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Density of Yang-Lee zeros in the thermodynamic limit from tensor network methods
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The distribution of Yang-Lee zeros in the ferromagnetic Ising model in both two and three dimensions is studied
on the complex field plane directly in the thermodynamic limit via the tensor network methods. The partition
function is represented as a contraction of a tensor network and is efficiently evaluated with an iterative tensor
renormalization scheme. The free-energy density and the magnetization are computed on the complex field plane.
Via the discontinuity of the magnetization, the density of the Yang-Lee zeros is obtained to lie on the unit circle,
consistent with the Lee-Yang circle theorem. Distinct features are observed at different temperatures—below,
above, and at the critical temperature. Application of the tensor network approach is also made to the q-state
Potts models in both two and three dimensions and a previous debate on whether, in the thermodynamic limit,
the Yang-Lee zeros lie on a unit circle for q > 2 is resolved: they clearly do not lie on a unit circle except at
the zero temperature. For the Potts models (q = 3,4,5,6) investigated in two dimensions, as the temperature is
lowered the radius of the zeros at a fixed angle from the real axis shrinks exponentially towards unity with the
inverse temperature.
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I. INTRODUCTION

More than half a century ago Yang and Lee proposed
a new approach for studying phase transitions in a gas by
examining the zeros of the grand partition function in the
complex fugacity plane [1]. In the thermodynamic limit, these
zeros, which shall be referred to as the Yang-Lee zeros, may
lie arbitrarily close to certain points on the real axis, marking
where phase transitions appear. Inside a region clear of zeros,
no phase transitions can occur. Thus, the study of the location
of the zeros in the complex plane determines the transition
points in the real axis [2]. In a subsequent paper [3], Lee
and Yang showed, among other things, that the zeros of the
partition for the ferromagnetic Ising model lie on a unit circle
of the complex field [or more precisely the complex z plane,
where z ≡ exp(−2βh) with β = 1/kBT and h the external
field], which is referred to as the Lee-Yang theorem. The
equation of the state can be obtained via the knowledge of
the distribution of the Yang-Lee zeros on the unit circle. At
very high temperatures, the zeros do not cover the whole circle,
but only the segment of the arc around the angle θ = π . As
the temperature is lowered to the transition temperature Tc, the
zeros move and pinch the real axis at θ = 0, the field value
(in this case zero) of which corresponds to the phase transition
point.

The study of partition function zeros, as well as generaliza-
tion of the circle theorem, has been extended to higher spins
and other models (whose list is hard to exhaust here) [4–19]
and has provided useful insights to phase transitions, even
in QCD [20]. The consideration of zeros in the complex
temperature plane was initiated by Fisher [21] and these zeros
are called Fisher zeros [2,22,23]. Properties of the distributions
of zeros also give characterization of first-order phase transi-
tions [24] as well as higher-order phase transitions and scaling
relations [25]. The Lee-Yang theorem has its impact also
beyond statistical physics; it has incited mathematical theory
connected with the Laguerre-Pólya-Schur theory of linear
operators, possible connection to the Riemann hypothesis on

the ζ functions [26,27], and computational complexity of
computing averages [28], etc. Even though the Yang-Lee zeros
lie on the complex plane, their density was inferred from the
magnetization data in one experiment [29], and very recently
it was found that the individual zeros of classical Ising models
can be detected by using a quantum spin as a probe that couples
to the classical spins [30,31].

Yang-Lee zeros can be solved exactly on small system sizes
and the thermodynamic limit is inferred from extrapolation.
For most models, however, there is no analytic expression
for the distribution of the zeros and to locate these zeros
accurately in the thermodynamic limit remains a challenge. It
was known that computing averages such as the magnetization
exactly for even the ferromagnetic Ising model on the complex
plane is #P hard [28]. Here we introduce the tensor network
(TN) techniques for computing the density of the Yang-Lee
zeros in the complex field plane directly in the thermodynamic
limit. The density is proportional to the discontinuity of the
magnetization on the complex plane [3], and the magnetization
is computed with controlled approximations. Tensor network
methods, including the density matrix renormalization group
(DMRG), matrix product states (MPS), and other tensor prod-
uct or tensor network states, have become very useful numeri-
cal tools in both classical and quantum spin systems [32–37].
In essence, physical observables are expressed as contractions
of a tensor network. However, the contraction in two and higher
dimensions is a computationally hard problem, but it can be
approximated and the error can be controlled by reducing
truncation, such as during the real-space coarse graining
or renormalization group (RG) procedure over the tensors
describing the system [38–43]. We note that the particular
partition function zero closest to the positive real axis has been
explored with TN for the one-dimensional (1D) Schwinger
model on a finite lattice [44]. But for our purpose we use the
method appropriate for the infinite system to directly probe
the density of zeros in the thermodynamic limit.

In particular, we study ferromagnetic Ising and q-state Potts
models [45] in both two and three dimensions. We observe
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clearly that the magnetization has a discontinuity at the unit
circle, consistent with the Lee-Yang circle theorem for the
Ising model. The distribution of the zeros on the unit circle
shows distinct features at different temperature regimes: T >

Tc, T = Tc and T < Tc. At T > Tc the zeros occupy part
of the circle and move along it towards the real axis as T

decreases. They pinch z = 1 at T = Tc and the difference
with T < Tc is manifest in the distribution of the zeros. From
the density we obtain good estimates for the magnetization-
field exponent δ for both two and three dimensions. For the
q-state Potts models in two and three dimensions our results
demonstrate that the zeros clearly do not lie on a unit circle in
the thermodynamic limit for q > 2 and T > 0, in agreement
with Kim and Creswick [18], whose results were questioned
previously due to the small system sizes [46]. Our results
also show that the deviation from the unit circle, in terms of
the radius at a fixed angle, is decaying exponentially with the
inverse temperature β, consistent with the fact that the location
of the zeros shrinks to the unit circle at zero temperature.

The remaining organization of the paper is as follows. In
Sec. II, we give a slightly more expanded but elementary
introduction to the Yang-Lee zeros, and the readers can skip
it if they are already familiar with these ideas. In Sec. III we
review the RG algorithm that we employ in this paper, with
a detailed exposition of the thermodynamic limit calculations
of the free-energy density. A numerical RG process is applied
to the Ising model in both a square and cubic lattice, with
computation of the magnetization described in Sec. IV, to
show the Yang-Lee zeros on the complex plane. From the
magnetization we directly obtain the density of zeros along
the unit circle. In particular the distribution of the zeros at
T = Tc is used to estimate the magnetization-field exponent
δ. For T > Tc we study in Sec. V the edge singularity of the
density of zeros. In Sec. VI we extend our results to the Potts
models, and we study the location of zeros in 2D and 3D
lattices. We conclude in Sec. VII.

