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Charge localization and magnetocrystalline anisotropy in La, Pr, and Nd substituted Sr hexaferrites
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Charge compensation in strontium M-type hexaferrites A3+
x Sr1−xFe12O19 (A = La, Nd, or Pr) is studied by

means of calculations of electronic structure and 57Fe nuclear magnetic resonance (NMR) experiments. Two
different states are realized in the calculations: a localized scenario as a ground state with the extra valence
charge preferentially in the octahedral 2a sites and a delocalized scenario with the charge delocalized over
multiple sites. From the calculations and NMR experiments, it is deduced that the localized state Fe2+(2a) occurs
at low temperatures regardless of the type of used substitution and that the distribution of ferric and ferrous
ions within the 2a sublattice is static at low temperatures. The magnetocrystalline anisotropy energy of Sr and
La hexaferrites is calculated and the contributions of individual Fe sublattices are evaluated. The temperature
dependence of the anisotropy for La hexaferrite is explained as a transition between localized and delocalized
states causing changes in the single ion contributions of Fe in 2a and also 12k sites.
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I. INTRODUCTION

Hexagonal ferrites [1–3] are well established ferrimagnetic
materials with many uses: they can be found in cost-effective
hard magnets as well as in components for high-frequency
applications. Interest in hexaferrites has been rekindled by the
discovery of intrinsic magnetoelectrics with strong coupling
of magnetic and electric order as well as by the emergence of
various low-dimensional hexaferrite systems, e.g., nanopar-
ticles, fibres, thin layers, or composites [4]. Finally, there
is still effort devoted to classical hexaferrite systems aimed
on improving their performance in applications and unveiling
related physics.

One of the important properties of strontium M-type hexa-
ferrite SrFe12O19 (SrM) is the magnetocrystalline anisotropy.
The anisotropy arises mainly from contributions of ferric
cations. In the hexaferrite structure (space group P 63/mmc),
Fe atoms occupy sites 2a, 2b, 4fIV, 4fVI, and 12k, which form
five magnetic sublattices (see Fig. 1). The magnetocrystalline
anisotropy of SrM is uniaxial with the easy axis of magne-
tization parallel to the hexagonal axis, but the way how the
individual Fe sublattices add up to the total anisotropy is less
clear, as the contributions of individual sublattices are difficult
to obtain experimentally. These contributions have thus been
estimated indirectly, e.g., from changes of the measured
anisotropy in substituted hexaferrites [5–7], or calculated as
single-ion contributions using appropriate spin Hamiltonians
and considering the symmetry of the crystal field [8–10]. It
became generally accepted that mainly Fe3+ in 2b sites are
responsible for the uniaxial character of anisotropy in Sr (and
Ba) M-type hexaferrites [11] and that the contributions of other
ferric cations, especially the 12k, are also important [8–10].

The magnetocrystalline anisotropy due to ferric ions can
be altered by replacing the Fe with suitable substitutions
[12–15] as well as by substituting the Sr by a trivalent
cation [16–18]. Particularly, in La3+ M-type hexaferrites
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(LaM), the observed magnetocrystalline anisotropy increases
with decreasing temperature, in contrast to almost a constant
character of the temperature dependence for Sr or Ba M-type
hexaferrites [19,20]. At low temperatures, the anisotropy of La
hexaferrites was found two times higher than the value for Sr
or Ba hexaferrites. Based on measurements of the anisotropy
field and total magnetic moment, it was proposed by Lotgering
[19] that the increased anisotropy at low temperatures is due
to the formation of Fe2+ in octahedral 2a sites.

Although the Fe2+(2a) localization was supported by local
hyperfine methods [16,20–24], the mechanism of increased
magnetic anisotropy proposed by Lotgering is still an open
question. In published calculations of the electronic structure
of these hexaferrites [25,26], the localized state was not
reached—the calculations resulted in a delocalized solution
with excess charge contained in the interstitial space or
smeared over all iron sites, which is not in accord with the
conclusions of the experiments. Since the explanation of how
the charge compensation and anisotropy are connected is
lacking, this issue is addressed in the present paper.

The aim of this work is to understand the increase of magne-
tocrystalline anisotropy in La hexaferrite at low temperatures,
and to explain the relation of this increase to the presence
of Fe2+. For this purpose, we studied M-type hexaferrites
A3+

x Sr1−xFe12O19 (A = La, Nd, or Pr) by means of electronic
structure calculations and nuclear magnetic resonance exper-
iments. Contrary to previous calculations [25,26], we found
the ground state with Fe2+ in 2a sites for all studied systems
with A3+. Such localization was also confirmed by our NMR
experiments. Based on calculations, we present a mechanism
of increased (decreased) magnetocrystalline anisotropy in La
hexaferrites at low (high) temperatures.

II. METHODS

A. Electronic structure calculations

Our calculations used the augmented plane waves + local
orbital method based on the density functional theory (DFT)
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FIG. 1. (Color online) Unit cell of hexaferrite SrFe12O19. The
five nonequivalent Fe sites are octahedral 2a (site symmetry 3̄m),
bipyramidal 2b (6̄m2), tetrahedral 4fIV, octahedral 4fVI (both 3m),
and 12k (site symmetry m). The three- and sixfold local axes are
parallel to the hexagonal axis c of the crystal (vertical direction in the
picture), which is also the easy axis of magnetization.

as implemented in WIEN2K [27]. For the exchange-correlation
functional, the PBE-GGA form was adopted [28]. To improve
the description of iron 3d electron correlations, we used the
rotationally invariant version of the LDA+U method [29] with
the GGA instead of LSDA exchange-correlation potential and
with a single parameter Ueff = U − J .

