PHYSICAL REVIEW B 92, 125129 (2015)

Planar one-way guiding in periodic particle arrays with asymmetric unit cell
and general group-symmetry considerations
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We develop a general theory for one-way optical guiding in magnetized periodic particle arrays. Necessary
conditions for noneven dispersion curves are derived and presented in the context of Frieze symmetry groups.
It is shown, for example, that one-way guiding can be supported in particle strips consisting of geometrically
isotropic particles arranged in transversely asymmetric arrays. A specific example is the case of two parallel
isotropic particle chains with different periods. The previously studied one-way effect based on the two-type
rotation principle is shown to be a special case. In the latter the exclusion of the appropriate Frieze symmetries is
achieved in a single linear chain by associating a geometric rotation to each particle, thus providing the narrowest
possible one-way waveguides. It is also shown that nearly any randomly created period may result in uneven

dispersion and one-way guiding.
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I. INTRODUCTION

One-way waveguides are important building blocks for
many functional systems in acoustics and electromagnetics.
They find applications as isolators and circulators, as a mean
to reduce disorder effects in waveguides [1], or even as a
means to match waveguides to a load [2] or to a leaky wave
nanoantenna [3].

Nonreciprocity and one-way guiding can be achieved either
by a medium’s nonlinearities, by spatiotemporal modulation,
or by magnetic biasing. Nonlinear nonreciprocal structures
[4-8] use the fact that reciprocity does not imply symmetric
field distributions of the forward and backward propagating
modes. Therefore, spatially varying material nonlinearity
created in an initially reciprocal waveguide may affect the
two modes differently and eventually result in nonreciprocity.
Since it is based on nonlinear effects, this method requires
large volumes, it is power dependent, and it may lead to
signal distortion. Alternatively, spatiotemporal variation of the
medium’s properties may violate reciprocity. For example, by
using a traveling wave to modulate the medium’s constitutive
parameters one may asymmetrically add a “momentum” (wave
number) bias to the otherwise symmetric mode picture. Several
nonreciprocal components and one-way waveguides have been
proposed using this idea, for electromagnetic waves [9,10] as
well as for acoustic waves [11]. These structures are linear
and magnetic-biasing free. However, the modulation effect is
usually quite weak, thus yielding a narrow one-way bandwidth
and a large device many wavelengths long. The third way to
violate reciprocity is using magneto-optical effects produced
by static magnetic biasing under which ferrites and plasmas
become gyrotropic. Then, if a waveguide is asymmetrically
loaded, isolation can be obtained [12]. Many of the recently
proposed one-way schemes in optics are based on this idea
[1,13-19]. However, these structures have lateral width of at
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least one wavelength. Ring resonators have been proposed as a
means to enhance nonreciprocity and reduce the device’s size.
The degeneracy of a pair of counterpropagating modes can be
removed by azimuthal spatiotemporal modulation [20-22], or
by magnetization [18]—yielding a mode-Q-factor dependent
isolation with a device footprint of the order of a wavelength.

Along an apparently different research endeavor, linear
periodic chains of equally spaced identical plasmonic nanopar-
ticles were studied in a number of publications [23-39].
Particle chains were proposed as guiding structures and
junctions in Refs. [25-32], as surface waves couplers [33],
and as polarization-sensitive waveguides [34]. When the
interparticle distance is sufficiently small, the guided optical
wave in such chains is highly localized, i.e., its spatial width
is much smaller than the wavelength that corresponds to the
operation frequency. Hence, they are termed as subdiffraction
chains (SDC’s). The chain Green’s function was calculated in
Ref. [35], and the SDC’s modal features were studied using
a general approach and spectral analysis in Refs. [31,32] and
were also considered in Ref. [36]. Green’s-function theories
revealing all the wave constituents that can be excited in
these structures were developed and discussed in detail in
Ref. [37]. Scattering due to structural disorder and its effect
on the modes were studied in Ref. [35], and in Ref. [38].
Propagation in curved SDC’s has been considered recently
in Ref. [39]. The effect of a liquid-crystal host of SDC’s
has been studied in Ref. [40], where the interesting option
of dynamically controlled SDC’s is suggested.