II. YANG-LEE ZEROS: AN ELEMENTARY
INTRODUCTION

Here we give an elementary introduction to the Yang-Lee
zeros. Readers who are familiar with Yang-Lee zeros can skip
this section. If we consider a system of N Ising spins with the
Hamiltonian,

H = −
∑
〈i,j〉

sisj − h
∑

i

si , (1)

where si = ±1 is a classical variable and h is an external field.
The partition function at a temperature T = 1/β (where we
have set kB = 1) is

Z(β,h) = Tr(e−βH ) = eNβh

N∑
n=0

Pnz
n, (2)

where in the second equality we have rearranged the con-
tribution to Z in terms of the number n of down spins
and their associated value Pn at zero field and we have
defined z ≡ exp(−2βh). Since Pn is independent of h (and
is real and positive), one can factorize the polynomial P(z) ≡∑N

n=0 Pnz
n = c0

∏N
n=1(z − zn), where zn’s are the zeros of

P(z), which are referred to as the Yang-Lee zeros and c0 is a
positive constant.

Lee and Yang proved that for any ferromagnetic Ising
model the zeros zn lie on a unit circle, namely zn = eiθn .
This is referred to as the Lee-Yang circle theorem [3]. The
consideration of the zeros and the Lee-Yang theorem was
generalized to other models and higher spins [4–19].

How are the Yang-Lee zeros related to phase transitions?
The free-energy density is

f (β,h) = − ln Z(β,h)/(Nβ) (3)

= −h − ln c0

Nβ
− 1

Nβ

N∑
n=1

ln(z − zn). (4)

In a region free of zeros, the free energy is analytic and
therefore there cannot be any singularity, and hence on the
real axis contained in this zero-free region, no phase transitions
occur. The Yang-Lee zeros close to the positive real axis of
z signal the location of the phase transitions. From the free
energy, one can obtain the magnetization (which in general
has a complex value for complex z),

m(β,h) = −∂f

∂h
= 1 − 2z

N

N∑
n=1

1

z − eiθn
. (5)

In the limit N → ∞, the zeros form a continuum on the unit
circle, with the density of zero per angle denoted by g(θ ). Since
any complex zero zn has a corresponding complex conjugate
partner zn, the density of zero has the symmetry that g(−θ ) =
g(θ ), and, employing this, one can again rewrite the free-
energy density as follows:

f (β,h) = −h − 1

β

∫ π

0
d θ g(θ ) ln(z2 − 2z cos θ + 1); (6)

and the magnetization as follows:

m(β,h) = 1 − 4z

∫ π

0
dθ g(θ )

z − cos θ

z2 − 2z cos θ + 1
, (7)

which we have chosen the normalization that∫ 2π

0
dθ g(θ ) = 1. (8)

The thermodynamics of the system therefore can be deduced
if the density of zeros g(θ ) is known on the unit circle. We
remark that, however, except in one dimension, the analytic
expression of g(θ ) is generally not known. But the Yang-Lee
picture for phase transitions is very visual and intuitive in
terms of partition function zeros; see, e.g., Figs. 3, 5, and 6.
Approximation schemes such as series expansion have been
applied to the density [53]. Using an electrostatic analogy, Lee
and Yang showed that the density of zeros is related to the
discontinuity of the magnetization across the unit circle, i.e.,

g(θ ) = − 1

4π
Re

(
lim

r→1+
m(z = r eiθ ) − lim

r→1−
m(z = r eiθ )

)
.

(9)

Since the free-energy density is expressed in terms of the
zero density, other thermodynamic quantities in addition to the
magnetization and the susceptibility, such as the specific heat
and the entropy density, can also be obtained once the density
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is known. Our numerical calculation, to be discussed below,
is based on the above relation between the magnetization and
the density and is to obtain the latter via evaluation of the
magnetization directly on the complex plane with the tensor
network methods. We remark that we shall loosely refer to the
real part of the magnetization as the magnetization when no
confusion arises, as the imaginary part of the magnetization is
never needed in our discussions.

More than a decade after the results by Lee and Yang [3],
Fisher initiated the study of the zeros defined on the com-
plex temperature plane, i.e., the so-called Fisher zeros [21].
Analyzing the behavior of Yang-Lee and Fisher zeros also
allows characterization of first-order phase transitions [24] as
well as second- and higher-order phase transitions and scaling
relations [25]. The interest of Lee-Yang-like theorem for
partition function zeros goes beyond statistical physics, such
as in mathematics [26,27] and computational complexity [28].
But further detailed explanation on these will take us away
from the main purpose of this work and the readers are referred
to the cited references and more references therein for further
discussions. This section serves as a brief and elementary
introduction to the Lee-Yang zeros that we shall explore in
later sections.

III. FREE ENERGY FROM TENSOR RENORMALIZATION

The partition function Z = Tr exp{−βH } of a classi-
cal system with local interactions can be expressed as a
contraction of a tensor network of low rank and of low
dimensions. The expectation 〈O〉 of local observables O,
〈O〉 = Tr (O exp{−βH })/Z, is then a ratio of contractions
of two TNs. This efficient representation serves as the starting
point for a coarse-graining process for computing physical
observables from the tensor. The contraction of a TN is in
general a hard problem, and numerical approximations are in
order [47]. In recent years a number of schemes have been
proposed to approximate Z in an efficient manner; see, e.g.,
Refs. [37,48] and references therein. The RG process consists
of a decimation of the lattice at each step and such decimation
process is iterated, which gives rise to efficient and accurate
predictions of thermodynamic quantities, even close to the
phase transitions.

