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Two-component density functional theory within the projector augmented-wave approach:
Accurate and self-consistent computations of positron lifetimes and momentum distributions
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Many techniques have been developed in the past in order to compute positron lifetimes in materials from
first principles. However, there is still a lack of a fast and accurate self-consistent scheme that could handle
accurately the forces acting on the ions induced by the presence of the positron. We will show in this paper
that we have reached this goal by developing the two-component density functional theory within the projector
augmented-wave (PAW) method in the open-source code ABINIT. This tool offers the accuracy of the all-electron
methods with the computational efficiency of the plane-wave ones. We can thus deal with supercells that
contain few hundreds to thousands of atoms to study point defects as well as more extended defects clusters.
Moreover, using the PAW basis set allows us to use techniques able to, for instance, treat strongly correlated
systems or spin-orbit coupling, which are necessary to study heavy elements, such as the actinides or their
compounds.
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I. INTRODUCTION

Positron annihilation spectroscopy (PAS) has proven to
be an efficient nondestructive technique to study defects
in materials [1,2]. By measuring the positron lifetime and
momentum distribution of annihilating electron-positron pairs
one can access information on defects volumes and chemical
environments, respectively. However, in order to correctly
interpret the experimental data it is often required to compare
the measured quantities with calculated ones. The theoretical
background of a numerical model that can provide theoretical
positron lifetimes and momentum distributions is well known
since the 1980s; it is the so-called two-component density
functional theory (TCDFT) [1,3,4]. Several implementations
of TCDFT have been done and used, however, in most
of them the positron wave function is calculated non-self-
consistently in an additional run using the electronic densities
and effective potential coming from a standard electronic
structure calculation [5–9]. Implementations of self-consistent
calculations of the positron state have been reported as
well [10–13] but they are not distributed. We decided, there-
fore, to implement TCDFT within the projector augmented-
wave (PAW) method in the open-source ABINIT code in a
way that allows self-consistent calculations of energies and
forces.

This paper is organized as follows: In Sec. II we recall the
theory behind the two-component density functional theory
and the projector augmented-wave method. We also derive the
expressions for energies, positron lifetimes, and momentum
distribution in the PAW framework. In Sec. III we present the
practical implementation of the described methods. Finally,
in Sec. IV we present results of the positron lifetime and
momentum distribution calculations that have been performed
to validate the implementation.

*julia.wiktor@cea.fr

II. THEORY

A. Two-component density functional theory

In order to calculate the lifetime of a positron and the
Doppler broadening of the annihilation radiation, one needs
to determine electronic and positronic densities and wave
functions in the considered system. These quantities can be
computed in the two-component density functional theory
(TCDFT) [1,3,4], which is a generalization of the density
functional theory.

The total energy in the TCDFT can be written as:

E[n+,n−] = E[n+] + E[n−]

+
∫

dr vext(r)[n−(r) − n+(r)]

−
∫

dr
∫

dr′ n−(r)n+(r)

|r − r′| + Ee−p
c [n+,n−],

(1)

with E[n+] and E[n−], which are the one-component func-
tionals for positron and electrons, vext is an external potential,
and E

e−p
c is an electron-positron correlation functional. It is

worth noting that in the above expression both electron and
positron densities are positive, while the signs of the external
potential acting on the positron and of the electron-positron
Hartree interaction are negative.

The momentum distribution of annihilation electron-
positron pairs can be written as [1]:

ρ(p) = πr2
e c

∑
i

∣∣∣∣
∫

dr e−ip·r�e−p
i (r)

∣∣∣∣2

, (2)

where �
e−p
i is the two-particle wave function in the state i and

p is the given momentum, re is the classical electron radius,
and c is the speed of light. If we consider that the electron and
positron are independent [in the independent particle model
(IPM)] we can rewrite �

e−p
i as a product of the electronic and

positronic wave functions:

�
e−p
i = �+(r)�−

i (r). (3)
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To take into account the correlation effects between the elec-
trons and positron, one can introduce the position-dependent
enhancement factor

√
g(n−,n+) [14], corresponding to the

increase in annihilation due to the screening of the positron
by the electrons. It is worth noting that often the enhancement
factor that depends only on the electronic density is considered
and expressed as

√
γ (n−). However, in this study, we will

also use the forms depending on both electron and positron
densities. Including the enhancement factor leads to the
expression

ρ(p) = πr2
e c

∑
ij

∣∣∣∣
∫

dr e−ip·r�+
i (r)�−

j (r)
√

g(n−,n+)

∣∣∣∣2

, (4)

which is used in the state-independent scheme of momentum
distribution calculations.