In Refs. [41-43] a family of magnetized plasmonic SDC
one-way waveguides, based on the “two-type rotation” princi-
ple, was proposed for one-way guiding and optical isolation.
As has been shown there, exposing a conventional spherical
particle SDC to external magnetic bias may formally create
nonreciprocity due to the Faraday rotation induced in the
plasmonic particles. However, this is not sufficient for optical
isolation since the resulting dispersion w(g) is still an even
function and no preferred direction is created. To achieve
the one-way property, the suggested structures consist of
magnetized, nonspherical, plasmonic particles arranged as a
linear array. Each particle in the array is rotated with respect
to its neighbors, rendering the chain chiral. The interplay
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between the field polarization rotation due to the gyrotropy of
the resonant particles and the structural chirality is utilized in
order to enhance nonreciprocity and create uneven dispersion.
Significant optical isolation and one-way guiding are then
obtained at operation points near the light cone—see [41-43].
These structures have two main advantages over other one-way
schemes. First, as said above, the effective lateral width of the
guided mode is much smaller than the wavelength. Second, it
has been shown that the required magnetic bias is considerably
weaker than the bias used in other magnetization-based one-
way schemes. This bias may be further reduced by utilizing the
enhanced Faraday rotation in a plasmonic particle consisting
of a core-shell geometry such as the particles studied in
Refs. [44,45]. However, despite their appealing properties,
a nanoscale fabrication of the proposed structures might be
somewhat challenging due to the apparent requirement for
precisely characterized geometrical features in the particles.
Here we approach the problem of enhanced nonreciprocity
from a wider point of view. Our study provides the necessary
conditions for uneven dispersion curves and one-way guiding
in planar particle arrays, some examples of which are shown
schematically in Fig. 1. The particles may or may not be
identical and symmetric. The necessary conditions for uneven
dispersion are characterized in the Frieze symmetry-groups
framework. The previously reported one-way chains based
on the two-type rotation principle [41-43] are shown to be
a special case that conveys the narrowest structure (but not
the simplest to fabricate). One of the important conclusions
of the present study is that almost any random construction
of the structure’s period would result, under magnetic bias, in
uneven dispersion and may function as an optical isolator. In
fact, due to the structural asymmetry requirements for uneven
dispersion studied here, and due to the fact that fabrication
errors are unavoidable, it may turn out that under magnetic
bias uneven dispersion is easier to obtain than even dispersion.

II. FORMULATION

We refer to the periodic particle “strips” shown schemat-
ically in Fig. 1. For convenience, let us denote the plane on
which the strips lie as the (x,y) plane, x being the strip axis.
The strip period is D. To study their symmetry properties
we define the following translation by d, reflection about the
horizontal or vertical line, and rotation by m operators in the
(x,y) plane:

Ta(x,y) = (x +d.y), (1a)
Ri(x,y) = (x,—y), (1b)
Ry(x,y) = (=x.y), (Io)
Ry (x,y) = (=x,—y). (1d)

We emphasize that the symmetry of any of the structures
presented, e.g., in Fig. 1 emerges not only from the locations
of the particles but also by the specific properties of the
particles populating these locations, e.g., their polarizabilities.
Our aim is to study the electrodynamic properties of the arrays
schematized in Fig. 1 and their potential use for enhanced
breach of time-reversal symmetries. In particular, we look
for the necessary conditions under which they support guided
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FIG. 1. (Color online) A periodic particle strip belongs to at
least one of the seven Frieze symmetry groups, invariant under the
following operations (in addition to invariance under 7p). (a) No other
symmetry—the pl group. (b) R,—the plm1 group. (c) R,—the
pllm group. (d) Glide reflection: R,7;, d < D—the pllg group.
(e) R,—the p2 group. (f) R, R, and R, 7y, d = D/2—the p2mg
group. (g) Ry, Ry, and R,—the p2mm group.

modes with uneven dispersion curves and, eventually, one-way
guiding.

The particles are much smaller than the free-space wave-
length A at the structure’s operation frequency w. Hence, we
use polarizability theory and the discrete-dipole approxima-
tion. The structure’s period consists of N particles, not neces-
sarily identical, each characterized by its own polarizability
matrix o,,n =1,...,N. In the present work, a necessary
condition for the asymmetries of «, is achieved by applying
a bias magnetic field By = ZBy, that affects essentially the
particle dipole response in the xy plane. Therefore the dipole
Z components are ignored, rendering &, a set of N matrices of
2 x 2 elements. We denote the location of the nth particles in
the mth period by r,, , and the dipole moment excited in this
particle by p,, ,. The structure’s electrodynamics is governed
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by the infinite difference equation:

N
Py =0 Z Z(m,n) G(rm,nvrk,l)pk,f’ 2

k=1

where G(r,r’) is the free-space Green’s-function matrix,
by which G(r,r’)p gives the electric field at r due to an
electric dipole p at r’. Here and henceforth, the absence of
summation limits indicates a summation over all integers, and
3% indicates a summation that excludes the v term. Due to
periodicity, we have

pm,n = pO,neimﬂD’ (3)

hence Eq. (2) can be rewritten as the following 2N x 2N
matrix equation (n = 1, ...,N):

N
MBP = (a,' =MP) py,, — > "M, po, =0, (4a)
=1

where M2 are N matrices of 2 x 2. The matrices (a, ' — M?)
reside in the N diagonal blocks of 2 x 2 elements each. M,, ¢
are 2 x 2 matrices residing in the off-diagonal blocks. M? and
M, , are given by the matrix sums

MP2(B) =Y " G(ron.rmn)e™?. (4b)

M, (B) =Y Gronrme)e™”. (4c)

The structure dispersion is the set of S(w)’s that nullifies
the determinant of Eq. (4a). An even dispersion curve is
obtained if this determinant is invariant (up to a 8-independent
multiplication constant) under the map g — —f. Below we
study the symmetries of Eq. (4a) under this map.

First, we note that the matrices M,? and M, , are particle
independent, and their symmetries emerge only from the
symmetries of G and from the symmetries (if any) of the lattice
site arrangements inside the strip period. These are studied in
Appendix A. For the diagonal blocks we have

MP(—g) = MP(8) = [MP(B)]" (5)
and for the off-diagonal blocks
M,,.o(—=B) = M, (B) = M, (B)]". ©6)

These properties hold just by a mere periodicity, and are proved
in Appendix A. Hence, under the mapping 8 — —p Eq. (4a),
that is written for g, is mapped to

N
M(—B)P = (e, =M?) po,, — D "My po,=0. (7

(=1

Hence, the mapping B+ —f is manifested by a block-
transpose operation on the matrix that consists of the blocks
M,, ;. Generally, even dispersion curve S(w) is obtained if there
is, up to a multiplication constant, a determinant-preserving
transformation by which one can obtain Eq. (7) from Eq. (4a).
Below we explore the conditions for even dispersion. The
simultaneous violation of all these conditions is a necessary
condition for uneven dispersion.
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A. Symmetric «,,’s

If the &, ’s are symmetric,

o, = ol

no

then from Eq. (6) we have [M(B)]” = M(—pB). Hence
IM(B)| = IM(—8)| (transpose preserves the determinant),
leading to even dispersion.

Vn, ®)

B. Nonsymmetric and different «,,’s

Assume now that o, are nonsymmetric and also not
necessarily identical. For simplicity, let us number the polariz-
abilities within a period along the positive £ and § directions,
i.e., from left to right and from bottom to top. With the use of
the inversion matrix I}, defined in Appendix B Eq. (B2), we
have

M(B) = Ly M(=p)Ly (%)
if the following conditions are satisfied:
Aysin =0, My, _,=MP Vn (9b)

and

M, =Myyi—nnsi—e, YEn. (9¢)

These conditions imply inversion symmetry (invariance under
Rr), that applies on both the particle coordinates [see
Appendix A, Egs. (A8)—-(A9b)], as well as on the particle
properties. Since Ii2  1s determinant preserving, it follows that
in inversion symmetric chain structures the dispersion curves
are always even, independently of the asymmetric form of each
of the individual polarizabilities.

To find another condition for even dispersion, we refer to
Eq. (A4b), by which applying R, on the chain is equivalent to
matrix transformation by I'2‘. Consequently, from Egs. (4b) and
(4c) it follows that applying R, on the structure is equivalent
to the matrix transformations

MP & MP (10a)
Ry th h
M[,n = 12 MZ,n 12; (IOb)

this operation merely changes the signs of the two off-diagonal
terms in the matrices Mf and My ,. We refer now to
Egs. (Alla) and (Allb) that hold if the set of points in
a period possesses horizontal reflection symmetry. Hence,
using the horizontal inversion matrix operator I}, defined in
Appendix B, we have

M’ (8) = yM(-p)L3y
if the structure possesses horizontal inversion symmetry and if

(11b)

(11a)

of =B, b, Yn=1,...N.

Since the operations in Eq. (11a) are determinant preserving,
it follows that under these conditions the dispersion curve is
even. Note that the condition in Eq. (11b) applies not only to
conventional spherical particles but also to plasmonic particles
under magnetization.
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Finally, we note that the glide-reflection transformation is
defined as R;,7;—see Fig. 1(d). However, 7, has no effect on
G and subsequently no effect on M? and M, ,. Therefore
the last results apply to symmetries under glide-reflection
transformations as well.