Let us take for example the Ising model with nearest-
neighbor interaction and a local field,

H =
∑

Hi,j =
∑
〈i,j〉

[
− sisj − h

nb

(si + sj )

]
(10)

where 〈i,j 〉 represents the nearest-neighbor pair i and j , nb

is the number of neighbors, nb = 2d for square (d = 2) and
cubic (d = 3) lattices. Its partition function Z can be expressed
as a tensor network; the explicit description of the tensors
forming the network are obtained straightforwardly from the
Hamiltonian,

Z = Tr exp(−βH ) = Tr
∏
〈i,j〉

exp(−βHi,j ) (11)

can be decomposed as the tensor trace of the product of
identical tensors T ,

Z = tTr
∏

T T . . . T , (12)

T V
A

A(0) Ã(1)A(1)

(a) (b) (c)

(d) (e) (f)D D

DD

D D

D

D2

D

D2 D

D

D

D

U

U UV V

V
U

FIG. 1. (Color online) The free energy of a classical lattice
system is expressed as a tensor network, and evaluated using a RG
iterative process. (a) The tensor T of rank 2 is obtained from the
Hamiltonian [see Eq. (13) in the text]. By means of a decomposition
(b), tensors U and V are obtained, and combined (c) to form tensor
A. A RG step over the square lattice consists in the coarse grain of a
set of tensors into a single site tensor. That is, combining two tensors
horizontally (d), a new tensor A is created (e). After truncation, the
new tensor (f) is used again in an iterative process.

where tTr denotes the tensor trace, i.e., summing over all
degrees of freedom, and each tensor T (lying on each of the
edges of, e.g., the square lattice, see Fig. 1) has the expression

T =
(

exp{β + h/d} exp{−β}
exp{−β} exp{β − h/d}

)
. (13)

The product operation transforms the tensor network into a
number by contracting, i.e., summing over all the correspond-
ing degrees of freedom of neighboring sites. Each tensor T

has rank 2 and is located on an edge of the square lattice.
For convenience of a RG iteration that directly preserves the
square and cubic lattice structure of the tensors, we shall
instead construct new tensors A that are located on each site
and the trace of them is to sum over degrees of freedom on
edges. To do this, we first use a simple decomposition (such
as singular-value decomposition) of each tensor T as

Ti,j =
∑

μ

Ui,μVj,μ, (14)

and then we form on each vertex a new tensor A from the
contraction of four tensors (chosen from U or V ) in the square
lattice

Au,d,l,r =
∑

i

Ui,uVi,dVi,lUi,r . (15)

(For the simple cubic lattice, A will be a rank-6 tensor obtained
from six U or V tensors.) Therefore, the partition function of
the Ising model on a square lattice involves a single tensor A

repeated in the infinite lattice, and is an exact representation
of the partition function of the system, which is then evaluated
via a RG iterative process to be described below. The basic
structure of a RG process to compute Z is a partition of
the lattice into small plaquettes. At each step, plaquettes are
coarse grained to obtain an effective lattice of smaller size.
In the limit of many iterations of this process, plaquettes
become invariant upon further renormalization step. At this
effective thermodynamic limit we can easily evaluate the
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A Ã(1)=
W

W+

A Ã(1)=
W

W+

FIG. 2. (Color online) The HOTRG algorithm proceeds at each
step combining two tensors along a preferred direction, and extracting
unitaries on the combined indices. These unitaries W are truncated
and inserted in order to reduce the dimension of the auxiliary indices.
This prevents an explosion of the number of parameters required,
while keeping accurate approximations to Z. Similar operations are
required either for 2D lattices (top, with tensors of rank 4) and for 3D
lattices (bottom, tensors of rank 6).

free energy per site or local observables using a single
plaquette. While the general picture of RG methods is
essentially equivalent but differs in the specific algorithmic
implementations, in this paper we employ the higher-order
tensor RG (HOTRG) [49], which among other schemes has
shown accurate evaluation of physical observables. The basic
ingredient of the algorithm is presented in Fig. 2, where a
pair of tensors A is coarse grained into a single tensor Ã. In
practice, the coarse-graining procedure will be done iteratively
for the horizontal direction followed by the vertical direction
in the 2D square lattice, and similarly for the three directions
in the 3D simple cubic lattice.

From the RG flow one directly obtains approximations to
the free energy per site [50]

f = −1

Nβ
log Z. (16)

Before starting the RG, we have a TN representing the Ising
model in a square lattice with initial equal tensors A(0); as we
perform the RG contraction numerically, we keep the tensors
under machine representation factorizing A(0) at each step as
follows,

A(0) = |α0|Ã(0). (17)

From this the RG process effectively shrinks the lattice sites
by half and produces a sequence of new tensors A(1),A(2), . . . ,
and each of these tensors is also factorized accordingly to
bound the numerical values similar to the above Eq. (17). Let
us define

G(0) ≡ ln |α0| (18)

and the corresponding G(n). The partition function in the TN
picture then reads

Z ≡ [A(0)]N = eNG(0)
[Ã(0)]N, (19)

where we have defined the notation [A]N to indicate a
contraction of tensor network described by A over N sites.

By applying a RG step over Ã(0) we have

Z ≡ eNG(0)
[A(1)]

N
2 = eNG(0)

e
N
2 G(1)

[Ã(1)]
N
2 , (20)

where Ã(1), after a single RG step, spans a smaller lattice or
more precisely half the lattice with N/2 sites. This process
can be iterated and the free energy per site can be written as a
function of all the prefactors G(k) as follows:

−β f =
n∑

k=0

G(k)

2k
+ 1

N
ln

{
[Ã(n)]N/2n}

, (21)

where n the total number of RG steps that has been carried,
and the second term vanishes exponentially for large n. Notice
that without truncation the dimension of each index of the
tensor Ã will increase exponentially with n, and the common
practice is to limit the maximal dimension to some number
denoted by Dcut [41]. One can increase Dcut to see whether
the computed observables converge. By the above procedure,
we thus obtain the free energy per site (at any complex field h

value) solely from the evaluation of the prefactors G(k) along
the RG flow. In our calculations, the estimation of the free
energy converges after only a few RG steps (typically n ∼
20). We note that previous application of the tensor network
methods for f has been focused on real h values and high
precision for observables has been obtained [33,34].

Would the TN methods work for complex field values?
We use the above method to perform a calculation of the
free energy per site f on the complex plane defined by
z = exp{−2βh}. The result is shown in Fig. 3 for the Ising
model in a 2D square lattice, for illustration, at two different
temperatures. For any temperature, one always observes the
minimum of f at exactly the unit circle, a verification of the
Lee-Yang theorem. For T < Tc, the minimum of f is located
exactly along the unit circle, with a uniform density for any
value of θ with z ≡ r exp(i θ ) at r = 1. By increasing T above
Tc = 2/ log(1 + √

2), the values of f around the positive real
axis start to increase, and no discontinuity is observed near
θ = 0 at the unit circle; observe that the dark region recedes
from the real axis close to unity. From the point of view of
the magnetization (to be discussed in the next section), this
translates into the disappearance of phase transition at this high
temperature. These results demonstrate how tensor network
methods can be useful in the study of partition function zeros,
via the free energy f on the complex plane, obtained after an
efficient RG contraction process. In the next section we shall
show that the computation of magnetization leads to a more
precise probe of the location of zeros and their density.