The electronic structure of hexaferrites, with unit cells
containing two formula units AFe12O19 (A = Sr, La, Nd, and
Pr), were calculated within space group P 63/mmc; the lattice
constants that were used are displayed in Table I. There are
eleven nonequivalent atomic sites in the structure including
the five Fe sites. The magnetic structure was considered as
collinear, with the moments of Fe atoms in 2a, 2b, and 12k
sites being antiparallel to the moments of Fe in 4fIV and 4fVI

sites.
The calculation of the electronic structure of mixed LaSr

hexaferrite La0.5Sr0.5Fe12O19 was performed within space
group P 6̄m2, where the number of nonequivalent atoms
increased to 21, as only the 2a octahedra retained their
multiplicity 2; all other sites split 1:1. As a comparison,

TABLE I. Lattice parameters in angstroms used by the presented
calculations.

Structure a b c

SrM 5.9618 5.9618 23.3533
LaSrM 5.9373 5.9373 23.1962
LaM, PrM, NdM 5.9128 5.9128 23.0391
LaM (orthorhombic) [24] 5.9025 10.1593 22.7883

calculations were performed for a low-temperature structure of
LaFe12O19 with the orthorhombic Cmcm space group proposed
by Küpferling et al. [24]. This structure loses hexagonal
symmetry due to orthorhombic distortion: the 12k site of the
original hexagonal structure splits into 16h and 8f3, otherwise
there is one-to-one correspondence between hexagonal (2a,
2b, 4fIV, 4fVI) and orthorhombic sites (4a, 4b, 8f1, 8f2).

The atomic positions of all calculated structures were
optimized within their space groups by minimization of the
total energy and atomic forces. The lattice parameters (Table I)
of Sr and La hexaferrites were optimized with RKmax = 7.0.
The lattice parameters of La hexaferrite were then used also
for Nd and Pr hexaferrites (NdM, PrM), while those of the
mixed LaSr hexaferrite (LaSrM) were interpolated from Sr
and La structures. The lattice parameters of the orthorhombic
structure were not optimized, we used the parameters acquired
by Küpferling et al. [24].

The radii of the atomic spheres were chosen as 1.45 a.u.
for oxygen, 2.0 a.u. for iron, and 2.5 a.u. for large cations
(La, Sr, Nd, or Pr). The dependence on the size of the basis,
the number of k points, and the high-energy cutoff was tested
on the Sr hexaferrite where the energy of magnetocrystalline
anisotropy was satisfactorily converged already for RKmax =
6.0 (APW+lo method), k-mesh 7 × 7 × 1, and Emax = 5.0 Ry.
The charge density was Fourier expanded to Gmax = 16

√
Ry

and the value of parameter Ueff = 4.5 eV was adopted for
the 3d orbitals of iron atoms; its influence on the calculated
quantities is discussed in the text.

The self-consistent calculation of the magnetocrystalline
anisotropy is a difficult task as the corresponding energy
differences of the order of 1–10 μRy/atom are comparable to
the energetic resolution of available full potential calculations.
The results obtained in a self-consistent calculation are thus
overly sensitive to various calculational parameters (size of
the basis set, number of k points). Since in case of these
hexaferrites the spin-orbit coupling is small compared to
3d bandwidth or the exchange splitting, the anisotropies
of the studied compounds can be studied using the force
theorem approach, where the spin-orbit coupling is introduced
non-self-consistently (for details and further references see
Ref. [30]). Our practice was as follows: the spin-polarized
calculation was converged self-consistently without spin-orbit
coupling, using such a set of symmetry operations that
satisfied all intended [hkl] directions of magnetization. Then,
starting from the converged potential, the eigenvalue problem
was solved for each direction with the spin-orbit coupling
switched on non-self-consistently, i.e., within one iteration
only. The difference in total energies was then evaluated for
different [hkl] directions to determine the magnetocrystalline
anisotropy. This spin-orbit interaction was applied within the
atomic spheres using the second variational method, which
allowed us to resolve the contributions of individual Fe
sublattices to anisotropy.

B. Hexaferrite samples

The studied powder samples of hexaferrites with a sub-
stitution of the large cation were prepared by the standard
ceramic process (for details see Refs. [16,31]). In the case of
the LaxSr1−xFe12O19 system, the samples covered the whole
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concentration range—five samples with x = 0, 0.25, 0.5,
0.75, and 1. For Nd and Pr substitutions, the single phase
limits are 0.375 for Pr and below 0.37 for Nd; we studied
the samples NdxSr1−xFe12O19 (x = 0.125, 0.250, and 0.300)
and PrxSr1−xFe12O19 (x = 0.125, 0.250, and 0.375). The
single-phase samples were characterized by powder XRD,
microscopy, electron-probe microanalysis, thermal analysis,
magnetic measurements, and Mössbauer spectroscopy [31].

C. 57Fe nuclear magnetic resonance experiments

Frequency-swept 57Fe NMR spectra were recorded in zero
external field at 4.2 K using spectrometer console Bruker
Avance and a home-made probe. The nuclear spin of 57Fe
is 1

2 and the magnetogyric ratio γ = 1.38 MHz T−1, so that
the resonance frequency corresponds directly to the local
magnetic field. A tuned and well matched resonance circuit in
the probe was used and special care was given to ensure reliable
intensities of NMR spectra in the whole frequency range.
The Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence was
applied and the pulse lengths and amplitudes were set to excite
the signal of nuclei in the magnetic domains. Depending on
the sample composition, the required lengths of π

2 pulses
were 1.5–10 μs, the frequency step in spectra 10–50 kHz,
and the delay between scans 1–150 s. Spin echoes formed
within the CPMG sequence were detected and coherently
summed in the time domain. The signals obtained at individual
excitation frequencies were then Fourier transformed to the
frequency domain. To minimize the modulation of spectra by
T2 relaxation, only the first five recorded echoes were used for
evaluation. The final spectrum was constructed as an envelope
of the particular FT lines and a frequency correction 1/f 3 of
spectral intensity was applied.

III. RESULTS AND DISCUSSION

In the first part of this section, we describe how the state
with Fe2+ localized in 2a was reached in DFT calculations.
Then the results of calculations and experiments regarding the
localization are presented. The last part concerns magnetocrys-
talline anisotropy: its calculation, comparison with available
experimental data, and also discussion of the results.

