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A simple and efficient approximation scheme to study electronic transport characteristics of strongly correlated
nanodevices, molecular junctions, or heterostructures out of equilibrium is provided by steady-state cluster
perturbation theory. In this work, we improve the starting point of this perturbative, nonequilibrium Green’s
function based method. Specifically, we employ an improved unperturbed (so-called reference) state ρ̂S ,
constructed as the steady state of a quantum master equation within the Born-Markov approximation. This
resulting hybrid method inherits beneficial aspects of both the quantum master equation as well as the
nonequilibrium Green’s function technique. We benchmark this scheme on two experimentally relevant systems in
the single-electron transistor regime: an electron-electron interaction based quantum diode and a triple quantum
dot ring junction, which both feature negative differential conductance. The results of this method improve
significantly with respect to the plain quantum master equation treatment at modest additional computational
cost.
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I. INTRODUCTION

Electronic transport in the realm of molecular scale junc-
tions and devices has become a subject of intense study
in recent years [1–7]. Nowadays, the controlled assembly
of structures [8] via electromigration [9–17], the contact-
ing in mechanical break-junction setups [18–21], electronic
gating [17,19,22], and measurement via scanning tunneling
microscopy [23–26] have become established tools, ultimately
opening routes from elementary understanding to device
engineering. Prompted by these formidable advances in exper-
imental techniques, the characterization of transport through,
e.g., molecules bound by anchor groups to metal electrodes
[20,21,27], heterostructures [28,29], or nanostructures on
two-dimensional substrates [28,30–35] has become feasible.
These constitute the foundation for future applications in
electronic devices based on single-electron tunneling [36],
quantum interference effects [37–43], spin control [44,45],
or even quantum many-body effects [9,10,12,46,47] such as
Kondo [48] behavior [49–53].

Typically, the electronic transport through such devices
is significantly influenced by electronic correlation effects,
which may become large due to the reduced effective di-
mensionality and/or confined geometries. This is reflected,
for instance, in major discrepancies between experimen-
tal and theoretical current-voltage characteristics obtained
with (uncorrelated) nonequilibrium Green’s function [54–57]
calculations based on ab initio density functional theory
states [1,58–61]. The inclusion of many-body effects in the
theoretical description of fermionic systems out of equilibrium
[54,62–64] is challenging and an active area of current research
[65–73]. Suitable approximations need to be devised in order
to solve a finite strongly correlated quantum many-body
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problem out of equilibrium coupled to an infinite environment.
Typically, the nonequilibrium setup consists of a correlated
central region (system) attached to two leads (environment).

A well-established method for treating such open quantum
systems is by means of quantum master equations (ME)
[74–79]. Herein, the environment degrees of freedom are
integrated out and usually incorporated in a perturbative
manner. The ME approach allows a detailed investigation
of transport phenomena [44,45] and recent self-consistent
extensions attempt to cure some of its long-standing limitations
[80].

In the framework of nonequilibrium Green’s functions
(NEGF), various schemes exist to approximately calculate
the electronic self-energy of the correlated region (see, e.g.,
Refs. [67,81–86]). In cluster approaches, such as cluster
perturbation theory (CPT) and its improvement, the variational
cluster approach (VCA) [87], the whole system is partitioned
into parts which can be treated exactly and determine the
self-energy. Originally devised for strongly correlated systems
in equilibrium [80,89], both approaches have recently been
extended to nonequilibrium situations in the time-dependent
case [90,91] as well as in the steady-state [91,92]. In previous
work we applied the steady-state CPT (stsCPT) to obtain
transport characteristics of heterostructures [92], quantum dots
[93–95], and molecular junctions [96,97] and obtained good
results even in the challenging Kondo regime [48,93,94].

A key issue in the CPT approach is to identify an appropriate
many-body state for the disconnected correlated cluster in the
central region, as a starting point of perturbation theory, the so-
called reference state. Up to now, a common choice in stsCPT
is to use an equilibrium state at some temperature TS (often
TS = 0) and chemical potential μS in-between the values of
the leads. Such an ad hoc choice is clearly unsatisfactory.
Furthermore, it fails to describe certain quantum interference
effects in transport phenomena as, for example, so-called
current blocking effects [44,45,96].

The purpose of this work is to improve on stsCPT by
constructing a consistent and conceptually more appropriate
reference state, given by the steady-state reduced many-body
density matrix ρ̂S obtained from a ME in the Born-Markov
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approximation. Within this quantum master equation based
stsCPT (ME-CPT), the ambiguity in defining μS and TS for
the central region is resolved. The equilibrium case, in which
μS and TS coincide with those of the environment, is automat-
ically included. In contrast to standard ME approaches, lead
induced level-broadening effects are accounted for and the
noninteracting limit is reproduced exactly, as in the original
stsCPT. In addition, ME-CPT is able to capture the previously
mentioned current blocking effects, as shown in the following.

Other NEGF/ME hybrid methods exist in the literature
[66,98–101]. For instance, in a recent work [102,103] we
have proposed a so-called auxiliary master equation approach
(AMEA), whereby a Lindblad equation is introduced which
models the leads by a small number of bath sites plus
Markovian environments. The AMEA is suited to address
steady-state properties of single-impurity problems as encoun-
tered in the framework of nonequilibrium dynamical mean
field theory [71,86,102,104–106]. In contrast, the ME-CPT
presented in this work is more appropriate to treat nonlocal
self-energy effects which cannot be captured by single-site
DMFT.

This paper is organized as follows: After defining the model
Hamiltonian in Sec. II, the ME-CPT is introduced in detail in
Sec. III. We present results obtained with the improved method
for two experimentally realizable devices: (i) in Sec. IV A,
an electron-electron interaction based quantum diode, and
(ii) and in Sec. IV B, a triple quantum dot ring junction which
both feature negative differential conductance (NDC).

For ring systems, extensive ME results and an explanation
of the NDC in terms of quantum interference mediated
blocking are available in Refs. [44,45].

II. MODEL

We consider a model of spin- 1
2 fermions, having in mind

the electronic degrees of freedom of a contacted nanostructure,
heterostructure, or a molecular junction. The Hamiltonian
consists of three parts:

Ĥ = ĤS + ĤE + ĤSE . (1a)

(i) The “system” ĤS represents the interacting central region,
i.e., the nanodevice or molecule consisting of single-particle
as well as interaction many-body terms. It is described by
electronic annihilation/creation operators fiσ /f

†
iσ at site i =

[1, . . . ,NS] where NS is typically small and spin σ = {↑,↓}
[107]. We will specify the particular form of ĤS in the
respective results section. (ii) The “environment” Hamiltonian
ĤE describes the two noninteracting electronic leads

ĤE =
2∑

λ=1

∑
kσ

ελkσ c
†
λkσ cλkσ , (1b)

where cλkσ /c
†
λkσ denote the fermion operators of the infinite

size lead λ with energies ελkσ and electronic density of states
(DOS) ρλσ (ω) = 1

Nλ

∑
k δ(ω − ελkσ ) where Nλ → ∞ are the

number of levels in the leads. The disconnected leads are held
at constant temperatures Tλ and chemical potentials μλ so that
the particles obey the Fermi-Dirac distribution pFD

λ (ω,Tλ,μλ)
[107,108]. (iii) Finally, the system and the environment are

coupled by the single-particle hopping

ĤSE =
2∑

λ=1

∑
ikσ

(t ′λikσ f
†
iσ cλkσ ) + H.c. (1c)

III. MASTER EQUATION BASED CLUSTER
PERTURBATION THEORY

Our goal is to obtain the steady-state transport character-
istics of the Hamiltonian Ĥ [Eq. (1a)] in a nonequilibrium
situation induced by environment parameters such as a bias
voltage VB or temperature gradient �T . The important step
consists in evaluating the steady-state single-particle Green’s
function in Keldysh space G̃ in the well-established Keldysh-
Schwinger nonequilibrium Green’s function formalism
[109–111]. In general, Ĥ is both interacting and of infinite spa-
tial extent. Therefore, explicit evaluation of G̃ is prohibitive in
all but the most simple cases which motivates the introduction
of approximate schemes.