IV. MAGNETIZATION AND DENSITY OF YANG-LEE
ZEROS IN THE ISING MODEL

While one can obtain physical quantities directly from
the derivatives of the free energy, the RG algorithms also
provide a direct approach to compute expectation values of
local observables such as the energy and magnetization. In
order to compute the magnetization we define a new tensor B

Bu,d,l,r =
∑

i

miUi,uVi,dVi,lUi,r , (22)
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FIG. 3. (Color online) Free energy per site f in the complex
plane defined by z = exp (−2hβ) for (top) β = βc and (bottom) β =
βc/2, as obtained from tensor network calculations with Dcut = 10.
Darker regions around the unit circle correspond to minimum values
of f . For β < βc this minimum does not contact the real axis at z = 1.
The central region possesses very large values of free-energy density
and is removed so to enhance contrast around the unit circle.

where m1 = +1 and m−1 = −1, accounting for the local
magnetization on a single site. Thus, calculations of the
single-site magnetization imply evaluation of the expression

m = 1

Z
Tr(sie

−βH ) ≡ 1

Z
〈M〉, (23)

involving two contractions of a TN: one contraction computes
the norm Z (using exactly the tensors defined for the
calculation of the free energy), while the second contraction
differs from the first one by only the single-site tensor defined
in Eq. (22) at only one site. We note that due to the complex
field, the magnetization m is not necessary real and nor
restricted in the range [−1,1]. Along the RG process, 〈M〉 is
balanced by a prefactor |αk|, obtained from the RG flow from
Z, and that keeps the numerical process bounded at each step.
We use the ratio Eq. (23) along the RG procedure to ensure
convergence, which normally takes about 50 steps. Performing
two contractions after the RG has converged, we obtain a direct
measurement of the magnetization in the state represented by

x
0.1 0.2 0.3 0.4

m
(x

)

0.8

0.85

0.9

0.95

1

1.05

z = 1, exact
z = -1, exact
z = 1, D=15
z = -1, D=15

x
0.1 0.2 0.3 0.4

10 -10

10 0

FIG. 4. (Color online) Magnetization as a function of x ≡
exp (−2β) at the points z = 1 and z = −1 for the 2D Ising model.
Solid lines are obtained from the analytical expressions in Eqs. (24)
and (25), and marks are obtained using tensor networks with Dcut =
15. While the precision decreases around the transition point, it
remains below 10−4 for this choice of Dcut (see inset).

the TN. This allows a complete study of the magnetization for
all complex values of the magnetic field h.

For the Ising model on the 2D square lattice, only two exact
solutions of m are known in the complex plane [51]: (i) the
seminal solution at z = 1,

m(z = 1) =
{

1 + x2

(1 − x2)2

[
1 − 6x2 + x4)

1
2
]} 1

4

(24)

and (ii) on the opposite side of the unit circle, at z = −1,

m(z = −1) =
{

(1 + x2)2

1 − x2

[
1 + 6x2 + x4)−

1
2
]} 1

4

(25)

with x ≡ exp (−2β). We use these exact analytic results to
benchmark the performance of the RG contraction. In Fig. 4
we present calculations of m vs x at points z = 1 and −1,
and from comparison with the exact results, we find that
the error of m (as evaluated for different Dcut) is bounded
below 10−4, even close to the transition point. This clearly
demonstrates that TN methods can provide an accurate picture
of the magnetization for complex values of the magnetic
field. We remark that close to a phase transition, numerical
accuracy can be improved by increasing the bond dimension
(Dcut). Furthermore, more sophisticated RG algorithms can be
employed [49,52]. Equations (24) and (25) already provide
useful information regarding the properties of the model and
the partition function zeros. According to Eq. (24), at z = 1
(or equivalently h = 0) there is a critical value of x (or
equivalently kBTc ≡ 1/βc) beyond which no magnetization
is present, showing a phase transition. This transition for the
2D Ising model appears at βc = ln (1 + √

2)/2. At θ = π ,
however, m always increases with the temperature (with
a value becoming larger than unity increasingly), and a
divergence builds up here in the local magnetization at very
large temperature T . This buildup of divergence also implies
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FIG. 5. Magnetization per site in the complex plane defined by
z = exp{−2βh}, as obtained from the TRG with Dcut = 8, for the
Ising model on the 2D square lattice. The temperature is fixed at (top)
β = βc and (bottom) β = βc/2. A discontinuity in m appears only at
points on top the unit circle, and for a range of angles θ that changes
with the temperature.

the buildup of partition function zeros; see Eq. (27) and further
discussions below.

In Fig. 5 we plot for the 2D Ising model the magnetization in
the complex z plane. It shows a discontinuity only at exactly the
unit circle. For the magnetization at two different temperatures
we can observe how the temperature affects this discontinuity.
For T < Tc this discontinuity appears all along the unit circle,
even close to the positive real axis. However, at a higher
temperature T > Tc, the discontinuity around θ = 0 vanishes,
and a smooth region emerges around there close to the positive
real axis.

The RG method presented above can be extended to the
study of higher-dimensional lattices. Using a tensor network
structure resembling that of the spin lattice, the connectivity of
each component increases and the rank of the tensors becomes
larger at higher lattice dimensions. Thus, the computational
cost associated to the RG process (which depends directly on
the rank and dimension of the tensors) is larger, and we can
only reach smaller bond dimensions (and hence less precision)
using the same resources, compared to two dimensions. For the
Ising model in a simple 3D cubic lattice the tensors have rank

1
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0.5
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-1m
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)

FIG. 6. Following Fig. 5, magnetization per site m in the complex
z plane for the Ising model on the 3D simple cubic lattice. Two
temperatures are fixed, β = βc (top, Dcut = 5) and β = βc/2 (bottom,
Dcut = 9). Above the critical temperature, the discontinuity of m turns
into a smooth slope around the positive real axis.

6, and are obtained in a similar way to the 2D case, resulting
in the tensor

Au,d,l,r,f,b =
∑

i

Ui,uVi,dVi,lUi,rUi,f Vi,b. (26)

Using the HOTRG procedure combining two tensors of rank
6 at each step, the 3D lattice gets contracted to a single
tensor. The magnetization in the complex plane is obtained
also similarly as in two dimensions and is plotted in Fig. 6.