A. Charge localization from DFT calculations

The GGA+U method improves the description of iron 3d

electron correlations and in the case of hexaferrites provides
correctly the insulating ground state, while with GGA, the
ground state would be almost metallic [25]. However, one
has to be careful when using the GGA+U method on complex
structures as there is a danger that an incorrect electron density
is stabilized by the applied orbital potential. The calculation
then becomes trapped in some local energy minimum, which
may depend on the starting conditions, the process of including
the orbital potential, or various parameters of the calculation
(e.g., mixing scheme). On the other hand, the fact that
GGA+U stabilizes (and amplifies) inequivalency and leads
to a charge disproportionation can be exploited in order to
search for energetic minima that a pure GGA calculation
would not reach. When more than one stable self-consistent
solutions are obtained, apparently, it is justified to choose the

one with the lowest total energy as the correct solution. Our
approach to obtain and evaluate such energy minima is thus
similar to the common practice for the calculation of magnetic
exchange interactions from the differences of the total energies
of states with different atomic spin configurations [32–35].
Instead of starting the self-consistent calculations with various
orientations of atomic spins, our procedure is more subtle:
calculations start with the same spin structure but we modify
the initial occupations of electronic states.

Local energy minima for La M-type hexaferrite (LaM)
LaFe12O19 were searched by arranging several different occu-
pations of valence electrons of Fe atoms in the initial electron
density. The calculation for each of these density templates
was then carried out without any further interventions in the
population matrices until it self-consistently converged using
GGA+U with Ueff = 4.5 eV. All calculations reached either a
solution corresponding to a delocalized scenario with all iron
atoms being Fe3+-like, or a solution having Fe2+ localized in
the 2a site, as was indicated by the lowered magnetic moment
of Fe(2a) in Table II. The latter, localized solution had the
total energy lower by ≈0.64 eV and thus was declared as the
ground state. Between two calculations with different starting
conditions but reaching the same type of solution only slight
variations of calculated quantities were observed (≈0.001 μB

in atomic moments and below 0.1 meV in total energy).
Such differences were not attributed to additional solutions
since they are close to the precision threshold of our DFT
calculations, which was estimated as ≈0.01 meV.

Analogous calculations were carried out for pure Sr, Nd,
and Pr hexaferrites, the mixed La/Sr hexaferrite, and also for
the La hexaferrite with the orthorhombic structure proposed
by Küpferling et al. [24]. For structures with a trivalent large
atom, we again found a delocalized and a localized solution,
the latter being energetically favorable. As expected, for Sr
hexaferrites, such calculations found only a single solution
with all Fe ions in a ferric state (Table II). Similarly to the
situation in La hexaferrites, for all structures with a trivalent
large cation, the localized solution was assigned to the ground

TABLE II. Magnetic moments (in μB units) and valences of atoms
in La and Sr M-type hexaferrites. The moments were calculated inside
generalized atomic volumes using the atoms-in-molecules (AIM)
method. The valence was obtained as the difference of the integrated
electronic charge inside the AIM volume and the atomic number Z.

magnetic moment (μB) valence

atom SrM LaM deloc. LaM loc. SrM LaM deloc. LaM loc.

Fe(2a) 4.20 4.12 3.63 1.84 1.76 1.42
Fe(2b) 4.11 4.11 4.11 1.77 1.76 1.76
Fe(4fIV) −4.11 −4.11 −4.10 1.79 1.78 1.77
Fe(4fVI) −4.15 −4.17 −4.17 1.86 1.85 1.85
Fe(12k) 4.20 4.16 4.22 1.82 1.77 1.82
O(4e) 0.42 0.40 0.42 −1.23 −1.24 −1.23
O(4f) 0.10 0.08 0.14 −1.24 −1.25 −1.25
O(6h) 0.03 0.04 0.04 −1.24 −1.23 −1.22
O(12k1) 0.10 0.08 0.06 −1.24 −1.25 −1.25
O(12k2) 0.21 0.14 0.15 −1.22 −1.23 −1.23
La/Sr(2d) 0.00 −0.02 0.00 1.65 2.15 2.15
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TABLE III. The formal valence states for all studied hexaferrite structures. The values were obtained by normalizing the valences (extracted
from AIM method) by a factor ≈0.62, which scaled the average charge of oxygen atoms to the value of −2, representing the oxidation state
O2−. Label of cation A stands for Sr, La, Nd, or Pr.

LaM PrM NdM LaSrM

atom SrM deloc. loc. deloc. loc. deloc. loc. atom deloc. loc.

Fe(2a) 2.99 2.84 2.30 2.87 2.35 2.91 2.58 Fe(2a) 2.92 2.70
Fe(2b) 2.87 2.84 2.85 2.84 2.86 2.84 2.86 Fe(2b′) 2.84 2.85

Fe(2b′′) 2.86 2.86
Fe(4fIV) 2.89 2.87 2.86 2.88 2.86 2.88 2.87 Fe(4f′

IV) 2.88 2.88
Fe(4f′′

IV) 2.89 2.88
Fe(4fVI) 3.01 2.98 2.99 2.99 2.99 2.99 2.99 Fe(4f′

VI) 2.99 2.99
Fe(4f′′

VI) 2.99 3.00
Fe(12k) 2.95 2.86 2.95 2.88 2.95 2.90 2.94 Fe(12k′) 2.94 2.94

Fe(12k′′) 2.87 2.93
A(2d) 2.67 3.47 3.49 3.28 3.38 3.13 3.21 Sr(2d) 2.67 2.67

La(2d) 3.49 3.50

state, while the delocalized solution was found approximately
0.5 eV higher in energy.