One such scheme is CPT [88,89], in which one performs
an expansion in a “small” single-particle perturbation, for
example, the system-environment coupling ĤSE of Eq. (1c).
The unperturbed Hamiltonian ĤS + ĤE can be solved exactly.
While in the noninteracting case CPT becomes exact, results
obtained in the presence of interaction are approximate and
depend on the reference state for the unperturbed system.
A common practice within stsCPT [91,93–97] is to use a
pure state given by the equilibrium ground state |	0〉S of
the disconnected interacting system Hamiltonian ĤS . In a
nonequilibrium situation, this is still ambiguous, as it depends
on an arbitrary choice of the chemical potential μS and/or
temperature TS for the interacting finite system.

The goal of this work is to provide an unambiguous and
conceptually more rigorous criterion for the choice of the
reference state for the interacting central region. Ideally, the
reference state is selected such that it resembles best the
situation of the coupled system, i.e., for the full Hamiltonian
(1a) in the steady state. An appropriate choice in equilibrium
is to use the grand-canonical density operator [107] ρ̂S

gc as
reference state. In this case, TS and μS are uniquely determined
by the equilibrium situation. Equivalently, ρ̂S

gc is given by the
steady-state solution of a ME in the Born-Markov approxima-
tion (see Sec. III B), when coupling the system to one thermal
environment. From this viewpoint, a natural extension to the
nonequilibrium situation is to make use of a ME as well in
order to obtain a consistent reference state, given then by the
steady-state reduced density operator of the system ρ̂S . In this
work, a second-order Born-Markov ME is employed, which
yields the correct zeroth-order reduced density operator ρ̂S

(adjusted to ĤSE) [112,113]. Subsequently, ĤSE is included
within the CPT approximation [88,89] in order to obtain
improved results for the Green’s function and in turn for the
transport observables.

In summary, the ME-CPT method consists of the following
three main steps, analogous to a standard CPT treatment:

(1) Decompose the whole system into a small interacting
central region (system) and noninteracting leads of infinite size
(environment) [see ĤS and ĤE in Eq. (1a)].

(2) The step introduced in this work is to solve a ME for
the system in order to obtain the reduced density operator
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ρ̂S , which serves as a reference state to calculate the cluster
(retarded) Green’s function [114]

gR
ijσ (τ ) = −iθ (τ )tr{ρ̂S[fiσ (τ ),f †

jσ ]+} . (2)

(3) Reintroduce the system-environment coupling ĤSE

perturbatively [see Sec. III A and Eq. (4)] to determine the
Green’s function of the coupled system.

A. Steady-state cluster perturbation theory

Here, we briefly recall the main, well-established CPT
concepts and equations, as this is the starting point for the
formalism presented in this work. For an in-depth discussion
of CPT [115] and its nonequilibrium extension we refer the
reader to the literature [90,92,94,96].

The central element of stsCPT is the steady-state single-
particle Green’s function in Keldysh space [116]

G̃ =
(

GR GK

0 GA

)
, (3)

where R denotes the retarded, A the advanced, and K

the Keldysh component. In the present formalism, GR/A/K

become matrices in the space of cluster sites and depend on one
energy variable ω since time translational invariance applies
in the steady state.

As explained above, in order to compute G̃(ω) within
stsCPT one partitions Ĥ [Eq. (1a) in real space] into individ-
ually exactly solvable parts, in this case, the system ĤS and
the environment ĤE , which leaves the coupling Hamiltonian
HSE as a perturbation. The single-particle Green’s function
of the disconnected Hamiltonian is denoted by g̃(ω), which
obviously does not mix the disconnected regions. For the
noninteracting environment, the respective block entries of
g̃(ω) are available analytically [93,117]. For the interacting
part, the respective entries of g̃(ω) are calculated via the
Lehmann representation with respect to the reference state.
This can be computed, e.g., based on the band Lanczos method
[118–120].

The full steady-state Green’s function in the CPT approx-
imation is found by reintroducing the intercluster coupling
perturbatively

G̃(ω)−1 = g̃(ω)−1 − M̃ ; MR = MA = M , MK = 0 ,
(4)

where we denote by the matrix M the single-particle Wan-
nier representation of ĤSE . CPT is equivalent to using
the self-energy �̃ of the disconnected Hamiltonian as an
approximation to the full self-energy. Therefore, the quality
of the approximation can in principle be systematically
improved by adding more and more sites of the leads to
the central cluster. However, in doing so the complexity for
the exact solution of the central cluster grows exponentially.
Independent of the reference state, this scheme becomes exact
in the noninteracting limit.

B. Born-Markov equation for the reference state

In the following, we outline how to obtain the reference
state ρ̂S by using a Born-Markov-secular (BMS-ME) or more
generally a Born-Markov ME (BM-ME) [74–79]. Although

this approach is standard, for completeness we present here
the main aspects and notation. We loosely follow the treatment
of Refs. [39,77,78].

The real-time τ evolution of the full many-body density
matrix ρ̂ is given by the von Neumann equation ˙̂ρ = −i[Ĥ,ρ̂]−
[74]. Typically, the large size of the Hilbert space of Ĥ
prohibits the full solution in the interacting case. One thus
considers the weak coupling limit |ĤSE | � |ĤE| and performs
a perturbation theory in terms of |ĤSE| [79,121].

In the usual way, one obtains an equation for the re-
duced many-body density matrix of the system ρ̂S(τ ) =
trE{ρ̂} by working in the interaction picture ρ̂I (τ ) =
e+i(ĤS+ĤE )τ ρ̂(0)e−i(ĤS+ĤE )τ with respect to the coupling
Hamiltonian [Eq. (1c)]. One then performs three standard
approximations: (i) Within the Born approximation, valid
to lowest order in |ĤSE|, the density matrix is factorized
ρ̂I (τ ) ≈ ρ̂S

I (τ ) ⊗ ρ̂E
I . Furthermore, the environment ρ̂E

I is
assumed to be so large that it is not affected by |ĤSE| and
thus independent of time. (ii) The Markov approximation
implies a memoryless environment, that is, the system density
matrix varies much slower in time than the decay time of the
environment correlation functions Cαβ(τ ). Upon transforming
back to the Schrödinger picture, this yields the BM-ME, which
is time local, preserves trace and Hermiticity, and depends on
constant coefficients. (iii) To obtain an equation of Lindblad
form which also preserves positivity, one typically employs
the secular approximation, which averages over fast oscillating
terms, yielding the BMS-ME [77,122,123],

The system-environment coupling can be quite generally
written in the form ĤSE = ∑

α Ŝα ⊗ Êα , with Ŝα = Ŝ†
α and

Êα = Ê†
α . This Hermitian form is convenient for further

treatment.The tensor product form can be achieved even
for fermions by a Jordan-Wigner transformation [78] (see
Appendix B). For our coupling Hamiltonian [Eq. (1c)] and
particle-number-conserving systems, the coupling operators
take the form

Ŝ1iσ = 1√
2

(fiσ + f
†
iσ ), Ê1λiσ = 1√

2
(cλiσ + c

†
λiσ ),

(5)

Ŝ2iσ = i√
2

(fiσ − f
†
iσ ), Ê2λiσ = i√

2
(cλiσ − c

†
λiσ ) .