How do we then obtain the density of the zeros? The Lee-
Yang theorem states that for the ferromagnetic Ising models,
the partition function zeros lie on a unit circle in the complex
z plane. The density of zeros g(θ ), for any θ along the unit
circle reiθ with r = 1 is related to the discontinuity of the
magnetization [3,53],

lim
r→1+

Re(m) − lim
r→1−

Re(m) = −4πg(θ ). (27)

From our calculations we observe how the magnetization
shows a discontinuity at the unit circle, and how this discon-
tinuity changes with the temperature. For the Ising model, we
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FIG. 7. (Color online) Magnetization m(r → 1−) for the 2D
Ising model using the TN TRG with bond dimension Dcut = 45.
Via the relation between the magnetization and the density (28), the
main features of the density of Yang-Lee zeros are obtained in a
range of temperatures. For T < Tc, a uniform distribution of zeros is
obtained along the unit circle. At T = Tc, a drop in the density near
the positive real axis marks the presence of a phase transition. For
T > Tc, a gap around the real axis appears and no zeros are found up
to a critical value θe.

observe that limr→1+ Re(m) = − limr→1− Re(m) and hence

lim
r→1−

Re(m) = 2πg(θ ). (28)

Using Eq. (27) or Eq. (28) we can thus directly relate our
calculation of m to the density of zeros along the unit circle.
Confirming the Lee-Yang theorem, our results show that the
density g(θ ) is zero around the real axis for T > Tc, and thus
forms a gap of zero density for θ < θe, where θe the smallest
value of θ below which no zeros occur. As the temperature
increases, the zeros move towards θ = π , and the density there
keeps increasing with temperature, which is what was revealed
by Eq. (25). At precisely T = Tc the density at the point z =
1 drops to zero, indicating the temperature threshold of the
existence of phase transitions. We plot in Fig. 7 the density
g(θ ) for three different temperatures around Tc. The density
of zeros is flat below Tc, and exactly at T = Tc we observe a
drop in the density around the real axis. An entirely different
behavior for the zeros is observed at T > Tc.

At the critical temperature T = Tc the relation between
the magnetization and the external field implies the following
scaling relation of the density of the zeros,

g(θ ) ∼ |θ |δ, (29)

where δ is the magnetization-field critical exponent. In Fig. 8
we plot the density at T = Tc, where we observe the detailed
drop of the density at exactly z = 1, and the inset shows the
estimation of the exponent. From these calculations we obtain
an estimation of δ = 15.0(2) in agreement with the 2D Ising
magnetic exponent δ = 15 [2]. Proceeding in a similar way for
the higher-dimensional lattice, we use in our calculations an
estimated critical temperature Tc = 4.51154 [54–56] for the
3D Ising model in a simple cubic lattice. Plotting the density
at this temperature (see Fig. 9) we obtain the critical exponent

θ
0 0.1 0.2 0.3 0.4

m
(θ

)

0.7

0.75

0.8

0.85

0.9

0.95

ln(θ)
-4 -3 -2 -1

ln
(m

)

-0.4

-0.3

-0.2

-0.1

0

FIG. 8. (Color online) Magnetization along the unit circle (r →
1−) for different values of θ at exactly β = βc. Via the relation
between the magnetization and the density (28), the inset shows the
relation log(m) vs log(θ ) following the relation g ∼ |θ | 1

δ , with a value
of δ(Dcut = 30) = 15.0(2) (for the Ising model in 2D, δ = 15).

δ = 4.8(3) from the relation g ∼ |θ |δ [for a 3D Ising model in
a simple cubic lattice δ = 4.789(2)].

V. EDGE SINGULARITIES AT T > Tc

The structure of the density of zeros changes dramatically at
temperatures above Tc, as a gap with no zeros on the unit circle
opens up around θ = 0, and it increases with the temperature.
The density of the Yang-Lee zeros vanishes for θ < θe and
becomes nonzero starting at an edge value θe [53]. The value θe

can be directly determined from the density obtained using the
TN method, and has strong dependence with the temperature.

θ
0 0.05 0.1 0.15 0.2 0.25 0.3

m
(θ

)

0.3

0.4

0.5

0.6

0.7

0.8

ln(θ)
-2.5 -2 -1.5

ln
(m

)

-0.6

-0.4

-0.2

FIG. 9. (Color online) For an Ising model in a cubic lattice,
the magnetization and hence the density of Yang-Lee zeros at the
estimated critical temperature Tc = 4.51154 along the unit circle in
the complex plane is plotted using a bond dimension Dcut = 14. Via
the relation between the magnetization and the density (28), it is
observed that this density is zero at the real axis θ = 0, and increases
along the unit circle. The inset shows the calculation of the critical
exponent δ = 4.8(3) from the relation g ∼ |θ |δ [for a 3D Ising model
in a cubic lattice δ = 4.789(2)].
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ARTUR GARCÍA-SAEZ AND TZU-CHIEH WEI PHYSICAL REVIEW B 92, 125132 (2015)

T/Tc

1 2 3 4 5 6 7 8 9 10

θ e

0

0.5

1

1.5

2D square

3D simple cubic

FIG. 10. (Color online) Location of the partition function zero
closest to the positive real axis, as measured by the angle θe. Results
for the 2D square lattice (using Dcut = 20) and for a 3D simple cubic
lattice (using Dcut = 10) are shown, normalized by their respective
Tc. The location of the edge singularity θe is shifted towards θ → π

for increasing temperatures.

From the magnetization we obtain the value of θe(T ), depicted
in Fig. 10 for 2D square and 3D simple cubic lattices, as a
function of the temperature T normalized to their respective
Tc. While not exactly equal, these two curves show similar
features as they both increase rapidly after Tc and then have a
slower progression at larger temperatures.

In addition to θe, there is also a global movement of zeros
away from θ = 0 towards the opposite side of the unit circle
θ = π as the temperature increases. In Fig. 11 we plot the
density obtained around the unit circle as a function of θ

for a 2D square lattice. Eventually at a sufficiently large
temperature, the density will accumulate mostly at θ = π

θ
0.8 1 1.2 1.4 1.6 1.8 2

m
(θ

)

0

0.5

1

1.5

2

2.5

3

3.5

β=βc/3
β=βc/4

ln(θ)
-4 -3 -2

ln
(m

)

0

0.1

0.2 β=0.2

FIG. 11. (Color online) Density of zeros for the 2D Ising model
at different temperatures above the critical value Tc, as computed with
TN and Dcut = 45. A gap of zeros appears around the real axis for a
range of θ , e.g., up to a value of 0.8 for β = βc/3. This gap extends
to θe, the edge singularity with a high density of zeros. The value of
θe moves towards θ = π as the temperature is increased. Inset: At
β = 0.2, estimation of the exponent μ = −0.1(1).

and diverge as T → ∞. This is also verified by the diverging
behavior of m at z = −1 in Eq. (25).