The valence states of Fe cations in hexaferrites can be
estimated from their calculated magnetic moments, since all Fe
cations are expected to be in high spin states, i.e., free iron ion
possessing a magnetic moment of 5 μB or 4 μB is nominally
Fe3+ or Fe2+, respectively. In a crystal, the calculated moments
are lower, because of the hybridization effect of iron 3d orbitals
with oxygen orbitals, which is a physically correct picture.
However, a fraction of the magnetic moment leaks out of the
atomic spheres, and thus is not attributed to any specific atom.
We avoid this undesired effect by using the AIM approach
[36], where for the purpose of evaluating the atomic valences or
magnetic moments, generalized atomic volumes are calculated
and used instead of the original atomic spheres. The valences
from the AIM analysis are presented in Table III. For easier dif-
ferentiation between Fe2+ and Fe3+ states we introduce formal
valence states obtained by normalizing the calculated atomic
charges by such a factor (≈0.62) that would bring the average
charge of oxygen ions to the value of −2, representing the
oxidation state O2−. These formal valence states for Fe atoms
in all calculated hexaferrites are displayed in Tables III and IV.

From a survey of Table III, one finds the Fe cations in the Sr
hexaferrite on average to possess a formal valence state 2.95,

TABLE IV. The formal valence states extracted from AIM
method are displayed for the orthorhombic structure of La hexaferrite
proposed by Küpferling et al. [24]. The values were obtained by
normalizing the valences (extracted from AIM method) by a factor
≈0.62, which scaled the average charge of oxygen atoms to the value
of −2, representing the oxidation state O2−.

atom deloc. loc.

Fe(4a) 2.72 2.39
Fe(4b) 2.81 2.84
Fe(8f1) 2.94 2.94
Fe(8f2) 2.97 2.97
Fe(8f3) 2.83 2.88
Fe(16h) 2.89 2.94
La(4c) 3.44 3.46

i.e., essentially Fe3+ states. As expected due to the presence
of an extra valence charge, the averaged formal valence state
of Fe in the La hexaferrite (2.88) is somewhat lower than in
the Sr hexaferrite and is practically the same for both localized
and delocalized solutions of the La hexaferrite. Roughly, half
of the extra charge is localized at lanthanum for both types of
solutions. In the case of the delocalized solution, the remaining
charge is distributed among Fe cations (especially in 2a and
12k sites) and oxygens. For the localized solution, however, the
excess charge is almost exclusively at the 2a sites, as indicated
by its reduced valence state. This behavior can be observed
also in data for NdM and PrM (Table III) and analogous charge
compensation is found also in the orthorhombic LaM structure
(Table IV). Furthermore, the localization, albeit a weak one,
can be observed also in the mixed (LaSr)0.5Fe12O19 (LaSrM)
hexaferrite (Table III). All these results indicate that the Fe2+

appears in the octahedral 2a sites regardless of the choice
of the trivalent large cation (La, Nd, or Pr). Moreover, this
localization effect is not inherent to the hexagonal structure:
Fe2+ is present (in 4a sites) also in the orthorhombic structure.

Besides the abrupt change of valence of Fe in 2a sites
(respectively, 4a in the orthorhombic structure) for all localized
solutions, we can notice differences also in delocalized
solutions. Compared to SrM, the valence states of Fe cations
in 2a and 12k sites of LaM are lower, while the other Fe
cations remain relatively intact. In the mixed structure LaSrM,
where the 12k sublattice splits into two, only the six Fe(12k′′)
cations, which are near the La3+ sites display such a difference.
In the delocalized state, the extra minority charge thus slightly
prefers the 2a sites and those 12k sites that are close to the
trivalent large cation.

B. Charge localization from 57Fe NMR experiments

Zero field 57Fe NMR spectra of the Sr hexaferrite, La,
Nd, and Pr substituted Sr hexaferrites, and the La hexaferrite
measured at 4.2 K are displayed in Fig. 2. The Sr hexaferrite
spectrum contains five lines corresponding to five sublattices
2b, 12k, 4fIV, 2a, and 4fVI (listed by increasing frequency).
With increasing concentration of La, Nd, or Pr, the local
environment of 57Fe nuclei is perturbed: the local symmetry
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FIG. 2. (Color online) 57Fe NMR spectra of the Sr hexaferrite
(x = 0), La, Nd, and Pr substituted Sr hexaferrites (x ∈ 〈0.125,0.75〉),
and the La hexaferrite (x = 1) measured at 4.2 K in zero external field.
Spectra are sorted with increasing concentration x of the trivalent
large cation from top to bottom; the weak resonance of 2b at lower
frequencies is scaled 10x.

of Fe sites is reduced by the substituent, which causes visible
line splitting for the neighboring Fe sites or line broadening
when the sites are further away. Additionally, these changes
manifest also as gradual shifts in resonance frequency; see the
shift of center of mass of 2b line in Fig. 3.

The spectra in the frequency range of 71–76 MHz no-
ticeably follow a common trend regardless of the type of
substituting atom. On the other hand, the Fe(2b) subspectrum
at lower frequencies differs for Nd and Pr substituted samples
from that of La substituted hexaferrite. This is attributed to the
fact that Nd and Pr both possess a magnetic moment. Since 2b
are the nearest iron sites to the large cation site (see Fig. 1),
the Fe(2b) resonance is visibly affected by an additional field
due to the interaction with the magnetic moment of Nd or Pr.
Analogous yet smaller differences can be observed in Fig. 2
(panel x = 0.25) for 12k and 4fVI spectral lines, as the 12k
and 4fVI sites are the next nearest neighbors to the large cation
site. And finally, the effect on 4fIV and 2a lines is negligible as
these sites are the most distant to the large cation in 2d site.

FIG. 3. (Color online) Shift of 2b line resonance frequency
(evaluated as a center of mass) in dependence on the concentration
of trivalent large cation. Lines are only a guide for the eye.