In the energy eigenbasis of the system Hamiltonian
ĤS |a〉 = ωa |a〉, the BM-ME in the Schrödinger represen-
tation reads as [114]

˙̂ρS(τ ) = −i[ĤS + ĤLS,ρ̂S(τ )]− +
∑
abcd

�ab,cd

×( |a〉 〈b| ρ̂S(τ ) |d〉 〈c| − 1
2 [|d〉 〈c| |a〉 〈b| ,ρ̂S(τ )]+

)
,

(6)

with

�ab,cd =
∑
αβ

ξαβ(ωba,ωdc) 〈a| Ŝβ |b〉 〈c| Ŝα |d〉∗ , (7)

where ωba = ωb − ωa . The Lamb-shift Hamiltonian ĤLS

and the environment functions ξαβ(ω1,ω2) are defined in
Appendix A. When employing the secular approximation, the
terms in the BMS-ME simplify and in Eq. (7) one can replace
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ξαβ(ωba,ωdc) → ξαβ(ωb − ωa)δωb−ωa,ωd−ωc
. Due to the secular

approximation, the BMS-ME can only lead to interference
between degenerate states. The more general BM-ME also
couples nondegenerate states at the cost of losing the Lindblad
structure of the ME (see Sec. IV B and [39]).

Single-particle Green’s function

As discussed above, for ME-CPT, the Green’s function g̃(ω)
of the isolated system is evaluated from the reference state ρ̂S .
The retarded component (2) takes the explicit form

gR
ij (σ )(ω) =

∑
abc

ρS
ab

( 〈b| fiσ |c〉 〈c| f †
jσ |a〉

ω + i0+ − (ωc − ωb)

+ 〈b| f †
jσ |c〉 〈c| fiσ |a〉

ω + i0+ − (ωa − ωc)

)
, (8)

where i, j denote indices of system sites. The advanced com-
ponent follows from gA = (gR)

†
and the Keldysh component

gK of the finite, unperturbed system is not relevant for the CPT
equation (4). Once g̃ is obtained, the full Green’s function is
again approximately obtained within CPT by Eq. (4). Notice
that for U = 0, G̃ is independent of the reference state, which
is why stsCPT, stsVCA, as well as ME-CPT coincide (and
become exact) in the noninteracting case.

C. Numerical implementation

From a numerical point of view, the two main steps are to
first obtain the reference state ρ̂S by solving the ME and then
to evaluate the Green’s functions using Eqs. (8) and (4). For
the solution of the BM-ME [Eq. (6)] one needs to carry out
the following: (i) Full diagonalization of the interacting system
Hamiltonian which is done in LAPACK, making use of the block
structure in N̂ and Ŝz. (ii) Evaluation of the coefficients of the
BM-ME in Eq. (6), which involves coupling matrix elements
〈a| Ŝα |b〉 and numerical integration of the bath correlations
functions (see Appendixes A and C), for which an adaptive
Gauss-Kronrod scheme is employed. (iii) The steady state ρ̂S

is finally obtained from the unique eigenvector with eigenvalue
zero of Eq. (6), which we determine by a sparse Arnoldi
diagonalization. Again, a block structure is related to N̂ and
Ŝz. The numerical effort for the exact diagonalization scales
with the size of the Hilbert space, and therefore exponentially
with the system size NS . In the second major step, the
Green’s function of the disconnected system is calculated by
Eq. (8). Finally, the ME-CPT Green’s function G̃(ω) is found
using Eq. (4). We outline how to evaluate observables within
ME-CPT and the ME in Appendix D.

IV. RESULTS

In this section, we present results obtained from the ME-
CPT approach. In all calculations, except those in Sec. IV B,
the secular approximation is applied for the reference state
ρ̂S . The main improvements of ME-CPT with respect to bare
BMS-ME are (i) the inclusion of lead-induced broadening
effects, (ii) the correct U = 0 limit, and (iii) a correction for
effects missed by an improper treatment of quasidegenerate
states in the BMS-ME (see following). In comparison to the

FIG. 1. (Color online) Quantum dot diode: Schematic represen-
tation (see Sec. IV A). Single quantum dot with Hubbard interaction
U and gate voltage VG (particle-hole symmetric at VG = 0), coupled
via �L/R = �

2 to a left and right lead. The right lead is fully polarized,
i.e., only spin-↑ DOS is present. An external bias voltage VB shifts
the chemical potentials by μL/R = ± VB

2 . The leads are in the wide
band limit and at the same temperature T .

previous “standard” stsCPT, ME-CPT also captures current
blocking effects, which are discussed in detail in Refs. [38,39]
within a ME treatment.

A. Quantum dot diode

We first discuss a quite simple model system: a quantum
diode based on electron-electron interaction effects. Figure 1
depicts this junction consisting of a single interacting orbital
described by a Hubbard interaction and an onsite term to allow
for a gate voltage VG [124]:

ĤS = U

(
n̂

f

↑ − 1

2

)(
n̂

f

↓ − 1

2

)
+ VG

∑
σ

n̂f
σ ,

where n̂
f
σ = f †

σ fσ . The environment Eq. (1b) consists of two
spin-dependent, conducting leads. We model both the left (L)
and the right (R) leads by a flat DOS with local retarded single-
particle Green’s function [117] gR

L/R(ω) = − 1
2D

ln(ω+i0+−D
ω+i0++D

),
with a half-bandwidth D much larger than all other energy
scales in the model, mimicking a wide band limit. We
keep both leads at the same temperature TL = TR = T and
at chemical potentials μL = −μR = VB

2 corresponding to a
symmetrically applied bias voltage VB . The right lead is
fully spin polarized, i.e., tunneling of one spin species (↓)
into the right lead is prohibited while both spin species
can tunnel to the left lead. The system is coupled to the
two leads via a single-particle hopping amplitude t ′ in ĤSE

[Eq. (1c)] which results in a lead broadening parameter of
�

↑
L = �

↓
L = �

↑
R = �

2 = π |t ′|2 1
2D

[Eq. (C1)] and �
↓
R ≡ 0. We

use � without an argument for �(ω = 0) as defined in Eq. (C1).
For ME-CPT we use HSE [see Eq. (1c)] as perturbation.