The most striking feature in the behavior of the zeros is
the edge singularity in two dimensions: as θ approaches θe

from above, the density of zeros becomes diverging [53]. For
increasing values of T , the density on the unit circle evolves as
illustrated in Fig. 11. This singularity at θe has been identified
as a critical point [11], and as a nonunitary realization of
conformal symmetry [13]. It is characterized as follows,

g(θ ) ∼ (θ − θe)σ , for θ > θe, (30)

where θe is the position of the divergence at each temperature.
One expects a reduction of accuracy near a critical point,
especially for this edge-singularity critical point, and we only
obtain an estimated value of σ = −0.1(1), consistent with
the value from conformal field considerations σ = −1/6 [13].
A different picture appears in the study for the 3D simple
cubic lattice. There is no divergence of the density and σ is
positive [57]; see Fig. 6(b). However, due to small Dcut we can
use and the noisy data from the density, we do not obtain a
good estimate of σ .

VI. YANG-LEE ZEROS IN THE POTTS MODEL
WITH A COMPLEX FIELD

In the preceding sections we have presented a method to
obtain properties of the partition function zeros for lattice
models, focusing on the Ising model in two and three
dimensions. This approach can indeed be applied to any model
for which we have a TN description, and especially in classical
models where the tensors are readily obtained directly from
the Hamiltonian expression, as explained in the Ising models
above. For illustration, we shall consider the q-state Potts
models on the square and simple cubic lattices.

The tensor network description of the q-state Potts model
is obtained from

H =
∑
〈i,j〉

[1 − δ(σi,σj )] − h
∑

i

δ(σi,t), (31)

where σ = 0, . . . ,q − 1 and t ∈ [0,q − 1] but can be chosen
to be 0 for simplicity. The transition temperature of the q-Potts
model was found to be at βc = log(1 + √

q) [45]. Following
similar considerations as in previous sections, we obtain a
tensor network of an initial bond dimension q on the square
lattice (as well as the simple cubic lattice), where tensors
are located at the vertices of the lattice. The TRG method
is directly applied to this tensor structure. We compute the
magnetization

m = 1

Z
Tr(M e−βH ), (32)

where Z = Tr exp(−βH ) and

M = 1

N

∑
i

δ(σi,t). (33)

Similar to the explanation for the magnetization in the Ising
model (23), the computation of the magnetization in the
Potts model is also a ratio between two tensor network
contractions. The density of zeros is also obtained by searching
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FIG. 12. (Color online) The location of the zeros for the 2D q-
state Potts model using polar coordinates, as obtained with Dcut = 20.
At the corresponding critical temperature βc = log(1 + √

q) for each
q, the locus of zeros lies outside the unit circle. The location of zeros
is shown for the Potts model with q = 3, . . . ,6, where the distance
changes with θ showing a maximum value at θ = π for all q.

for discontinuity in the real part of the magnetization on the
complex plane.

The exact location of Yang-Lee zeros of the Potts model
has attracted attention as we lack the equivalence of the
unit circle theorem for this model. Their location has been
mostly estimated from finite-size extrapolation [18,58]. An
interesting feature of these findings is that for the Potts model
for q > 2 the zeros were believed to lie outside the unit
circle. Upon increasing the temperature, the zeros move further
away from the unit circle as the gap around real positive axis
opens. However, these previous results based on finite-size
extrapolation were questioned [46], and calculations directly
in the thermodynamic limit were not available.

Our approach explained earlier enables us to probe directly
the thermodynamic limit and to resolve the debate. In Fig. 12
we plot the location of zeros (obtained via the discontinuity in
the magnetization) for the Potts model at β = βc, for different
values of q. We clearly observe how the locus of zeros is
outside the unit circle, at a variable distance dependent on θ

and q. We have verified that our results have little dependence
on the bond dimension (for Dcut � 20), and this shows that
the RG schemes, such as the HOTRG, do provide efficient
method to access the thermodynamic limit. These results are in
good agreement with those in Ref. [18], providing a complete
picture of the locus of zeros at any θ in a precise way. As
a consequence of the large though finite correlation length
at q > 4 (of a few thousand sites [59]), we use a larger bond
dimension to achieve similar precision level for any value of q.
As we observe in Fig. 12, the farthest zero is located at θ = π

in agreement with previous finite-size study [18]. In Fig. 13
we show the movement of the zeros located at this point as
measured by 
r = |r − 1|, as we lower the temperature (i.e.,
increase β). At the limit T = 0 the zeros lie on the unit circle,
but this limit is reached only exponentially slowly with the

β
1 1.5 2 2.5 3

Δ
r

10-6

10-5

10-4

10-3

10-2

10-1

q = 3
q = 4
q = 5
q = 6

FIG. 13. (Color online) Distance to the unit circle 
r in the
complex plane at the point θ = π for the 2D q-state Potts model.
A bond dimension Dcut = 20 is used, and distances are shown for a
number of temperatures β. Increasing the value of q increases the
distance 
r , but decreases at higher temperatures. However, this plot
suggests that only in the limit T = 0 the zeros reach the unit circle.

inverse temperature, at a similar rate (
r ∼ e−4.2(2)β ), for any
q and other values of θ (not shown here).

In three dimensions, previous finite-size study was limited
to very small system sizes such as 3 × 3 × 3 [58], but the
zeros do not lie on the unit circle. What is their fate in the
thermodynamic limit? Again we use TN methods to directly
probe the zeros in this limit. In Fig. 14 we show the locus of
zeros for q = 3, 4 Potts model in the 3D simple cubic lattice.
These zeros are computed at the critical temperature T = Tc

from Ref. [60], and we clearly see that they are located outside
the unit circle in the complex z plane (except at θ = 0).
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FIG. 14. (Color online) The location of the zeros for the q = 3,4
Potts model using polar axis in the 3D simple cubic lattice, as obtained
up to Dcut = 12. At their respective critical temperatures [60] the locus
of zeros lie clearly outside the unit circle.
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VII. CONCLUSIONS

We have employed the tensor renormalization methods to
investigate the properties of the free energy and the distribution
of the partition function zeros (i.e., the Yang-Lee zeros) in the
complex field (analogous to the fugacity) plane. From the
position and the density of Yang-Lee zeros one can determine
important properties of the phase transitions of spin systems.
While the location of the zeros was rigorously established
by Lee and Yang for the Ising model, their distribution has
not been established precisely. We have demonstrated that the
tensor network methods provide useful tools to access such
information on the complex plane.