To summarize, it has been shown that if the structure
possesses inversion symmetry (p2 group), reflection symmetry
with respect to the chain axis (p11m group), or glide-reflection
symmetry (p11g group) an even dispersion is guaranteed even
if the particles themselves possess nonreciprocal properties
such as that arises, e.g., by magnetized plasmonic material.

C. The nonuniqueness of the unit cell

So far we have discussed the symmetries on the unit-cell
level. However, while the period length, D, is unique, the
choice of a unit cell is not. The latter always consists of N
particles, and there are up to N different choices for the unit
cell and even more possible M(8) (due to the freedom of
“numbering” the particles in the same unit cell [46]). Let us
define the set M as the set of all possible matrices M(B)
for a certain structure. If the determinant of the matrix M(8)
vanishes for a certain choice of the unit cell, then it must vanish
for all M—since all the matrices in M represent the wave
dynamics of the same structure. Therefore, if the operations
done on M(B) in the previous subsections do not result in the
mentioned variations of the same M(f) but do result in these
variations of one of the other matrices in M then the structure
must still possess even dispersion. For example, if the unit cell
does not possess an inversion symmetry, but upon inverting
the unit cell we obtain a differently structured unit cell, but
of the exact same original, preinverted structure—then the
dispersion is rendered even since the substitution § — —p
still preserves the zero determinant. A good example for this
is the p11g group, displayed in Fig. 1(d). A unit cell does not
possess any of the discussed symmetries—invariance under
R, or under R;. However, under R, we obtain a different
unit cell of the same structure, and therefore it is reciprocal.
This fact helps us finally establish the list of Frieze groups that
host even dispersions: pllm,pllg,p2,p2mg, and p2mm.
Uneven dispersion can only be found in groups pl and plm1.

D. Random period

Consider a periodic chain whose period is randomly
generated (e.g., randomly locating N particles inside the
period). Clearly, for N = 1 the notion of randomness becomes
meaningless. For N = 2 and if | = a», one may verify that
the period would always be invariant under R, i.e., it resides
in the p2 group and hence it possesses an even dispersion. Note
that this argument holds only for dipole-moment excitation. If
higher order excitations become relevant (e.g., quadrupoles),
then the above conclusion may not hold. However, for N > 3
nearly any random construction would reside in the p1 group
whether the particles are identical or not, yielding uneven
dispersion under magnetic bias (see Sec. III below).

E. Nonreciprocal sector-way metasurfaces

A new family of metasurfaces, termed as metaweaves, can
be obtained by invoking a procedure of “weaving” one-way
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particle chains (one-way “threads”). The resulting surface
possesses a novel “¢ sector-way” dynamics: when the surface
is excited by a point dipole it allows the propagation of
trapped modes only into a cone the vertex angle of which
is ¢. This structure has been suggested and studied in
Ref. [49]. With the present approach, however, one may design
nonreciprocal sector-way metasurfaces without the need to
directly weave one-way threads. Generally, the symmetries
of such metasurfaces can be studied in the framework of
the wallpaper groups in a manner similar to the study in the
previous subsections. However, there are 17 symmetry groups,
hence for brevity we use here a rule of thumb (see example
below). To achieve sector-way dynamics it is sufficient to
create a periodic metasurface whose period does not possess
R, Ry, and R, symmetries (i.e., the two-dimensional period
should not be invariant under these operations).

F. Distinctive features related to modeling
of nonreciprocal particle arrays

Consider a particle with no circular symmetry, but with an
isotropic (scalar) polarizability when not magnetized. A cube
made of isotropic dielectric material is an example of such a
particle [47]. An example of a structure made of such particles
is shown in Fig. 2(a). Formally, this structure resides in the
plml group (or in the p1 group if the particles in the lower
chain are rotated by an angle smaller than 7 /4). However,
since the polarizabilities are isotropic, this asymmetry will not
show up in the particle-dipole model, and the corresponding
dispersion is even also under magnetization. It should be
emphasized that the theoretical analysis above relates only
to the particle’s polarizabilities, as seen in, e.g., Egs. (8), (9b),
and (11b). Hence, the symmetries demonstrated in Fig. 1
should be perceived as symmetries that relate to particle
locations and polarizabilities (and not particle geometries).
In light of the above, the structure in Fig. 2(a) would possess
uneven dispersion only if the particles are sufficiently large,
so that higher-order multipoles are significantly excited and

(a)

VeSS S

FIG. 2. (Color online) Examples of symmetry considerations in
isotropic and nonisotropic particles. (a) A structure made of
nonisotropic particles that have isotropic (scalar) polarizability
when not magnetized. (b) Nonisotropic particles with nonisotropic
polarizability.
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are needed to model its dynamics. To contrast, the structure
in Fig. 2(b) consists of particles that possess anisotropic
polarizability. Hence, it resides in the p1 group both in the
formal geometrical sense (like the cube structure) and in the
polarizability sense (unlike the cube structure).