The resonance line of 57Fe in 2a sites is interesting, its
intensity diminishes with increasing concentration of La, Nd,
or Pr, while the resonance frequency remains rather constant.
The loss of 2a line intensity is attributed to the change of the
valence state of some of the Fe(2a) ions towards Fe2+ state.
Such a change is accompanied by a decrease of Fe 3d magnetic
moment, which in turn decreases the local hyperfine magnetic
field, i.e., the resonance frequency of 57Fe in Fe2+(2a) is
significantly shifted to lower frequencies with respect to the
position of 57Fe in Fe3+(2a). This is in accord with the results
of Mössbauer spectroscopy by Seifert et al. [31] who found the
hyperfine field of 57Fe in Fe2+(2a) approximately 10 T lower
than the field of 57Fe in Fe3+(2a) in Sr hexaferrites partially
substituted by La, Nd, Pr, or Sm at room temperature. At lower
temperatures, this difference increases to more than 20 T as
was observed by Grössinger et al. in a La hexaferrite [20].

Direct measurement of Fe2+ by 57Fe NMR is difficult, prob-
ably due to the rapid spin-spin relaxations and line broadening;
the formation of Fe2+(2a) is thus observed indirectly as a
decrease of the Fe3+(2a) intensity. Due to the overlap of some
of the spectral lines, the intensities were evaluated for groups:
(12k + 4fIV) and (2a + 4fVI). The intensity of (2a + 4fVI)
lines decreases linearly with increasing concentration of the
trivalent large ion while the intensity of (12k + 4fIV) remains
constant for all concentrations (Fig. 4).

Because of the La-Sr disorder, the 4fVI line is split into four
overlapping components with unknown asymmetric profiles,
therefore, a quantitatively reliable decomposition of the (2a +
4fVI) profile into contributions of the 2a and 4fVI sublattices
is not possible. From a qualitative comparison of spectral
profiles, it is evident that the observed decrease of the (2a +
4fVI) intensity is due to the decrease of the 2a line intensity.
From the dependence of NMR line intensities, we thus confirm
that at low temperatures, the Fe2+ cations form in 2a sites to
compensate the addition of trivalent substitution.

Apparently, the character of the changes is uniform re-
gardless of the type of used substitution, which is in a very
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FIG. 4. (Color online) Integral intensities of 12k + 4fIV and 2a +
4fVI resonance lines depending on the concentration of the trivalent
large cation. Lines correspond to nominal numbers of Fe3+ atoms
per formula unit A3+

x Sr1−xFe12O19 for the scenario with the Fe2+

cation occupying the 2a sites, i.e., eight atoms for 12k + 4fIV and
3 − x atoms for 2a + 4fVI. The total integral intensities of the four
considered spectral lines were normalized to 11 − x.

good agreement with our calculations for structures with a
trivalent A3+ large cation. The calculated La, Nd, and Pr
hexaferrites exhibit a ground state with localized Fe2+, while
the other Fe ions remain ferric. The NMR and DFT results
are also consistent in finding that the number of ferric ions
in the 2a sublattice changes gradually with concentration x.
Although only one structure with a mixed content of La and
Sr is available from calculations (see Table III), the formal
valence state of its Fe(2a) is between the values of Fe3+(2a) in
SrM and Fe2+(2a) in LaM.

The linear decrease of Fe3+(2a) intensity in our NMR
spectra also indicates that the distribution of Fe2+ in the
2a sublattice is rather static at low temperatures. Significant
fast electron hopping within the 2a sublattice would induce
a gradual decrease of resonance frequency with increasing
concentration of substitution because of the decrease of the
local field—the observed field would have been the weighted
average of Fe2+ and Fe3+ fields. Such a rapid shift of the 2a
line frequency with increasing concentration of substitution
is not observed in our NMR spectra. Furthermore, the NMR
relaxation times would be shortened due to the increasingly
ferrous character of ions, which is again not the case as the
relaxation times of the 2a line do not significantly differ
from the values of other resonance lines. Therefore we can
conclude that there are well defined ferric and ferrous ions in
the 2a sublattice and their arrangement at low temperatures
does not change significantly on the time scale of at least
100 μs (typical duration of performed NMR experiments at
T = 4.2 K). While these findings are in agreement with the
Mössbauer measurements of Seifert et al. [31] performed on
the same set of samples, they are in contrast with the 57Fe
NMR results by Küpferling et al. [24] who reported no loss of
2a intensity (up to xLa = 0.3).

C. Calculation of magnetocrystalline anisotropy

The magnetocrystalline anisotropy of La and Sr hexaferrites
was calculated within the force theorem approach as described
in Sec. II. The energy of magnetocrystalline anisotropy was
evaluated as EMA = E⊥ − E||, where E|| stands for the
total energy with the direction of the magnetization in the
hexagonal axis, while E⊥ denotes the averaged energy of
calculations with the magnetization in the hexagonal plane. In
our calculations, the variations of such in-plane total energies
were more than two orders of magnitude lower than EMA, in
agreement with the uniaxial character of anisotropy in M-type
hexaferrites.

In practice, EMA consists of two parts: a contribution arising
due to the presence of spin-orbit coupling and a contribution
resulting from the interaction of an atomic moment with the
dipolar magnetic field of atoms in the whole crystal. The first
contribution was calculated using a second-variational method
(as implemented in WIEN2K), which included the spin-orbit
interaction within the atomic spheres. In calculations of unit
cells with periodic boundary conditions, the evaluation of the
latter (dipole-dipole) contribution reduced to the summation
of atomic contributions within a Lorentz sphere—in our case,
the value of this dipolar contribution was well converged for
a sphere with a radius of 256 atomic units. The total magnetic
anisotropy energies as sums of both contributions in units of
meV/unit cell are displayed in the bottom row of Table V. In
all studied cases, the dipolar anisotropies were of the order
of 1–10 μeV/unit cell, i.e., two or more orders of magnitude
smaller than the contribution due to spin-orbit interactions.