Such a system could be realized in (i) a “metal–artificial
atom–half-metallic ferromagnet” [125] nanostructure where
spin-↑ DOS is present at the Fermi energy while the respective
spin-↓ DOS is zero; (ii) a graphene nanostructure [30,31] with
ferromagnetic cobalt electrodes [32]; (iii) a one-dimensional
optical lattice of ultracold fermions in a quantum simulator
[126] where the hopping of spin-↓ particles into the right
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(a) (c1)

(b) (c2)

FIG. 2. (Color online) Quantum dot diode: (a) Stability diagram, based on the total current j = 〈j↑〉 + 〈j↓〉 as a function of bias voltage
VB and gate voltage VG, obtained within ME-CPT. Note that 〈j↓〉 ≡ 0. Results are depicted for T = 0.025 U and � = 0.1 U . (Y) marks the
current blocking region. The green dashed line (X) at VG = U indicates the parameter regime for the panels (b) and (c). (b) Diagonal part of
the reduced density matrix ρS

aa obtained by BMS-ME. (c1) Spin-↑ current j↑ within ME-CPT compared to BMS-ME. Solid lines are for the
same parameters as line (X) in panel (a). Blue dashed and solid lines for BMS-ME are indistinguishable. (c2) Spin-resolved densities 〈n↑〉 and
〈n↓〉 for the same parameters as in panel (c1) (see solid lines in the legend).

reservoir is suppressed. For all three systems, spin-↓ particles
cannot reach the right lead, in the first two due to a vanishing
DOS, in the third one due to a vanishing tunneling amplitude.

We consider parameters such that the junction is operated
in a single-electron transistor (SET) regime [36], i.e., temper-
atures above the Kondo temperature [48]. In this regime, we
expect an interaction-induced–magnetization-mediated block-
ing due to the fact that the system fills up with spin-↓ particles.
On the one hand, they cannot escape, yielding a vanishing
spin-↓ current, and on the other hand, they suppress the spin-↑
occupation, at finite repulsive interaction U , resulting also in
a vanishing spin-↑ current [45].

Figure 2(a) shows the ME-CPT stability diagram of the
interacting system in the VB-VG plane. When applying a
particle-hole transformation for all particles, leads, and system,
along with t ′ → −t ′ we easily find the symmetry properties

j (−VB,−VG) = −j (VB,VG) ,〈
nf

σ

〉
(−VB,−VG) = 1 − 〈

nf
σ

〉
(VB,VG) .

From the continuity equation it is clear that only spin-↑
steady-state current can flow which limits the maximum
current to �

2 . The energies ωN of the isolated quantum dot can
be labeled by the total particle number N and are for VG = U

given by ω0 = 0, ω1 = 1
2 U , and ω2 = 2 U . This gate voltage

corresponds to the dashed line, marked by (X) in Fig. 2(a). The
corresponding energy differences �01 = 0.5 U between the
single-occupied and the empty dot and �12 = 1.5 U between
double-occupied and single-occupied dot are associated with

a further transport channel opening as soon as the bias VB

reaches twice their values. The ME-CPT result for the current
exhibits the well-known Coulomb diamond [36] close to
VB = 0 and VG = 0, where current is hindered because all
system energies are far outside the transport window ±VB

2

[see Eq. (D2)]. At VG = 0 a current sets in at VB

2 = ±|U
2 |,

i.e., when transport across the system’s single-particle level
becomes allowed. The point, at which the current sets in,
shifts with VG linearly to higher-bias voltages. This transition
is broadened ∝max(� = 0.1 U,T = 0.025 U ). However, not
only the transport window and possible excitations in the
system energies determine the current-voltage characteristics.
The particular occupation of the system states may lead to
more complicated effects, such as current blocking.

Our first main result is that in contrast to stsCPT the
blocking is correctly reproduced in ME-CPT. The current
blocking is visible in Fig. 2(a) in region (Y) [see also the
detailed data in subplot (c1)]. It is asymmetric in VB and
therefore responsible for the rectifying behavior for |VG| >

|U
2 |. This feature is easily understood from the plots of the

spin-resolved densities in Fig. 2(c2). In the region of interest,
for positive VB , 〈n↓〉 = 1 which hinders spin-↑ particles from
the left lead to enter the system, due to the repulsive interaction
U and suppresses the current. For negative VB , the situation is
reversed. A direct computation of the current in the framework
of BMS-ME (see Appendix D 2) also predicts the blocking,
which is however not the case if we use stsCPT based on the
zero-temperature ground state |	0〉S . The blocking is evident
in Fig. 2(b), where we observe that in the blocking regime,
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TABLE I. Comparison of steady-state cluster perturbation theory
(stsCPT), the Born-Markov-secular master equation (BMS-ME), and
the quantum master equation based stsCPT (ME-CPT) with respect
to their ability to capture temperature (T ) or lead (�) induced level
broadening, current blocking, and whether the noninteracting limit is
fulfilled.

Method T broadening � broadening Blocking U = 0

stsCPT Yes Yes No Exact
BMS-ME Yes No Yes Approx.
ME-CPT Yes Yes Yes Exact

the reduced density is ρS = |↓〉 〈↓|. Independent of the value
of U > 0, the blocking sets in at the same values of VB

in ME-CPT and BMS-ME. Figure 2(c1) shows that within
BMS-ME this regime is entered after a U -independent hump
in the current, while within ME-CPT the hump is broader and
weakly U dependent. The current blocking disappears at a bias
voltage VB ∝ U in both methods. Immediately apparent are
the much broader features in ME-CPT, which leads to a less
pronounced effect in contrast to the total blocking predicted
by BMS-ME. In BMS-ME, the broadening parameter �

enters merely as prefactor of the current, and broadening is
solely induced by the temperature. This temperature-induced
broadening is correctly taken into account in both methods.
For T > �, the latter dominates and the ME-CPT results are
similar to the plain BMS-ME solution. A comparison of the
three methods is given in Table I. In this simple model, the
blocking can be captured even by a straightforward steady-
state mean-field theory in the Keldysh Green’s function with
self-consistently determined spin densities or in stsVCA. This
is not the case for the more elaborate system studied in the next
section.

B. Triple quantum dot

In this section, we discuss a more elaborate model system:
a triple quantum dot ring junction which features negative
differential conductance (NDC) based on electron-electron
interaction effects mediated by quantum interference due
to degenerate states as outlined in detail in Refs. [44,45].

Figure 3(a) depicts the triple quantum dot ring junction,
described by the following Hubbard Hamiltonian [127]:

ĤS =
3∑

i=1

U

(
n̂

f

i↑ − 1

2

)(
n̂

f

i↓ − 1

2

)
+ VG

3∑
i=1

∑
σ

n̂
f

iσ

+ t
∑
〈ij〉

∑
σ

f
†
iσ fjσ . (9)

In addition to the model parameters described in Sec. IV A, a
nearest-neighbor 〈ij 〉 hopping t is present. The environment
[Eq. (1b)] and coupling [Eq. (1c)] are now both symmetric in
spin. Moreover, we use μL = −μR = VB

2 , T = TL = TR, and
�L = �R = �

2 = π |t ′|2 1
2D

.
Such a junction can be experimentally realized: (i) via local

anodic oxidation (LAO) on a GaAs/AlGaAs heterostructure
[28] which enables tunable few electron control [29]; (ii) in a
graphene nanostructure [30,31]. Experimentally, the stability
diagram has been explored [33] alongside characterization and
transport measurements [28,34,35]. The negative differential
conductance has been observed in a device aimed as a quantum
rectifier [128]. Theoretically, the study of the nonequilibrium
behavior of such a device has become an active field recently
[44,45,129–135].