In conclusion of the above discussion, particle structures
may possess “hidden” symmetries that take effect only when
the particles are small, and disappear when considering larger
particles or a continuous medium. Furthermore, the ability to
assign “pointwise” rotation to a particle the polarizability of
which is nonisotropic (e.g., ellipsoids) adds degrees of freedom
not available in continuous medium or in one-dimensional
photonic structures such as the one studied in Ref. [13].

III. EXAMPLES

All the structures in the examples below consist of plas-
monic particles, exposed to a uniform transverse magnetization
bias By = ZBy. Generally, the single-particle polarizability
under magnetization can be found, e.g., in Ref. [42] for metal
particles of ellipsoidal shape, and in Ref. [44] for engineered
graphene particles using a more detailed quantum model based
on the Kubo theory [48]. We note that the latter possesses
quasistatic resonance very similar to that of the Drude model,
with resonant frequency the role of which is similar to that
of w, in metals, but in the 40-50-THz frequencies. For all
particles the off-diagonal terms of a, are imaginary and
of opposite signs, i.e., they satisfy Eq. (11b). The strength
of the nonreciprocity in & is measured generally by the
parameter K = oty /0 |. Furthermore, note that k = tan6
where 6 is the polarization-rotation angle associated with the
nonreciprocity. For metal particles under the Drude model «
gets a simple algebraic expression, from which the strength of
the magnetization level is easily extracted: k = wy,/w),, where
w), is the plasma resonance frequency and w, = eBy/m, is the
cyclotron frequency. For the engineered particles in Ref. [44]
the dependence of x on By is much more complicated—see,
e.g., Egs. (10) and (11) in the supplementary information of
[44]. To get a feeling of the numbers involved, we note that
in the examples below we typically have x = 0.0075-0.01.
Under the Drude model and for metals such as Ag, this
yields By way beyond any practical realization. However,
in the particles of [44], the magnetization strengths required
for these values of « are significantly less than 1 T in the
relevant frequency regime (see, e.g., Figs. 2 and 3 in that
reference).

To keep the algebra simple, the polarizabilities of the
magnetized spherical and elliptical particles in all the examples
below were calculated according to the formulas provided in
Ref. [42]. However, the final algebraic form of « in Ref. [44]
is precisely the same and it needs By < 1 T.

Finally, we note that the structures in the present study
are inherently non-Bravais lattices. Hence, they possess 2N
dispersion branches for each plasma resonance; N is the
number of particles in a period, and the factor 2 is due to
the vector nature of the particle’s dipole moment. To avoid
cluttering the dispersion diagrams we show below only the
branches where the noneven dispersion was examined and
one-way guiding was obtained.
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FIG. 3. (Color online) A planar periodic structure of group plm1
possessing uneven dispersion under magnetic bias normal to the
structure’s plane. (a) The structure geometry. (b) The dispersion for
& = 0.2. The vertical blue lines are the light cone. (c) A measure of
the uneven dispersion. (d) The response to a point dipole located at
the center, with the frequency shown by the horizontal blue line in (b).

A. plml group
1. By virtue of particle geometry

Figure 3(a) shows a structure consisting of two parallel
chains of plasmonic particles, with identical period lengths.
The chains differ by the corresponding particle’s volume: the
particles in one chain (lower) are of volume V, while
those of the other chain (upper) are of volume £V, & > 0.
The corresponding polarizabilities scale accordingly (« is
proportional to V). Clearly, for & # 1 the structure belongs
to the plml group. The other parameters are D = A,/3,
a = A,/12,and dy = 0.8 D, where A, is the plasma resonance
wavelength and a is the particle diameter. The magnetic bias
strength corresponds to k = 0.01 (=wy,/w,, in Drude metals).
The dispersion of plasmonic modes guided by the structure is
obtained by looking for the real values of 8(w) that nullify the
determinant of Eq. (4a). Figure 3(b) shows the dispersion for
& = (.2 (the particle’s diameter scales as 0.2'73 2 0.585). The
uneven nature is evident. To get a feeling of how it depends
on the parameter &, Fig. 3(c) compares B(w;) on the left
side (Br) and on the right side (Bg) of the dispersion, at a
frequency w, for which both are real. Only at§ = 1 one obtains
BL = Bg- Finally, Fig. 3(d) shows the response of the structure
when excited by a point dipole located at its center, with the
frequency shown by the horizontal line in Fig. 3(b). Note that
at this frequency there is only one intersection with a guided
mode. This mode has negative B and negative group velocity
[the red line in Fig. 3(b)]. There are also two intersections with
the light-line cone corresponding to the so-called light-line
modes. The latter are practically unexcitable in SDC-type
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FIG. 4. (Color online) (a) Two parallel chains of identical parti-
cles, but with different periods. (b) The structure dispersion. (c) The
response to a point dipole located at the structure’s center, with the
frequency shown by the horizontal blue line in (b).