The calculated energy of the magnetocrystalline anisotropy
of the Sr hexaferrite, EMA = 0.78 meV/unit cell (Table V),
corresponds to an anisotropy constant K1 = 0.18 MJ/m3

(roughly half of the experimental value 0.33 MJ/m3,
Refs. [37,38]) and is in a good agreement with the value
0.84 meV/unit cell calculated by Liyanage et al. using DFT
with PAW potentials [15]. The anisotropy calculated for the
localized solution of La hexaferrite is two times higher than
that of the Sr hexaferrite, while the delocalized solution of the
La hexaferrite has an anisotropy two times weaker than SrM.
The localized solution of the La hexaferrite has thus more than
four times higher calculated anisotropy than the delocalized

TABLE V. The contributions of individual iron sublattices to the
magnetocrystalline anisotropy energy EMA were calculated for the
studied La and Sr hexaferrites. Due to the reduced symmetry when
the magnetization is along [100], the 12k sites split with ratio 4:8 into
two species 12k1 and 12k2.

EMA of sublattice (meV/cell) EMA per atom (meV)

atom SrM LaM loc. LaM deloc. SrM LaM loc. LaM deloc.

Fe(2a) −0.01 1.11 0.66 −0.01 0.56 0.33
Fe(2b) 0.48 0.24 0.42 0.24 0.12 0.21
Fe(4fIV) 0.04 −0.02 0.00 0.01 0.00 0.00
Fe(4fVI) −0.02 0.02 0.00 −0.01 0.01 0.00
Fe(12k1) 0.09 0.17 0.03 0.02 0.04 0.01
Fe(12k2) 0.20 0.03 −0.75 0.02 0.00 −0.09
total 0.78 1.55 0.37
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solution. This result can be confronted with the experimental
estimation of magnetocrystalline anisotropy by Grössinger
et al. [20] who measured the temperature dependence of the
anisotropy field of La and Sr hexaferrite powders. While for
the Sr hexaferrite the authors found an anisotropy field of
around 2 T which is almost constant up to 500 K, the La
hexaferrite displayed a relatively monotonous decrease of the
field from ∼4 T at low temperatures to ∼1.2 T at 500 K. Similar
results were obtained already by Lotgering [19] for Ba and La
hexaferrites. Despite the fact that our calculations correspond
to temperature 0 K and a proper description would go beyond
DFT, we draw a simple picture of the localization process with
temperature. At low temperatures, the scenario corresponding
to the localized Fe2+(2a) solution calculated as the ground state
is realized with a well established arrangement of Fe2+(2a)
ions—in accordance with the observation of no dynamics of
the extra valence electron by our NMR experiments. With
increasing temperature, the state corresponding to the delo-
calized solution appears and dominates at high temperatures,
which in effect substantially reduces the anisotropy of the La
hexaferrite. In the Sr hexaferrite, there is no such transition and
the anisotropy remains relatively temperature independent.

The calculated magnetocrystalline anisotropies can be
analyzed further by a decomposition into contributions of
individual Fe sublattices—since the spin-orbit interaction is
enabled only within an atomic sphere, the decomposition can
be achieved by including the spin-orbit interaction selectively
on sets of atoms. We adopt an approach where the anisotropy
energy due to the presence of spin-orbit coupling consists of
“on site” (single ion), which is determined by the interaction
of the orbital moment with the surrounding crystal field and
is usually a dominant term, and “off site” contributions,
which comprise the pairwise (e.g., pseudodipolar) interactions
of orbital moments of neighboring atoms. We can thus
evaluate the contribution of a given Fe sublattice from energies
calculated with spin-orbit enabled on all atoms, including the
particular Fe, and on all but the particular Fe atom (for details
see Appendix).

The calculated contributions of Fe sublattices to EMA are
displayed in Table V. In the Sr hexaferrite, the largest contri-
bution arises from the single-ion contribution of Fe(2b). The
anisotropic character of 2b bipyramidal site is expected from
the geometry of the oxygen hexahedron—strong elongation
along its local axis (parallel to hexagonal axis of the unit
cell) imposes large single-ion contribution to the uniaxial
anisotropy. When considering EMA per atom, the anisotropies
of other Fe sublattices in SrM are almost an order of magnitude
weaker than the anisotropy of Fe(2b), however, their total
contribution is not negligible due to the larger number of atoms
in the respective sublattices, especially in the case of Fe(12k).
These outcomes are in accord with the generally accepted
notion that the anisotropy in Sr and Ba hexaferrites is mainly
due to the Fe(2b) contributions but also due to contributions
of other Fe ions [8–10], although our results differ in the sign
of 12k anisotropy from those obtained by means of a point
charge model for the crystal field [9].

Despite the substitution of La for Sr in close vicinity to
2b sites, the contribution of Fe(2b) to the anisotropy remains
large also for both La solutions. A considerable increase of
anisotropy is, however, observed in the La hexaferrite due to

the contribution of localized Fe2+(2a) ions, whose calculated
single-ion anisotropy is 1.19 meV (the contribution from the
pair term is −0.08 meV).

In the delocalized solution for LaM, the extra valence
charge is distributed among several sites, mainly Fe(2a) and
Fe(12k), as is evidenced by the reduced (formal) valences
compared to SrM (in Table III). As a consequence, the Fe(2a)
and Fe(12k) contributions to anisotropy are substantially
reduced. The single-ion contribution of Fe(2a) reduces to
0.87 meV (the pair-interaction term is −0.21 meV) and for
Fe(12k) the single-ion term even becomes negative, −0.68
meV (the pair-interaction term is −0.07 meV).