We investigate transport properties for values of the
parameters such that the junction is in a single-electron
transistor (SET) regime [36], i.e., temperatures above the
Kondo temperature [48]. In this regime, we expect an
interaction-induced–quantum-interference-mediated blocking
as discussed in Refs. [44,45]. The rotational symmetry ensures
degenerate eigenstates labeled by a quantum number of
angular momentum. In situations where these degenerate
states participate in the transport they provide two equivalent
pathways through the system and lead to quantum interference
[44]. The blocking sets in at a bias voltage, where the
degenerate states start to participate in the transport. It then
becomes possible that a superposition is selected which forms
one state with a node at the right lead. In the long-time limit,
this state will be fully occupied while the other one will be
empty due to Coulomb repulsion, for reasons very similar to
those discussed in the previous section [38,39].

FIG. 3. (Color online) Triple quantum dot: (a) Schematic representation, see Sec. IV B. System Hamiltonian as defined in Eq. (9). Site 1
couples to the left lead and site 2 to the right one, both with �L/R = �

2 . The leads are held at the same temperature TL/R = T and the chemical
potentials μL/R = ± VB

2 are shifted by the bias voltage. (b) Local charge density 〈ni〉 as a function of bias voltage VB . The results are obtained
by ME-CPT, BMS-ME, and stsCPT [see color code of panel (c)]. (c) Total current j = ∑

σ 〈jL1σ 〉 into the system at site 1 as a function of bias
voltage VB . Results, shown in panels (b) and (c), are for U = 2 |t |, T ≈ 0.02 |t |, � = 0.1 |t |, and VG = 0, corresponding to line (X) in Fig. 4.
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FIG. 4. (Color online) Triple quantum dot: Stability diagram.
Total current entering the system as a function of bias voltage VB

and gate voltage VG, obtained within ME-CPT. The blocking region
is indicated by (Y), the Coulomb diamond by (D). The two arrows
(T1) and (T2) mark two device operation modes as discussed in
the text. All results are for U = 2 |t |, T = 0.02 |t |, and � = 0.1 |t |.
Dashed line (X) for VG = 0 marks the parameter region depicted in
Fig. 3(c).

The steady-state charge distribution and current-voltage
characteristics of the interacting triple quantum dot are
presented in Figs. 3(b) and 3(c) in a wide bias voltage window.
The current, depicted in Fig. 3(c), in general increases in
a stepwise manner and is fully antisymmetric with respect
to the bias voltage direction. A blocking effect occurs at
VB ≈ 1.5 |t | as can be observed in the BMS-ME and ME-CPT
data. The previous version of stsCPT based on the pure zero-
temperature ground state |	0〉S misses this region of NDC.
In contrast to the simpler model presented in the previous
section, a self-consistent mean-field solution does not capture
the blocking effects correctly in this more elaborate system.
The BMS-ME solution shows many more steps in the current
than the stsCPT one, which is due to transitions in the reference
state ρ̂S of the central region. The ME-CPT results in general
follow these finer steps, correcting their width to incorporate
also lead-induced broadening effects in addition to the pure
temperature broadening. As can be seen in Fig. 3(b1), ME-CPT
predicts a large charge increase at the site connected to the
high-bias lead. Note that the charge density at site 2, which is
connected to the right lead, is simply 〈n2〉(VB) = 〈n1〉(−VB).
The charge density at site 3 is symmetric with respect to the
bias voltage origin.

Next, we study the impact of a gate voltage on the blocking.
Results obtained by ME-CPT are depicted as stability diagram
in Fig. 4. Upon increasing |VG|, the onset of the blocking
shifts linearly to higher VB (Y). We find a Coulomb diamond
for 2VG � VB − |t | (D). Upon increasing the bias voltage
out of the Coulomb diamond [see, e.g., line (X)], a current
sets in but is promptly hindered by the blocking so that
the current diminishes after a hump of width ∝max(T ,�).
Interestingly, this device could be operated as a transistor
in two fundamentally different modes. In mode (T1), at a
source-drain voltage of ≈|t | the current is on for a gate
voltage of VG = 0 and off for VG ≈ 0.5 |t | due to the Coulomb
blockade. In mode (T2), at a source-drain voltage of ≈1.5 |t |

the current is off for a gate voltage of VG = 0 due to quantum
interference-mediated blocking and on for VG = 0.25 |t |.

Next, we discuss the current characteristics in the vicinity
of the blocking in more detail, as well as the impact of the
interaction strength U . The first row of Fig. 5 shows the
total current through the device for different values of U . The
blocking region shifts to lower bias voltages with increasing U .
As discussed earlier, structures in the BMS-ME results are only
broadened by temperature effects in the steady-state density
(compare, e.g., the width of the structures in the local density
in the second row of Fig. 5), while ME-CPT additionally takes
into account the finite lifetime of the quasiparticles due to
the coupling to the leads, given by 1/�. This can be seen
by solving Eq. (4) for the local Green’s function at device
sites. Especially for higher lead broadening � this gives rise
to significant differences in the ME-CPT results compared to
the BMS-ME data. From the bottom row of Fig. 5 we see that,
before the blocking regime is entered, the steady state changes
from a pure N = 2 state to a mixed N = 2 /N = 3 state at the
hump in the current. Obviously, blocking arises because the
system reaches a pure N = 3 state for U = 2 |t | and U = 3 |t |
at VB ≈ 1.4 |t |. For U = |t | the current is only partially
blocked because the contribution of the N = 2 state is not fully
suppressed. For all U values, however, we find NDC. As far
as the ME-CPT current is concerned, the complete blocking at
higher interaction strengths, predicted by BMS-ME, is reduced
to a partial blocking due to the lead-induced broadening effects
in ME-CPT. Although ρS

ab changes significantly twice in the
blocking region (for U = 2 and 3), the charge density 〈ni〉 just
increases once from 〈n1〉 ≈ 0.75 to 〈n1〉 ≈ 1.

Details of the steady-state dynamics are provided in Fig. 6.
Before the blocking region is entered (VB = 0.4 |t |) the system
is in a pure state with N = 2, which corresponds to the
zero-temperature ground state |	0〉S in the N = 2 sector. Here,
the transmission function T (ω) [Eq. (D3)] of ME-CPT agrees
with the one of stsCPT. A small current is obtained due to
the N = 2 → 3 excitation at ω ≈ 0.55 |t |. Increasing the bias
voltage has no influence on the reference state in stsCPT, which
therefore remains in the N = 2 particle sector. Consequently,
the transmission function in stsCPT does not change. Only
the transport window increases linearly with increasing VB .
For VB = 1.4 |t |, it includes the peak at ≈0.7|t | and results
in a significant increase in the current obtained in stsCPT
(see stsCPT result in Fig. 3). This is in stark contrast to the
BMS-ME current, depicted in Fig. 5, which exhibits perfect
blocking for VB = 1.4 |t |. The reason for the current blocking
is that only two states, both in the N = 3 sector and doubly
degenerate, have significant weight in ρS

ab. The ME-CPT
solution is based on the modified density matrix and therefore
the current is diminished since the next possible excitation
is at ω ≈ 0.9 |t | (N = 2 → 3), which is outside the transport
window W (ω) ≈ (−0.7|t |,0.7|t |) [Eq. (D2)]. Due to the lead-
induced broadening of T (ω) and the temperature-induced
broadening of the transport window, the current is however
only partially blocked. For VB = 2.4 |t |, this excitation falls
into the transport window and the current is no longer blocked.
In this case, the state ρS

ab is a mixture of N = 2,3,4. The
dominant excitation responsible for this current is again the
ground-state excitation at ω ≈ 0.55 |t | from N = 2 → 3. This
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FIG. 5. (Color online) Triple quantum dot: Dependence of the current blocking on the interaction strength U . (Top row) Total current j

as a function of bias voltage VB . (Middle row) Charge density 〈n1〉 at site 1. The color code of the top row is valid. (Bottom row) Summed
diagonal elements of the density matrix wN = ∑

a∈N ρS
aa per particle number N . The black markers in the mid panel (U = 2 |t |) indicate for

which VB detailed results are given in Fig. 6. Solid lines in all panels are for T = 0.02 |t |, � = 0.1 |t |, and VG = 0. Results for T = 0.1 |t | are
depicted in the central panels by dotted lines and those for � = 0.5 |t | in the right panels by dashed lines.

is why in this regime the stsCPT current, based on the pure
two-particle state is again similar to the ME-CPT current.