structures, whether reciprocal [31,37] or nonreciprocal [43].
Hence only the —% propagating mode can be excited, as seen
in the response in Fig. 3(d).

2. By virtue of lattice geometry

Figure 4(a) shows another structure of the plml1 group,
consisting of two parallel chains of identical particles but with
period lengths D and D/2. The other parameters are D =
Ap/4, a=1,/24, dy = 0.5D, and k = 0.0075 (=wp/w), in
Drude metals). The uneven dispersion and one-way operation
are seen in Figs. 4(b) and 4(c).

B. p1 group

In this group the structure period possesses no symmetry
at all. Hence, in principle, it is the easiest to fabricate
or synthesize. In fact, nearly any period that consists of
randomly located particles would result in uneven dispersion
under transverse magnetic bias, and consequently in one-way
operation. Below we show two examples of ordered and
random periods.

1. By virtue of lattice geometry

The geometry shown in Fig. 5(a) consists of three parallel
chains of identical particles and equal period length D. Two
of which are precisely aligned, while the third is shifted
along its axis by the distance §. Note that for §/D = +0.5
the structure belongs to the plml group, and for &/D #
40.5,0 the structure is in the p1 group. The parameters are
period length D = A, /6, particle radius a = 1, /24, distance
between the chains dy = 0.75D, and magnetic bias level that
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FIG. 5. (Color online) A planar periodic structure of group p1lm1
if 6 = +0.5D, and to the pl group if § # +£0.5D,0. For 6 # 0
it possesses uneven dispersion under magnetic bias normal to the
structure’s plane. (a) The structure geometry. (b) The structure’s
dispersion for § = 0.4d. (c) A measure of the uneven dispersion.
(d) The response to a point dipole located at the structure’s center,
with the frequency shown by the horizontal blue line in (b).

corresponds to k = 0.01. Figure 5(b) shows the dispersion for
6 = 0.4D. Figure 5(c) shows |B.| — |Br| at a frequency w;
for which guiding exists for both sides (w; = 0.556053w),),
versus 8/D for the range —0.5 < §/D < 0.5. Figure 5(d)
shows the structure’s response to a point dipole located at its
center.

To get a feeling of actual array parameters and the effect
of loss, we note that when using Ag particles the parameters
above correspond to A, = 150 nm [50], particle diameter is
2a = 12 nm, D = 25 nm, and dy = 19 nm. The loss parameter
of Ag is T = 0.5 x 1072 s. Due to the presence of loss S
becomes complex and dispersion curves such as those in Fig. 5
cannot be drawn. Instead, we use the working point shown
in Fig. 5 to simulate the structure response. The results are
shown in Fig. 6. It is seen that while the signal itself decays as
it propagates along the structure, the one-way property is still
profound and survives the loss, as evident from the the isolation
ratio. Achieving the required « under the Drude model for
Ag requires magnetization levels that are far beyond practical
values. However, we note that essentially the same physical
dimensions would apply for structures made of the particles
studied in Ref. [44] (2a =~ 10 to 20 nm and central frequency
in the range of 40-50 THz), with By in the order of 1 T or less.

2. By virtue of particle geometry and randomness

In all the examples so far, our structures consist of at least
two parallel periodic chains. Can one obtain uneven dispersion
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FIG. 6. (Color online) The structure in Fig. 5, but for Ag
particles with loss. (a) Response. (b) The structure isolation
ratio |p(—x)|/|p(x)| that provides a measure of the one-way

property.

using a single chain? It is clear that, as long as the particles
themselves are spherical, invariance of a single perfectly linear
chain under R, cannot be broken. Hence such structures
belong to the p11m group (at least) and their dispersion would
always be even.

