),I (4)} in Eq. (11),

S =
∞∑

k=0

xk

k!
S(k), (B3)

with the kth-order contributions

T
cc(1,1)

ij (k) ≡
∑

l1,...,lk

〈
ĉ†iσ ĉjσ d̂HF

l1,...,lk

〉c
0,

T f c(1[3],1)(k) ≡
∑

l1,...,lk

〈[
n̂HF

i

]
f̂ †

iσ ĉiσ d̂HF
l1,...,lk

〉c
0,

I c(2)(k) ≡
∑

l1,...,lk

〈
n̂c

iσ d̂HF
l1,...,lk

〉c
0,

I (2)(k) ≡
∑

l1,...,lk

〈
n̂HF

i d̂HF
l1,...,lk

〉c
0,

I (4)(k) ≡
∑

l1,...,lk

〈
d̂HF

i d̂HF
l1,...,lk

〉c
0. (B4)

A superscript c in the expectation values means that only the
connected diagrams should be included. Note that in (B4)
there are no summation restrictions due to the linked cluster
theorem [72]. The resulting diagrammatic sums for S up to
second order (k = 2) are depicted in Fig. 9.
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Phys. 79, 1015 (2007).
[14] G. Lonzarich, Nat. Phys. 1, 5 (2005).
[15] C. Lacroix and M. Cyrot, Phys. Rev. B 20, 1969 (1979).
[16] A. C. Hewson, The Kondo Problem to Heavy Fermions

(Cambridge University Press, Cambridge, 1993).
[17] A. Auerbach and K. Levin, J. Appl. Phys. 61, 3162 (1987).
[18] O. Howczak and J. Spałek, J. Phys. Condens. Matter 24, 205602

(2012).
[19] O. Howczak, J. Kaczmarczyk, and J. Spałek, Phys. Status Solidi

B 250, 609 (2013).
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