Our results on the ME level have been checked with those
presented by Begemann et al. in Ref. [38] and Darau et al. in
Ref. [39] for a six-orbital ring which shows similar blocking
effects. Different types of blocking effects in various parameter
regimes have been discussed in detail in a ME framework also
for the three-orbital ring by Donarini et al. in Refs. [44,45].

Quasidegenerate states

Next, we study the reliability of the secular approximation
in the case of quasidegeneracy of the isolated energies of the

system and benchmark its applicability to create a reference
state for ME-CPT. To this end, we apply a second gate voltage
that couples only to the third orbital [see Fig. 3 (left)] and leads
to an additional term VG,3 n̂

f

3 in the system Hamiltonian. This
lifts the degeneracy of states present at VG,3 = 0 and therefore
requires a treatment within the BM-ME (see [39]).

In the following, we discuss the same parameter regime as
above. In Fig. 7, we present results obtained using ME-CPT
(solid lines) and ME results (dashed lines) for the BMS-
ME (a) and for the BM-ME (b). The ME-CPT results of
each panel are obtained using the respective ME. In the
BMS-ME data, a very small |VG,3| has a drastic effect on
the current-voltage characteristics. The blocking present at

FIG. 6. (Color online) Triple quantum dot: Dynamic transmission function T (ω) [Eq. (D3)], as obtained by ME-CPT and stsCPT. Same
parameters as in Fig. 5 (bottom mid) at the three indicated bias voltages: VB = 0.4 |t | (left), VB = 1.4 |t | (middle), and VB = 2.4 |t | (right).
The temperature-broadened transport window W (ω) [Eq. (D2)] is depicted as a dashed black line.
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FIG. 7. (Color online) Triple quantum dot: Effects of lifting
degeneracies in the system energies by a third gate voltage. Total
current j as a function of bias voltage VB , for three different gate
voltages VG,3 applied to site 3. Results based on the Born-Markov-
secular approximation are compared with those of the Born-Markov
approximation. Solid/dashed lines indicate the ME-CPT/BM(s)me
result. All results are for U = 3 |t |, T = 0.02 |t |, and � = 0.1 |t |.

VG,3 = 0 is immediately lifted by very small |VG,3| and the
current jumps to a plateau. For larger |VG,3|, the current
stays on this plateau until further transport channels open
up. This “jump”‘ at small |VG,3| arises due to the improper
treatment of quasidegeneracies in BMS-ME. MeCPT results
based on BMS-ME show a smooth change of the current-
voltage characteristics. BM-ME on the other hand correctly
accounts for the coupling of the quasidegenerate states and also
exhibits a smooth dependence on VG,3. For ME-CPT based on
BM-ME we find qualitative similar results to ME-CPT based
on BMS-ME, which emphasizes the robustness of the ME-CPT
results in general. From this it is apparent that ME-CPT is
capable of repairing the decoupling of quasidegenerate states
in the BMS-ME to some degree. However, to study blocking
effects at quasidegenerate points, it is of advantage to make
use of the BM-ME in ME-CPT.

As discussed in Sec. IV C, the BM-ME is not of Lindblad
form and does not necessarily result in a positive-definite
reduced many-body density matrix ρS

ab in general. Using a
not proper density matrix in Eq. (8) may result in noncausal
Green’s functions when the steady state ρS

ab is obtained from
the BM-ME. This can be avoided by using a modified reference

state ρS
ab → ρS

ab�(� − |ωa − ωb|), with �(x) the Heaviside
step function and � a small quantity, being e.g. ≈10−6, in
Eq. (8), which renders the Green’s functions causal. This
is somewhat an ad hoc approximation and should be seen
simply as a way to explore the effects of continuously breaking
degeneracy in the problem.

C. Current conservation

Finally, we comment on conservation laws in ME-CPT.
Within BMS-ME and BM-ME, the current conservation
(continuity equation) is always maximally violated in a sense
that the current within the system is zero. This is due to the
zeroth order ρ̂S as discussed in Appendix D 2. In BMS-ME,
the inflow from the left lead into the system, however, always
equals the outflow from the system to the right lead. Without
the secular approximation, the quantum master equation
(BM-ME) is not of Lindblad form and the final many-body
density matrix is not guaranteed to be positive definite
[122,123]. This in turn can lead to slightly negative currents
in regions where they are required to be positive by the
direction of the bias voltage [77]. Furthermore, the inflow can
be slightly different from the outflow.

In the noninteracting case, ME-CPT fully repairs the
violation of the continuity equation present in the reference
state. For increasing interaction strength, the violation of
the continuity equation typically grows also in ME-CPT. In
particular, the overall symmetry of the current stays intact (in
our case, inflow equals outflow), while the current on bonds
between interacting sites does not exactly match the current
between noninteracting sites. This typically small violation
of the continuity equation can be attributed to the violation of
Ward identities [136,137] in the nonconserving approximation
scheme of CPT [138,139].

V. SUMMARY AND CONCLUSIONS

We improved steady-state cluster perturbation theory with
an appropriate, consistent reference state. This reference state
is obtained by the reduced many-body density matrix in the
steady state obtained from a quantum master equation. The
resulting hybrid method inherits beneficial aspects of steady-
state cluster perturbation theory as well as from the quantum
master equation.

We benchmarked this method on two experimentally
realizable systems: a quantum diode and a triple quantum
dot ring, which both feature negative differential conductance
and interaction-induced current blocking effects. ME-CPT is
able to improve the bare quantum master equation results by a
correct inclusion of lead-induced level-broadening effects, and
the correct noninteracting limit. In contrast to previous realiza-
tions of the steady-state cluster perturbation theory, ME-CPT is
able to correctly predict interaction-induced current blocking
effects. It is well known that the secular approximation
(BMS-ME) is not applicable to quasidegenerate problems,
which is corroborated by our results for the steady-state
current. However, ME-CPT based on the BMS-ME density,
is able to repair most of the shortcomings of BMS-ME. The
results are very close to those obtained by ME-CPT based on
the density of BM-ME, where the quasidegenerate states are
treated consistently.
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The computational effort of ME-CPT beyond that of
the bare quantum master equation scales with the number
of significant entries in the reference state density matrix
but is typically small. In the presented formulation, this
method is flexible and fast and therefore well suited to study
nanostructures, molecular junctions, or heterostructures also
starting from an ab initio calculation [140].
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APPENDIX A: BORN-MARKOV AND PAULI
MASTER EQUATION

Here, we provide the detailed expressions for the coeffi-
cients in the BM-ME and BMS-ME of Eq. (6) and discuss the
equations governing the time evolution into the steady state.