However, if the particles are not precise spheres (e.g.,
ellipsoids), one may assign the property of geometrical
rotation to each particle. This property is not invariant under
reflection, hence it opens the way to achieve uneven dispersion
using a single chain. This approach of using chiral chains to
achieve one-way plasmonic guiding has been suggested and
studied in Refs. [41-43]. Since it incorporates geometrical
rotation and Faraday rotation simultaneously, it is termed as
the two-type rotation principle. We refer the reader to [42,43]
for examples of planar chains. Hence, in the context of the
present study, the two-type rotation principle can be viewed
as a method to generate p1 or plm1 structures systematically,
using only a single chain. The studies in Refs. [42,43] dealt
with structures where the rotation of the nth ellipsoidal particle
is given by 6, = nA6. If A6 /x is rational, this would result
in a perfectly periodic chain.

The generalization of the previous studies, as suggested by
the present work, is not only of formal nature. It may have
also important practical implications. In fact, almost every
random generation of a period would end up ina p1 group and
may provide one-way guiding. We demonstrate this important
finding within the family of the two-type rotation structures.
Figure 7(a) shows, schematically, a chain of rotated prolate
ellipsoids whose period D consists of three particles. The
ellipsoid rotation angles are chosen at random. In the specific
example here we have (6;,6,,03) = (0.329,0.794,0.468)r.
Other parameters are D = X,/3, a = A,/27 (prolate’s ma-
jor axis), b = 0.9a (prolate’s minor axis), and x = 0.0075.
Figure 7(b) shows the corresponding dispersion, and Fig. 7(c)
shows the chain response to a point-dipole excitation at its
center. One-way behavior is evident, with isolation of nearly
10~ over distances of five to six wavelengths.

PHYSICAL REVIEW B 92, 125129 (2015)
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FIG. 7. (Color online) An example of a periodic chain of ran-
domly rotated ellipsoidal particles. (a) A schematic view of the
structure. (b) The dispersion for (6;,6,,0;) = (0.329,0.794,0.468)x.
(c) Response to a dipole excitation.

C. Nonreciprocal sector-way metasurfaces

An example of a sector-way metasurface, or metaweave,
is shown in Fig. 8(a). It is a generalization of the structures

(a) @ w (®) (b)
(*]
(%)
OB,
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—>9<—
2a
(%) 00 (- X ()
2 0 2
(©)
40
20
=
3 0
-20
-0 i
-50 0 50
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FIG. 8. (Color online) The metaweave. (a) Lattice geometry,
possessing no symmetry under R;,R,, and R,. Under normal
magnetic bias this structure possesses sector-way guiding. (b) A
dispersion contour. The red circle in the center is the light cone.
(c) Response to a point-dipole excitation.
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suggested in Ref. [49]. The structure period in both directions
is D, and it consists of only three spherical particles located at
r; = (0,0), r; = (0.75,0)D, and r3 = (0.25,0.75)D. Clearly,
this period does not possess R, Ry, and R, symmetries. We
have calculated the dispersion surfaces and dipole response
of the structure with the following parameters: D = A,/2,
a = A,/24, and « = 0.005 (the weakest magnetic bias in our
examples). Figure 8(b) shows the dispersion contour for the
frequency w = 0.5762249w,. Note the asymmetric shape: it
is not invariant under the map B +— —pf. The circle in the
center is the light cone. Figure 8(c) shows the response to
an excitation by point dipole located at the center, with the
frequency corresponding to Fig. 8(b). Sector-way response is
evident.

IV. CONCLUSIONS

General symmetry considerations were used to predict the
conditions under which one may obtain uneven dispersion
curves and optical isolation in particle arrays. The idiosyn-
cracies of dipole-dipole interactions related to asymmetry in
particle arrays were discussed. It has been shown that, under
magnetic bias, structures belonging to the p1 and p1m1 Frieze
groups shown in Fig. 1 possess this dispersion asymmetry. The
uneven dispersion can then be utilized for optical isolation.
The single chain structure for one-way guiding, based on the
two-type rotation principle, is shown to be a special case
where one excludes the necessary symmetries by assigning
geometrical rotation to each lattice point. Hence, it provides
the narrowest optical isolator. It is further shown that almost
any random periods with more than two particles would result
in uneven dispersion.

The results of this work provide a set of rules that can be
useful for designing optical isolators, and as building blocks
for optical circulators. Since one-way guiding inherently
suppresses propagation in the “wrong” direction, applications
that require minimization of back-reflections may benefit.
These applications can be, for example, new ways to feed
electromagnetic components as antennas and resonators in a
perfectly matched fashion [2,3].