The positron lifetime, can be calculated as the inverse of the
total annihilation rate, which can be obtained by integrating
ρ(p) over the momentum:

λ = 1

τ
= 1

(2π )3

∫
dp ρ(p). (5)

On the other hand, the annihilation rate can be also calculated
using the electron and positron densities n−(r) and n+(r),

λ = πr2
e c

∫
dr n−(r)n+(r)g(n−,n+). (6)

Besides using the state-independent scheme, the momen-
tum distribution can be also calculated in the state-dependent
scheme [15]. According to Makkonen et al. [5] the correlation
effects in the state-independent scheme are overestimated,
since the enhancement factor

√
γ (n−) describes the distortion

of the electron-positron wave function due to the short-range
screening, while the wave function is distorted in whole space.
The state-dependent scheme uses a constant enhancement
factor γj for each electronic state described by the index j .
In the state-dependent scheme the momentum distribution is
expressed as

ρ(p) = πr2
e c

∑
ij

γj

∣∣∣∣
∫

dr e−ip·r�+
i (r)�−

j (r)

∣∣∣∣2

, (7)

where γj = λj/λ
IPM
j . λj is the total annihilation rate calculated

for the electronic state j ,

λj = πr2
e c

∫
dr n−

j (r)n+(r)γ (n−), (8)

and λIPM
j is the annihilation rate calculated for the same state

within the IPM, hence using γ = 1. When the formulation
of the enhancement factor depending on both electron and
positron densities g(n−,n+) is used, the above expression will
be replaced by:

λj = πr2
e c

∫
dr n−

j (r)n+(r)g(n−,n+), (9)

Makkonen et al. [5] showed that the Doppler spectra
calculated using the state-independent scheme are in slightly
better agreement with the experimental measurements, while
the state-dependent scheme overestimates the distribution for
high momenta. However, they point out that when ratios of

Doppler spectra to a reference spectrum is considered the
state-dependent scheme yields better results. As usually the
comparison with experiments is made using Doppler spectra
ratios and parameters extracted from them, we decided to
implement and use the state-dependent scheme.

When determining the electron and positron wave functions
and densities needed to calculate the momentum distribution of
annihilation radiation and the positron lifetime, one can choose
various formulations of electron-positron correlation energy
[Ee−p

c in Eq. (1)]. This leads to the existence of several cal-
culations schemes. In the first, conventional scheme (CONV)
a LDA zero-positron density limit of the electron-positron
correlation functional parametrized for the positron density
tending to zero (zero-positron-density limit) is used. This
functional was parametrized by Boroński and Nieminen [4]
using the data provided by Arponen and Pajanne [16]. In
this method it is considered that the positron cannot affect
the electronic density, hence only two calculation steps are
performed: In the first one the ground-state electronic structure
is computed. Then, in the second step, the positron density
is calculated for the resulting effective potential and the
calculation is stopped. In this method, an enhancement factor
depending on the electron density only is used. The CONV
scheme, despite being non-self-consistent and considering
that the positron density is close to zero even in the case
of vacancies, proved to yield results in agreement with
experiments [5,17–20]. The second scheme, in which the
same parametrization as in CONV is used, but in which the
electron and positron densities are calculated self-consistently,
was proposed by Gilgien, Galli, Gygi, and Car [21] and is
called GGGC. The third scheme, called PSN, uses a full LDA
electron-positron correlation functional provided by Puska,
Seitsonen, and Nieminen [22] and an enhancement factor
depending on both the electron and the positron densities. This
scheme was based on the Boroński and Nieminen method [4].