The Lamb-shift Hamiltonian is defined as ĤLS =∑
ab �ab |a〉 〈b|, with

�ab = 1

2i

∑
αβ

∑
c

λαβ(ωbc,ωac) 〈c| Ŝβ |b〉 〈c| Ŝα |a〉∗ . (A1)

Note that [ĤLS,ĤS]− = 0. In the secular approxima-
tion (BMS-ME), one can replace λαβ(ωbc,ωac) → λαβ(ωb −
ωc)δωb,ωa

. The expressions for the BM-ME and BMS-ME (6)
are valid if [ĤE,ρ̂E]− = 0 and tr{Êαρ̂E} = 0. The environ-
ment functions ξαβ and λαβ in Eqs. (A1) and (7) are determined
by the time-dependent environment correlation functions

Cαβ(τ ) = tr{Êα(τ )Êβ ρ̂E} , (A2)

where the Heisenberg time evolution in the environment
operators is Êα(τ ) = e+iĤEτ Êαe−iĤEτ .

For the BM-ME, ξαβ and λαβ are given by a sum of complex
Laplace transforms

ξαβ(ω1,ω2) =
∫ ∞

0
dτ Cαβ(τ )e+iω1τ +

∫ 0

−∞
dτ Cαβ(τ )e+iω2τ ,

(A3)

λαβ(ω1,ω2) =
∫ ∞

0
dτ Cαβ(τ )e+iω1τ −

∫ 0

−∞
dτ Cαβ(τ )e+iω2τ ,

(A4)

whereas for the BMS-ME (ω1 = ω2) the expressions simplify
to the full even and odd Fourier transforms [77]

ξαβ(ω) =
∫ ∞

−∞
dτ Cαβ(τ )e+iωτ , (A5)

λαβ(ω) =
∫ ∞

−∞
dτ sign(τ )Cαβ(τ )e+iωτ

= i

π

∫ ∞

−∞
P dω′ ξαβ(ω′)

ω − ω′ . (A6)

The coupled equations for the real-time evolution of the
components of the reduced system many-body density matrix
ρS

ab = 〈a| ρ̂S |b〉 according to the BMS-ME read as

ρ̇S
ab(τ ) = i(ωb − ωa)ρS

ab(τ )

+i
∑

c

(
ρS

ac(τ )�cb − �acρ
S
cb(τ )

)

+
∑
cd

(
�ac,bdρ

S
cd (τ ) − 1

2
�cd,caρ

S
db(τ )

−1

2
�cb,cdρ

S
ad (τ )

)
. (A7)

The equations simplify further for system Hamiltonians ĤS

with nondegenerate eigenenergies ωa . Then, the diagonal
components φa = ρS

aa decouple from the off-diagonals and one
recovers the Pauli master equation for classical probabilities

φ̇a(τ ) =
∑

c

(�acφc(τ ) − �caφa(τ )) , (A8)

with simplified coefficients

�ab := �ab,ab =
∑
αβ

ξαβ(ωb − ωa) 〈a| Ŝβ |b〉 〈a| Ŝα |b〉∗ .

In this case, the dynamics of the decoupled off-diagonal terms
(a �= b) is given by

ρ̇S
ab(τ ) =

[
i(ωb + �b − ωa − �a)

− 1

2

∑
c

(�ca + �cb)

]
ρS

ab(τ ) ,

where the simplified Lamb-shift terms are

�a := �aa = 1

2i

∑
αβ

∑
c

λαβ(ωa − ωc) 〈c| Ŝβ |a〉 〈c| Ŝα |a〉∗ .

APPENDIX B: HERMITIAN TENSOR PRODUCT FORM
OF THE COUPLING HAMILTONIAN

For the BMS-ME (see Sec. III B), it is necessary to bring the
fermionic system-environment coupling Hamiltonian (1c) to a
Hermitian tensor product form, which requires [Ŝα,Êα]− = 0.
For the fermionic operators in Eq. (1c) we, however, have
[f †

iσ ,cλkσ ]− = 2f
†
iσ cλkσ . A solution is provided in Ref. [78]

by performing a Jordan-Wigner transformation [141] on the
system and environment operators

fiσ =
∏
σ

(
ξz

1 ⊗ . . . ⊗ ξz
i−1ξ

−
i 11i+1 ⊗ . . . ⊗ 11LS

)
S,σ

⊗
∏
λ

(
111 ⊗ . . . ⊗ 11LE

)
E,λσ

,

cλjσ =
∏
σ

(
ξz

1 ⊗ . . . ⊗ ξz
LS

)
S,σ

⊗
∏
λ

(
ηz

1 ⊗ . . . ⊗ ηz
j−1η

−
j 11j+1 ⊗ . . . ⊗ 11LE

)
E,λσ

,
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where ξi and ηj denote local spin- 1
2 degrees of freedom

at the system and environment sites, respectively, and the
overall ordering of operators is important. LS/LE denote the
size of the system/environment. Reordering Eq. (1c) we find

ĤSE
λ = ∑

ijσ t ′λijσ f
†
iσ cλjσ − t ′∗λijσ fiσ c

†
λjσ , where the mi-

nus sign arises due to the fermionic anticommuta-
tor. Plugging in the Jordan-Wigner transformed operators
leads to

ĤSE
λ =

∑
ijσ

(
t ′λijσ

[
ξ+
i ⊗ [ − ξz

i+1 ⊗ . . . ⊗ ξz
LS

⊗ ηz
1 ⊗ . . . ⊗ ηz

j−1

] ⊗ η−
j

]
σλ

+ t ′∗λijσ

×[
ξ−
i ⊗ [ − ξz

i+1 ⊗ . . . ⊗ ξz
LS

⊗ ηz
1 ⊗ . . . ⊗ ηz

j−1

] ⊗ η+
j

]
σλ

)
=

∑
i

(f̄ †
i ⊗ c̄i + f̄i ⊗ c̄

†
i ) ,

where in the last line we have defined new operators

f̄iσ = [
ξ−
i ⊗ [−ξz

i+1 ⊗ . . . ⊗ ξz
LS

]]
σ

,

f̄
†
iσ = [[−ξz

i+1 ⊗ . . . ⊗ ξz
LS

] ⊗ ξ+
i

]
σ

,

c̄λiσ =
∑

j

t ′λijσ

[[
ηz

1 ⊗ . . . ⊗ ηz
j−1

] ⊗ η−
j

]
λσ

,

c̄
†
λiσ =

∑
j

t ′∗λijσ

[
η+

j ⊗ [
ηz

1 ⊗ . . . ⊗ ηz
j−1

]]
λσ

.

Note that the phase operator P̂i(jλ)σ = [−ξz
i+1 ⊗ . . . ⊗ ξz

LS

⊗ [ηz
1 ⊗ . . . ⊗ ηz

j−1]λ]σ = (−1)1+∑
λ′

∑LS
m=i+1 n̂m+N̂jλ′ counts

the particles between system site i and environment site j for
spin σ depending on the ordering of the environments λ. It is
straightforward to show that the bar operators fulfill fermionic
anticommutation rules. Furthermore, [f̄iσ ,c̄λiσ ]− = 0, which
allows us to write the coupling Hamiltonian in a tensor
product form. Note that in general [f̄iσ ,c̄λ′jσ ]− �= 0 for i �= j

which is, however, not relevant for the coupling Hamiltonian
where only the same i couple.