We have presented results for the density of zeros along
the unit circle in the plane of complex z = exp{−2βh} in both
2D and 3D Ising models, showing different characteristics
of the density at different temperatures compared to the
critical temperature. In particular from the distribution of
zeros at Tc we have extracted the magnetization-field critical
exponent. At higher temperatures we have determined how the
singularity edge θe moves with the temperature and estimated

the singularity exponent. All the results are in good agreement
with those from other techniques.

Going beyond the Ising models, we have also examined
the q-state (with q > 2) Potts model in both two and three
dimensions, where fewer analytic results were known. We
found that in the thermodynamic limit the Yang-Lee zeros
from these small system sizes do not lie on the unit circle
except at the zero temperature, and the approach to the unit
circle from high temperatures is exponentially close as the
inverse temperature. This resolves a previous debate about
whether the conclusion that the zeros are not on the unit circle
is indeed correct in the thermodynamic limit or simply due
to the finite-size effect. Possible future directions include the
application and generalization of the approach here to other
models for probing both Yang-Lee and Fisher zeros.
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[40] Román Orús, Phys. Rev. B 85, 205117 (2012).
[41] H. H. Zhao, Z. Y. Xie, Q. N. Chen, Z. C. Wei, J. W. Cai, and

T. Xiang, Phys. Rev. B 81, 174411 (2010).
[42] A. Garcia-Saez and J. I. Latorre, Phys. Rev. B 87, 085130 (2013).
[43] Q. N. Chen, M. P. Qin, J. Chen, Z. C. Wei, H. H. Zhao, B.

Normand, and T. Xiang, Phys. Rev. Lett 107, 165701 (2011).
[44] Y. Shimizu and Y. Kuramashi, Phys. Rev. D 90, 014508 (2014);

,90, 074503 (2014).
[45] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).