B. Projector augmented-wave method essentials

In this subsection we will recall briefly the basic concepts of
the PAW formalism [23] that are necessary to understand how
we will apply it in the two-component DFT context. These
concepts will only be presented with a view to reemploy them
for the electrons-positron system. We will closely stick to the
notations introduced in Ref. [24] describing in detail how the
PAW method is implemented in the ABINIT package.

In the PAW formalism the Kohn-Sham wave functions �nk

are connected to the pseudo-wave-functions �̃nk by means of
the linear transformation:

|�nk〉 = |�̃nk〉 +
∑

i

〈p̃i |�̃nk〉(|φi〉 − |φ̃i〉). (10)

The global index i is used to identify a set of partial waves
located at different sites (usually atomic positions). It is a
shorthand for the site Ri , the angular momentum quantum
numbers (li ,mi) and an additional index defining the size of
the basis set. The partial waves φi form a basis of atomic
orbitals while the φ̃i are “pseudized” partial waves obtained
from φi—without any norm-conservation constraint—and the
p̃i are projectors, dual functions of the φ̃i .
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Starting from Eq. (10) it is possible to show that the total
charge density of the electrons can be rewritten as:

n(r) = ñ(r) + n1(r) − ñ1(r) + nc(r), (11)

with nc being the density of the frozen-core electrons, which
is kept constant and equal to the core density of the isolated
atom and

ñ(r) =
∑
nk

fnk〈�̃nk|r〉〈r|�̃nk〉

n1(r) =
∑
ij

ρij 〈φi |r〉〈r|φj 〉

ñ1(r) =
∑
ij

ρij 〈φ̃i |r〉〈r|φ̃j 〉. (12)

In the above expressions, fnk are the occupation factors of
the Kohn-Sham wave functions while the ρij scalars are
the occupancies of each (i,j ) channel and defined as ρij =∑

nk fnk〈�̃nk|p̃i〉〈p̃j |�̃nk〉.
From the decomposition of the density given in Eq. (11) it

is possible to get a direct expression for the total energy (the
different terms are detailed in Ref. [24] and in Appendix A):

E = Ẽ + E1 − Ẽ1. (13)

Using the eigenvalues a double-counting expression for the
total energy is also available (see Appendix A). Differentiating
the energy towards the density operator leads to the expression
of the PAW Hamiltonian [25]:

H̃[n] = −1

2
	 + ṽeff +

∑
ij

|p̃i〉(D̂ij + D1
ij − D̃1

ij︸ ︷︷ ︸
Dij

)〈p̃j |, (14)

with

D̂ij =
∑
LM

∫
dr ṽeff(r)Q̂LM

ij (r)

D1
ij = 〈φi | − 1

2
	 + v1

eff|φj 〉

D̃1
ij = 〈φ̃i | − 1

2
	 + ṽ1

eff|φ̃j 〉

+
∑
LM

∫

R

dr ṽ1
eff(r)Q̂LM

ij (r) (15)

and

ṽeff = vH[ñ + n̂ + ñZc] + vxc[ñ + n̂ + ñc]

v1
eff = vH[n1 + nZc] + vxc[n1 + nc]

ṽ1
eff = vH[ñ1 + n̂ + ñZc] + vxc[ñ1 + n̂ + ñc]. (16)

In the above equations vH and vxc are Hartree and exchange-
correlation potentials. ñc is the pseudized core electron charge
density, and nZc and ñZc are sums of nucleus and core
electron charge densities and pseudized densities. Q̂LM

ij (r)
is an analytical function, defined as in Ref. [24]. n̂ is the
compensation charge density, which is added to soft charge
densities ñ and ñ1 to reproduce the correct multipole moment
of the all-electron charge density.

C. Two-component density functional theory
within PAW formalism

It is straightforward to write the two-component density
functional theory in the framework of the PAW formalism,
introducing additional superscripts “−” and “+” in the formulas
in order to refer to electron- and positron-related quantities. As
in standard TC-DFT the positron is treated as a positive-density
particle interacting with a negative potential due to the ions
and valence electrons. The positron wave function is referred
as �+.