The new operators in Hermitian form are given in Eq. (5)
by replacing c → c̄ and f → f̄ . Next we show, by examining
the BMS-ME, that in most cases the additional phase operator
in c̄ drops out of the calculations and we are even allowed to
use the original f and c operators instead of the barred ones.
The operators c̄ only enter the equations in the environment
correlation functions Cαβ(τ ) as defined in Eq. (A2). Plugging
in the barred operators we obtain for normal systems which
preserve particle number

Cαβ(τ ) ∝ tr
{
e+iĤEτ f

†
λjσ e−iĤEτ P̂ 2

i(jλ)σ cλjσ ρ̂E
}

,

with P̂ 2
ij = 11, where we required that [ĤE,P̂ij ]− = 0. The

dropping out of the phase operators implies that for normal
systems where the disconnected environments conserve par-
ticle number we can omit the Jordan-Wigner transformation
and do all calculations as is with the original environment
creation/annihilation operators in Hermitian form.

APPENDIX C: BATH CORRELATION FUNCTIONS

In the wide band limit, analytical expressions for the bath
correlation functions are available in Ref. [38]. For arbitrary
environment DOS, explicit evaluation of the environment
correlation functions becomes convenient for Hermitian cou-

plings [Eq. (5)] as outlined in Appendix B [77]. Essentially,
the environment functions can all be obtained via integrals of
the environment DOS ρ(ω). Care has to be taken when going
to very low temperatures and solving the integrals with finite
precision arithmetic to avoid underflow errors.

The time-dependent environment correlation functions
Cαβ(τ ) [Eq. (A2)] become

C11(τ ) = C22(τ ) = 1

4π

∑
λσ

∫ ∞

−∞
dν �λσ (ν)

× (e−iντ + 2ipFD(ν,Tλ,μλ) sin (ντ )) ,

C12(τ ) = −C21(τ ) = i

4π

∑
λσ

∫ ∞

−∞
dν �λσ (ν)

× (−e−iντ + 2pFD(ν,Tλ,μλ) cos (ντ )) ,

where Cαβ(τ ) = C
†
βα(−τ ) and the coefficient

�λσ (ν) =2π |t ′λσ |2
∑

k

δ(ν − ωλkσ ) (C1)

is proportional to the lead DOS.
For the BMS-ME, the respective full even Fourier trans-

forms ξαβ(ω) [Eq. (A5)], we find

ξ11(ω) = ξ22(ω) = 1

2

∑
λσ

�λσ (−ω)pFD(−ω,βλ,μλ)

+�λσ (ω)pFD(ω,Tλ,μλ) ,

ξ12(ω) = −ξ21(ω) = i

2

∑
λσ

�λσ (−ω)pFD(−ω,βλ,μλ)

−�λσ (ω)pFD(ω,Tλ,μλ) ,

where pFD(ω,T ,μ) = 1 − pFD(ω,T ,μ).
The odd Fourier transforms λαβ(ω) [Eq. (A6)] are given by

λ11(ω) = λ22(ω) = i

2π

∑
λσ

∫ ∞

−∞
P dν�λσ (ν)

×
(

pFD(ν,βλ,μλ)

ν + ω
− pFD(ν,βλ,μλ)

ν − ω

)
,

λ12(ω) = −λ21(ω) = − 1

2π

∑
λσ

∫ ∞

−∞
P dν�λσ (ν)

×
(

pFD(ν,βλ,μλ)

ν + ω
+ pFD(ν,βλ,μλ)

ν − ω

)
.
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APPENDIX D: EVALUATION OF STEADY-STATE
OBSERVABLES

1. Steady-state cluster perturbation theory

Within ME-CPT, single-particle observables are available
by integration of G̃(ω) [Eq. (4)]. It is easy to show that the
single-particle density matrix κijσ = δij

2 − i
2

∫ ∞
−∞

dω
2π

GK
ijσ (ω)

can be expressed in terms of the retarded CPT Green’s function

κijσ = δij

2
− i

2

∫ ∞

−∞

dω

2π

(
GR

inσ (ω)Pnjσ (ω)−Pinσ (ω)
[
GR

jnσ (ω)
]∗

+GR
inσ (ω)([Pσ (ω),Mσ ]−)nm

[
GR

jmσ (ω)
]∗)

,

where Mσ is the intercluster perturbation defined in Eq. (4).
Here, we use the Einstein summation convention, the last line
holds within CPT, and Pijσ (ω) = δij [1 − 2pFD(ω,Ti,μiσ )].

From the real part of the single-particle density matrix
we read off the site occupation 〈ni〉 = ∑

σ κiiσ the spin-
resolved occupations 〈niσ 〉 = κiiσ and the magnetization
〈mi〉 = 1

2 (κii↑ − κii↓).
The current 〈j〈ij〉〉 between nearest-neighbor sites 〈ij 〉

is related to the imaginary part of κijσ and reads as in
symmetrized form

〈j〈ij〉〉 = e

2�
(hijσ κijσ − hjiσ κjiσ ) ,

which is of Meir-Wingreen form [81] and hijσ is the single-
particle Hamiltonian.

Equivalently, the transmission current between two envi-
ronments λ = 1, 2 can be evaluated in the Landauer-Büttiker
form [54,64,97]

〈j1/2〉 = e

�

∫ ∞

−∞

dω

2π
W (ω)tr{T (ω)} , (D1)

with the transport window

W (ω) = pFD(ω,T1,μ1) − pFD(ω,T2,μ2) , (D2)

and where the transmission function

T (ω) = GR(ω)�1(ω)[GR(ω)]†�2(ω) (D3)

is given in terms of GR(ω) = ([gR(ω)]−1 − (�̃1 + �̃2))
−1

with
the lead broadening functions of lead λ projected onto the
system sites i,j is �̃λij = Miλg

R
λλMλj and �λ = −2 Im(�̃λ)

[compare also Eq. (C1)].

2. Born-Markov master equation

Within the ME, basic single-particle observables are avail-
able in terms of the reduced system many-body density matrix
ρ̂S . The single-particle density matrix κ reads as

κijσ = tr(f †
iσ fjσ ρ̂S) =

∑
ab

〈b| f †
iσ fjσ |a〉 ρS

ab , (D4)

where a and b denote eigenstates of the system Hamiltonian.
Note that within the BM-ME/BMS-ME κijσ is purely real and
therefore does predict zero current.

However, an expression for the current to reservoir λ can
be found by making use of the operator of total system charge
Q̂ and total system particle number N̂ , where q denotes the
charge of one carrier∑

λ

jλ(τ ) = d

dτ
〈Q̂(τ )〉 = q tr

(
N̂ ˙̂ρS(τ )

)
.

Taking ˙̂ρS(τ ) from the ME, we obtain

jλ = q
∑
abc

[(
nc − 1

2
nb − 1

2
na

)
�λ

ca,cb

]
ρS

ab ,

and for nondegenerate systems, in the Pauli limit we find from
the BMS-ME

jλ
non-deg = q

∑
ab

(na − nb)�λ
abφb .
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97, 266408 (2006).
[87] M. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev. Lett.

91, 206402 (2003).
[88] C. Gros and R. Valenti, Phys. Rev. B 48, 418 (1993).
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