APPENDIX A: MATRICES SYMMETRY PROPERTIES

The free-space electric field E(r) due to a point dipole p at
r' is given by

E@r) = eolG(R){kz(ﬁ X p) X A

R 1 ik
+[3n(n~p)—p]< ——)},

2R (A1)

where G(R) = 4nR)"'¢*X, R=1|r—7¢'|, and A= (@r —
r’)/ R. From the above, the free-space Green’s-function matrix
used in, e.g., Eq. (2) can be written as

G@r,r) = eolG(R)[kz(I ~U)+@3U - I)(% - %)}

(A2)
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where I is the identity matrix, and U = AT 4. G(r,r’) satisfies
the following symmetry relations:

G(r,r'Y =G (r,r) = G(r',r), (A3)

that are a manifestation of the free-space reciprocity and
symmetry. If r,r’ are restricted to the z = 0 plane, then G
is reduced to a symmetric 2 x 2 matrix:

Gy = (gxx gxy>’

xy 8y

(Ada)
satisfying

GR,r Ryr') = ( 8 _gﬂ’) =DG(r.r)It, (A4b)
—8xy 8yy

where I'21 = diag(—1,1). The last equality above deals with
reflection about the x axis. A similar relation holds for the
operation R,. Furthermore, inversion leaves G unchanged:

G(Ryr,R.r') = G(r,r). (Adc)

We turn to discuss the matrices M,? and M,, 4, defined in
Egs. (4b) and (4c). Due to the periodicity of our structure we
have Vm,n, £

ron —FTmn =T—me —Foe = —xmD. (AS)

The first symmetries of M? and M, , emerge only from
Eq. (A3) and from the strip periodicity. For M?(B8) we have

Mr?(_IB) = ZOG(rO,nvrm,n)eiimﬂD

m

= ZOG(rO,n vrfm,n)eimﬁD~ (A6)

We use now Eq. (A5) with £ = n, and Eq. (A3) in Eq. (A6).
The result is Eq. (5).
Regarding M,, ¢(—f),

Mn.[(_,B) = Z G(r(),narm,i)eiimﬂD

=Y Gronr-moe™?; (A7)

however, from Eq. (A5) ro,, — ¥_m.¢ = Fmn — Fo. By using
this result and Eq. (A3) in Eq. (A7), we obtain Eq. (6).

1. Inversion and reflection symmetries

If the structure possesses more symmetries than that of a
mere periodicity, their footprints appear as more symmetries of
M?P and M,, ;. To explore them let us number the points within
aperiod from left to right and from bottom to top. Then, the set
of points in a period r¢ 1,702, - . . ,Fo, ;N POSSEsSses an inversion
symmetry if Vn = 1,...,N:

Rnro,n = _(xO,nay(),n) =T0o,N+1-n- (A8)

Using this result together with Egs. (4b), (4c), (A4c), and
(AS), we obtain for an inversion symmetric set of points
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nt=1,....N)
MO, =M, (A%
M, =Mpyiinnii—e. (A9b)

Likewise, if the set of points possesses horizontal reflection
symmetry

Ruron = (Xo,n, — Yo,u) = To,N+1-n (A10)

then using Eq. (A4b) in the definitions of M? and M, , we
obtain

DMPT =My, ., (Alla)
BM, oI5 = My nei—c (Allb)

APPENDIX B: INVERSION AND REFLECTION
OPERATIONS

Let R present a set of N points in the plane; R =
(ri,ra, ... ry) = (x1,y1,X2,¥2, - . . ,Xn,yn). Assume that the

PHYSICAL REVIEW B 92, 125129 (2015)

points are numbered, e.g., from left to right and from bottom
to top. Then, up to an arbitrary linear shift of the entire set, an
inversion R, of the set of points can be characterized by the
matrix I, :

R.R=1L,R", (B1)

where the nonzero entries of I ~ occupy only the secondary
block-diagonal elements, and are given by N conventional
2 x 2 identity matrices I, [I, = diag(1,1)]:

0 0 ... 0 1L
, 0 0 ... L 0
L, =—|. . (B2)
N : 0 0

L 0 ... 0 0

We note that |Ii2 v| = 1, hence operation by I' is determinant
preserving. Likewise, we note that reflection about the x axis—
horizontal reflection R,—is characterized by the matrix 1%, :

RyR =D\ R", (B3)

where I, = diag(@8, 18, ... . Ib), and I} = diag(—1,1).
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