The following text qualitatively explains the values of
Fe2+(2a) and Fe(12k) contributions from considerations of the
site symmetry and charge density plots. In case of Fe2+(2a),
the single-ion contribution to anisotropy can be understood
within the crystal-field theory [39]. The orbital moments of
Fe are largely quenched and the orientation of 3d orbitals is
governed by the crystal field, to which the spin-orbit interaction
is only a small correction in iron oxides. For the 2a site, the
3d energy levels of Fe2+ are split by the octahedral crystal
field into lower a lying triplet and a doublet. The triplet is
further split by the trigonal component of the crystal field to
a singlet and a doublet—their position in energy depends on
the character of the trigonal distortion. The decomposition
of charge within the atomic sphere of Fe(2a) reveals that
in our case it is the singlet: the extra electron is contained
predominately within the dz2 orbital. This can be depicted by
plotting the difference of charge density between the localized
and the delocalized solutions [Fig. 5(b)]. Contrary to the
typical setting of local axes in octahedron, here, the axes do not
point toward the oxygen ligands: the distorted octahedron of
the 2a site possesses trigonal symmetry with the z axis parallel
to the global hexagonal axis of the crystal. The ground state
of Fe2+(2a) is the dz2 singlet and its orbital moment (as well
as orbital moments of other Fe) remains nearly quenched by
the crystal field—all the calculated Fe orbital moments are
of the order of 0.01 μB. For the orbital singlet dz2 , even a
weak spin-orbit coupling will act against the deviation of the
atomic moment of the 2a iron from the trigonal axis induced
by the crystal field, and as a consequence, the ion significantly
increases its single-ion contribution to the anisotropy [39].

For the delocalized solution of LaM, however, the excess
minority charge is smeared over various sites—notably the
occupation of Fe(2a) minority band is reduced while the
occupation of Fe(12k) minority band increases. This in turn
decreases the large anisotropy contribution of Fe(2a) and also
strongly affects the anisotropy of Fe in the 12k sites. Compared
to 2a, the octahedron of the 12k site has low symmetry and
an analysis analogous to the 2a case would be complicated.
We thus refer only to the density plots in Fig. 5. The partial
electronic charge at the 12k sites forms irregular and quite
generally oriented clouds [see dark blue structures in Fig. 5(c)]
with one dimension noticeably shorter than the other two.
When the magnetization is set in the [100] direction, the 12k
sites split into two groups 4:8. For the first group of four sites,
12k1, the charge clouds are favorably oriented with respect
to both considered directions of magnetization [100] and
[001], thus the single-ion contribution to anisotropy is almost
zero. While for the eight 12k2 sites the clouds are slightly
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FIG. 5. (Color online) The area of the greatest difference be-
tween the localized and the delocalized solution of La hexaferrite.
To construct the isosurface plot, the charge density of the delocalized
solution was subtracted from that of the localized solution. Light
green corresponds to areas where the charge density of the localized
state is higher than the density of the delocalized state, while dark
blue color corresponds to areas where the density of the delocalized
state prevails. The isosurface level is 0.004 a−3

0 (a0 is Bohr radius).
(a) View of the hexagonal unit cell in perspective corresponding
to Fig. 1. (b) The detail of the 2a site with a neighboring oxygen
octahedron and (c) the detail of three of the 12k sites with one
neighboring oxygen. These sites are the only sites in the unit cell
where any significant difference between localized and delocalized
solutions is visible.

more prolate towards the [100] direction, which implies a
negative contribution to EMA. The total contribution due to
the minority charge on the 12k is thus negative, which is
responsible (together with decrease of positive 2a contribution)
for the reduction of overall anisotropy in the delocalized La
hexaferrite.

We make a note concerning the accuracy of the presented
anisotropy results with respect to the used k mesh and Ueff .
Quite surprisingly, a relatively small number of k points was
needed for sufficient convergence of the calculated anisotropy,
however, the k mesh used in this work (7 × 7 × 1) is consistent
with other calculations of anisotropy in Sr hexaferrites [15,40].
Liyange et al. [15] used a 7 × 7 × 1 mesh for the calculation
of anisotropy in Zn- and Sb-doped Sr hexaferrites, and Feng
et al. [40] used an 8 × 8 × 1 mesh for the case of Ti- and
Co-doped Sr hexaferrite. This is due to the fact that the studied
hexaferrites are relatively insulating (calculated gap ∼2 eV)
and the occupied Fe 3d states are quite localized.

Also, we point out that our calculated anisotropy is sensitive
to the value of Ueff . With increasing Ueff , the occupied 3d states
become more localized and the orbital moments are reduced,
which in turn reduces the anisotropy. Varying the value of

FIG. 6. (Color online) Dependence of calculated EMA of Sr hex-
aferrite on applied Ueff . The inset displays an analogous dependence
for the calculated orbital moments.

Ueff in the range 3–6 eV, which are reasonable values for iron
oxides, induces monotonous changes to the orbital moments
and anisotropies by ≈20% (see Fig. 6). The trend scales in the
same way for all Fe ions, therefore, we believe this dependence
on Ueff does not impair our conclusions, at least in a qualitative
level.

IV. CONCLUSIONS

The ground state with Fe2+ localized in 2a sites and an
excited state with the charge delocalized were realized in
calculations of the electronic structure of La, Nd, and Pr
hexaferrites, and the localized state was observed in the spectra
of 57Fe nuclear magnetic resonance at 4.2 K. The preference
of the extra valence charge for 2a sites was found independent
on the type of the trivalent cation A3+ (A = La, Nd, and
Pr). Apparently, the fraction of Fe3+(2a) ions increases with
increasing concentration of A3+ in the Sr hexaferrite, and at
low temperatures the arrangement of ferric and ferrous ions
within the 2a sublattice is static.

The magnetocrystalline anisotropy of Sr and La hexaferrites
was calculated within the force theorem approach. For La
hexaferrite with localized Fe2+(2a), the calculated anisotropy
is twice the value of the Sr hexaferrite, while the La
hexaferite with delocalized electrons has half the value of
the Sr hexaferrite, which is in agreement with the temperature
dependence of anisotropy fields obtained in experiment [20].
From calculations of the individual Fe sites contributions to
the anisotropy, we conclude that the increased anisotropy of
the La hexaferrite at low temperatures is due to the single-ion
contribution of 2a sites; the contributions of Fe in 2b remain
appreciable in all cases. The Fe ions in 2a and 12k sites are the
most affected by delocalization and are thus responsible for
the decrease of anisotropy in La hexaferrites with increasing
temperature.
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APPENDIX: CALCULATION OF ATOMIC
CONTRIBUTIONS TO MAGNETOCRYSTALLINE

ANISOTROPY

The energy relevant for the anisotropy due to the presence
of spin-orbit coupling can be expressed as (n is the direction
of magnetization)

E(n) = Eion(n) + Epair(n), (A1)

where Eion(n) represents the “on-site” contribution to
anisotropy (single-ion contribution), and Epair(n) denotes all
“off-site” contributions appearing due to spin-orbit interaction
(all pair interactions that may contribute to anisotropy, e.g.,
pseudodipolar interaction).