125132-10

http://dx.doi.org/10.1103/PhysRev.87.404
http://dx.doi.org/10.1103/PhysRev.87.404
http://dx.doi.org/10.1103/PhysRev.87.404
http://dx.doi.org/10.1103/PhysRev.87.404
http://dx.doi.org/10.1103/PhysRev.87.410
http://dx.doi.org/10.1103/PhysRev.87.410
http://dx.doi.org/10.1103/PhysRev.87.410
http://dx.doi.org/10.1103/PhysRev.87.410
http://dx.doi.org/10.1143/PTP.38.1182
http://dx.doi.org/10.1143/PTP.38.1182
http://dx.doi.org/10.1143/PTP.38.1182
http://dx.doi.org/10.1143/PTP.38.1182
http://dx.doi.org/10.1143/PTP.40.1328
http://dx.doi.org/10.1143/PTP.40.1328
http://dx.doi.org/10.1143/PTP.40.1328
http://dx.doi.org/10.1143/PTP.40.1328
http://dx.doi.org/10.1143/JPSJ.25.1220
http://dx.doi.org/10.1143/JPSJ.25.1220
http://dx.doi.org/10.1143/JPSJ.25.1220
http://dx.doi.org/10.1143/JPSJ.25.1220
http://dx.doi.org/10.1103/PhysRevLett.24.1409
http://dx.doi.org/10.1103/PhysRevLett.24.1409
http://dx.doi.org/10.1103/PhysRevLett.24.1409
http://dx.doi.org/10.1103/PhysRevLett.24.1409
http://dx.doi.org/10.1063/1.1664546
http://dx.doi.org/10.1063/1.1664546
http://dx.doi.org/10.1063/1.1664546
http://dx.doi.org/10.1063/1.1664546
http://dx.doi.org/10.1143/PTP.40.1246
http://dx.doi.org/10.1143/PTP.40.1246
http://dx.doi.org/10.1143/PTP.40.1246
http://dx.doi.org/10.1143/PTP.40.1246
http://dx.doi.org/10.1063/1.1665005
http://dx.doi.org/10.1063/1.1665005
http://dx.doi.org/10.1063/1.1665005
http://dx.doi.org/10.1063/1.1665005
http://dx.doi.org/10.1103/PhysRevLett.24.1412
http://dx.doi.org/10.1103/PhysRevLett.24.1412
http://dx.doi.org/10.1103/PhysRevLett.24.1412
http://dx.doi.org/10.1103/PhysRevLett.24.1412
http://dx.doi.org/10.1063/1.1665583
http://dx.doi.org/10.1063/1.1665583
http://dx.doi.org/10.1063/1.1665583
http://dx.doi.org/10.1063/1.1665583
http://dx.doi.org/10.1103/PhysRevLett.40.1610
http://dx.doi.org/10.1103/PhysRevLett.40.1610
http://dx.doi.org/10.1103/PhysRevLett.40.1610
http://dx.doi.org/10.1103/PhysRevLett.40.1610
http://dx.doi.org/10.1016/0550-3213(83)90499-6
http://dx.doi.org/10.1016/0550-3213(83)90499-6
http://dx.doi.org/10.1016/0550-3213(83)90499-6
http://dx.doi.org/10.1016/0550-3213(83)90499-6
http://dx.doi.org/10.1103/PhysRevLett.54.1354
http://dx.doi.org/10.1103/PhysRevLett.54.1354
http://dx.doi.org/10.1103/PhysRevLett.54.1354
http://dx.doi.org/10.1103/PhysRevLett.54.1354
http://dx.doi.org/10.1007/BF01014386
http://dx.doi.org/10.1007/BF01014386
http://dx.doi.org/10.1007/BF01014386
http://dx.doi.org/10.1007/BF01014386
http://dx.doi.org/10.1088/0305-4470/22/3/008
http://dx.doi.org/10.1088/0305-4470/22/3/008
http://dx.doi.org/10.1088/0305-4470/22/3/008
http://dx.doi.org/10.1088/0305-4470/22/3/008
http://dx.doi.org/10.1088/0305-4470/24/2/022
http://dx.doi.org/10.1088/0305-4470/24/2/022
http://dx.doi.org/10.1088/0305-4470/24/2/022
http://dx.doi.org/10.1088/0305-4470/24/2/022
http://dx.doi.org/10.1088/0305-4470/27/23/014
http://dx.doi.org/10.1088/0305-4470/27/23/014
http://dx.doi.org/10.1088/0305-4470/27/23/014
http://dx.doi.org/10.1088/0305-4470/27/23/014
http://dx.doi.org/10.1103/PhysRevLett.81.2000
http://dx.doi.org/10.1103/PhysRevLett.81.2000
http://dx.doi.org/10.1103/PhysRevLett.81.2000
http://dx.doi.org/10.1103/PhysRevLett.81.2000
http://dx.doi.org/10.1088/1751-8113/46/44/445202
http://dx.doi.org/10.1088/1751-8113/46/44/445202
http://dx.doi.org/10.1088/1751-8113/46/44/445202
http://dx.doi.org/10.1088/1751-8113/46/44/445202
http://dx.doi.org/10.1103/PhysRevD.91.094507
http://dx.doi.org/10.1103/PhysRevD.91.094507
http://dx.doi.org/10.1103/PhysRevD.91.094507
http://dx.doi.org/10.1103/PhysRevD.91.094507
http://dx.doi.org/10.1103/PhysRevE.57.1335
http://dx.doi.org/10.1103/PhysRevE.57.1335
http://dx.doi.org/10.1103/PhysRevE.57.1335
http://dx.doi.org/10.1103/PhysRevE.57.1335
http://dx.doi.org/10.1088/0305-4470/28/6/012
http://dx.doi.org/10.1088/0305-4470/28/6/012
http://dx.doi.org/10.1088/0305-4470/28/6/012
http://dx.doi.org/10.1088/0305-4470/28/6/012
http://dx.doi.org/10.1103/PhysRevLett.84.4794
http://dx.doi.org/10.1103/PhysRevLett.84.4794
http://dx.doi.org/10.1103/PhysRevLett.84.4794
http://dx.doi.org/10.1103/PhysRevLett.84.4794
http://dx.doi.org/10.1016/j.nuclphysb.2005.12.013
http://dx.doi.org/10.1016/j.nuclphysb.2005.12.013
http://dx.doi.org/10.1016/j.nuclphysb.2005.12.013
http://dx.doi.org/10.1016/j.nuclphysb.2005.12.013
http://dx.doi.org/10.1007/BF01888165
http://dx.doi.org/10.1007/BF01888165
http://dx.doi.org/10.1007/BF01888165
http://dx.doi.org/10.1007/BF01888165
http://dx.doi.org/10.1142/S0129055X99000325
http://dx.doi.org/10.1142/S0129055X99000325
http://dx.doi.org/10.1142/S0129055X99000325
http://dx.doi.org/10.1142/S0129055X99000325
http://dx.doi.org/10.1007/s00220-014-2036-7
http://dx.doi.org/10.1007/s00220-014-2036-7
http://dx.doi.org/10.1007/s00220-014-2036-7
http://dx.doi.org/10.1007/s00220-014-2036-7
http://dx.doi.org/10.1103/PhysRevLett.81.5644
http://dx.doi.org/10.1103/PhysRevLett.81.5644
http://dx.doi.org/10.1103/PhysRevLett.81.5644
http://dx.doi.org/10.1103/PhysRevLett.81.5644
http://dx.doi.org/10.1103/PhysRevLett.109.185701
http://dx.doi.org/10.1103/PhysRevLett.109.185701
http://dx.doi.org/10.1103/PhysRevLett.109.185701
http://dx.doi.org/10.1103/PhysRevLett.109.185701
http://dx.doi.org/10.1103/PhysRevLett.114.010601
http://dx.doi.org/10.1103/PhysRevLett.114.010601
http://dx.doi.org/10.1103/PhysRevLett.114.010601
http://dx.doi.org/10.1103/PhysRevLett.114.010601
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevE.64.016705
http://dx.doi.org/10.1103/PhysRevE.64.016705
http://dx.doi.org/10.1103/PhysRevE.64.016705
http://dx.doi.org/10.1103/PhysRevE.64.016705
http://dx.doi.org/10.1103/PhysRevB.71.024404
http://dx.doi.org/10.1103/PhysRevB.71.024404
http://dx.doi.org/10.1103/PhysRevB.71.024404
http://dx.doi.org/10.1103/PhysRevB.71.024404
http://arxiv.org/abs/arXiv:cond-mat/0407066
http://dx.doi.org/10.1103/PhysRevLett.98.070201
http://dx.doi.org/10.1103/PhysRevLett.98.070201
http://dx.doi.org/10.1103/PhysRevLett.98.070201
http://dx.doi.org/10.1103/PhysRevLett.98.070201
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1088/1751-8113/42/50/504004
http://dx.doi.org/10.1088/1751-8113/42/50/504004
http://dx.doi.org/10.1088/1751-8113/42/50/504004
http://dx.doi.org/10.1088/1751-8113/42/50/504004
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://dx.doi.org/10.1103/PhysRevB.78.205116
http://dx.doi.org/10.1103/PhysRevB.78.205116
http://dx.doi.org/10.1103/PhysRevB.78.205116
http://dx.doi.org/10.1103/PhysRevB.78.205116
http://dx.doi.org/10.1103/PhysRevB.85.205117
http://dx.doi.org/10.1103/PhysRevB.85.205117
http://dx.doi.org/10.1103/PhysRevB.85.205117
http://dx.doi.org/10.1103/PhysRevB.85.205117
http://dx.doi.org/10.1103/PhysRevB.81.174411
http://dx.doi.org/10.1103/PhysRevB.81.174411
http://dx.doi.org/10.1103/PhysRevB.81.174411
http://dx.doi.org/10.1103/PhysRevB.81.174411
http://dx.doi.org/10.1103/PhysRevB.87.085130
http://dx.doi.org/10.1103/PhysRevB.87.085130
http://dx.doi.org/10.1103/PhysRevB.87.085130
http://dx.doi.org/10.1103/PhysRevB.87.085130
http://dx.doi.org/10.1103/PhysRevLett.107.165701
http://dx.doi.org/10.1103/PhysRevLett.107.165701
http://dx.doi.org/10.1103/PhysRevLett.107.165701
http://dx.doi.org/10.1103/PhysRevLett.107.165701
http://dx.doi.org/10.1103/PhysRevD.90.014508
http://dx.doi.org/10.1103/PhysRevD.90.014508
http://dx.doi.org/10.1103/PhysRevD.90.014508
http://dx.doi.org/10.1103/PhysRevD.90.014508
http://dx.doi.org/10.1103/PhysRevD.90.074503
http://dx.doi.org/10.1103/PhysRevD.90.074503
http://dx.doi.org/10.1103/PhysRevD.90.074503
http://dx.doi.org/10.1103/RevModPhys.54.235
http://dx.doi.org/10.1103/RevModPhys.54.235
http://dx.doi.org/10.1103/RevModPhys.54.235
http://dx.doi.org/10.1103/RevModPhys.54.235


DENSITY OF YANG-LEE ZEROS IN THE . . . PHYSICAL REVIEW B 92, 125132 (2015)

[46] J. L. Monroe, Phys. Rev. Lett. 82, 3923 (1999).
[47] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, Phys. Rev.

Lett. 98, 140506 (2007).
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