The single-ion contribution is a simple sum of all N

individual atomic contributions ei ,

Eion(n) =
N∑

i=1

Eion
i (n), (A2)

while the pair interactions take the form

Epair(n) = 1

2

N∑
i 
=j

Pijμi(n)μj (n), (A3)

where P is a tensor describing these pair interactions and
μi and μj are the magnetic moments of ith and j th atoms.
The spin component of μi and μj is virtually unaffected
by enabling of the spin-orbit interaction non-self-consistently,
while the orbital momentum at a given atom emerges in the
calculations only when the spin-orbit interaction is enabled for
the atom. As a consequence, the vast majority of Epair(n) is in
fact isotropic and the anisotropy is due to orbital moments
emerging when the spin-orbit interaction is present at a
given atom. Therefore in calculations, when the spin-orbit
is disabled for a particular atom, such an atom does not
contribute to anisotropy through the pair interactions. Here, by
“atom” we mean one particular sort of equivalent atoms; any
contribution from pair interactions within such a sort of atoms
cannot be further distinguished from the on-site (“single-ion”)
contribution to anisotropy. (However, such a contribution
cancels out if the pair of equivalent atoms possesses a center
of inversion.)

The magnetocrystalline anisotropy energy (due to spin-
orbit interaction) for the whole hexaferrite cell is thus the
difference of E(n) for n along and perpendicular to the

hexagonal axis:

EMA = E⊥ − E|| =
N∑
i

(
E

ion,⊥
i − E

ion,||
i

)

+ 1

2

N∑
i 
=j

(Pijμ
⊥
i μ⊥

j − Pijμ
||
i μ

||
j ) = Eion

MA + E
pair
MA.

(A4)

Such quantity is calculated when the spin-orbit interaction
is enabled for all atoms. In order to evaluate the individual
contributions, one has to disable the spin-orbit interaction on
some of the atoms and compare the results.

When the spin-orbit interaction is enabled only for kth
atomic sphere and disabled for the rest, we obtain the energy

E
(1)
MA,k = (

E
ion,⊥
k − E

ion,||
k

) = Eion
MA,k; (A5)

the pair-interaction term vanishes, since only the kth orbital
moment is nonzero; thus we calculate only the single-ion
contribution.

To obtain the pair-interaction contribution, the setting can
be inverted, i.e., we can calculate the energy for the situation
with spin-orbit interaction disabled for the kth atomic sphere
and enabled for the rest. Then, we get the contribution of kth
atom by subtracting this energy from the energy EMA where
the spin-orbit interaction was enabled for all atoms:

E
(2)
MA,k = EMA −

⎛
⎝

N∑
i 
=k

(
E

ion,⊥
i − E

ion,||
i

)

+ 1

2

N∑
i 
=j ;i,j 
=k

(
Pijμ

⊥
i μ⊥

j − Pijμ
||
i μ

||
j

)
⎞
⎠

= E
ion,⊥
k − E

ion,||
k + 1

2

N∑
i 
=k

(Pikμ
⊥
i μ⊥

k − Pikμ
||
i μ

||
k )

+ 1

2

N∑
j 
=k

(Pkjμ
⊥
k μ⊥

j − Pkjμ
||
kμ

||
j )

= Eion
MA,k + 2E

pair
MA,k. (A6)

While the E
(1)
k was lacking the pair-interaction contribution,

E
(2)
k contains it twice.
The pair-interaction contribution to anisotropy can now be

expressed as

1
2

(
E

(2)
k − E

(1)
k

)
. (A7)

Eventually, the contribution of kth atom to the magnetocrys-
talline anisotropy (arising due to spin-orbit interaction) is
calculated as

Ek = 1
2

(
E

(1)
k + E

(2)
k

)
. (A8)
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VOJTĚCH CHLAN et al. PHYSICAL REVIEW B 92, 125125 (2015)

[1] H. Kojima, Ferromagnetic Materials. A Handbook of the
Properties of Magnetically Ordered Substances, edited by E. P.
Wohlfarth (North Holland, Amsterdam, 1982), Vol. 3, Chap. 5.

[2] M. Sugimoto, Ferromagnetic Materials. A Handbook of the
Properties of Magnetically Ordered Substances, edited by E. P.
Wohlfarth (North Holland, Amsterdam, 1982), Vol. 3, Chap. 6.

[3] E. Pollert, Prog. Cryst. Growth Charact. Mater. 11, 155 (1985).
[4] R. C. Pullar, Prog. Mater. Sci. 57, 1191 (2012).
[5] D. H. Han, Z. Yang, H. X. Zeng, X. Z. Zhou, and A. H. Morrish,

J. Magn. Magn. Mater. 137, 191 (1994).
[6] X. Batlle, X. Obradors, J. Rodrı́guez-Carvajal, M. Pernet, M. V.
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[16] D. Seifert, J. Töpfer, F. Langenhorst, J.-M. Le Breton, H. Chiron,

and L. Lechevallier, J. Magn. Magn. Mater. 321, 4045 (2009).
[17] J. Wang, C. Ponton, and I. Harris, J. Magn. Magn. Mater. 234,

233 (2001).
[18] J. Wang, C. Ponton, and I. Harris, J. Alloys Compd. 403, 104

(2005).
[19] F. K. Lotgering, J. Phys. Chem. Solids 35, 1633 (1974).
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