1. Energies

Following these conventions the total energy of the elec-
trons+positron system can be expressed as:

E = E− + E+ + E+−. (17)

E− is the contribution to total energy coming from the valence
electrons and the ions. It has exactly the same expression as in
(18) and (19) in Ref. [24] with the addition of superscript − at
each evolving quantity (density, potential, or wave function).
E+ is the contribution to total energy coming from the
positron:

E+ = Ẽ+ + E1+ − Ẽ1+, (18)

with

Ẽ+ = 〈�̃+| − 	

2
|�̃+〉 −

∫
dr vH[ñZc](ñ+ + n̂+)

E1+ =
∑
ij

ρ+
ij 〈φi | − 	

2
|φj 〉 −

∫

R

dr vH[nZc](n1+)

Ẽ1+ =
∑
ij

ρ+
ij 〈φ̃i | − 	

2
|φ̃j 〉

−
∫


R

dr vH[ñZc](ñ1+ + n̂+) (19)

and

ρ+
ij = 〈�̃+|p̃i〉〈p̃j |�̃+〉. (20)

In the above expression, we use the self-interaction correc-
tion, as described by Boroński and Nieminen in Ref. [4]
(Appendix B). There is, hence, no positron-positron Hartree
and exchange-correlation interaction.

The last contribution to total energy E+− is due to
interactions between the positron and the electrons:

E+− = Ẽ+− + E1+− − Ẽ1+−, (21)

with

Ẽ+− = −
∫

dr vH[ñ− + n̂− + ñZc](ñ+ + n̂+)

+Ec[(ñ− + n̂− + ñc),(ñ+ + n̂+)]

E1+− = −
∫


R

dr vH[n1− + nZc](n1+)

+Ec[(n1− + nc),n1+]

Ẽ1+− = −
∫


R

dr vH[ñ1− + n̂− + ñZc](ñ1+ + n̂+)

+Ec[(ñ1− + n̂− + nc),(ñ1+ + n̂+)]. (22)
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2. Positron lifetime

We can represent the expression for the positron lifetime
in the PAW formalism, by introducing Eq. (11) into Eq. (6),
which leads to the decomposition of the annihilation rate into
three terms (see Appendix B):

λ = λ̃ + λ1 − λ̃1, (23)

where

λ̃ = πr2
e c

∫
dr ñ−(r)ñ+(r)g(ñ−,ñ+)

λ1 = πr2
e c

∫

R

dr n1−(r)n1+(r)g(n1−,n1+)

λ̃1 = πr2
e c

∫

R

dr ñ1−(r)ñ1+(r)g(ñ1−,ñ1+). (24)

It is worth noting that it is only possible to obtain the
above equation if the partial-waves and plane-waves bases
are complete, which is an assumption usually done in the
PAW formalism. Two ways of calculating the λ1 and λ̃1 have
been implemented in the code, one estimating them on each
point of the radial grid (r,θ,φ) and the second using a Taylor
development of the densities around their spherical parts (see
Appendix C for details).

3. Momentum distribution

Since the momentum distribution of the annihilating
electron-positron pairs is a sum over the electronic states, we
can consider the core and valence contributions separately.
In order to obtain a formula for the valence contribution to
the momentum distribution in the PAW formalism, we need
to write both electron and positron wave functions in the
form given in Eq. (10) and introduce it in Eq. (2). If the
partial-waves and plane-waves bases are complete we can
derive the following expressions (see Appendix D) for the
valence and core contributions, respectively:

ρvk(p) = πr2
e c

∑
n

∣∣∣∣
∫

dr e−ip·r�̃+(r)�̃−
nk(r)

+ 4π
∑
ij

〈p̃i |�̃+〉〈p̃j |�̃−
nk〉

+
∑
LM

SLM (p̂)(−i)LGLM
limi lj mj

×
∫

dr(φi(r)φj (r) − φ̃i(r)φ̃j (r))jL(pr)

∣∣∣∣2

, (25)

ρc(p) = πr2
e c

∑
jc

∣∣∣∣4π
∑

i

〈p̃i |�̃+〉

×
∑
LM

SLM (p̂)(−i)LGLM
limi ljc mjc

)

×
∫

dr φi(r)φjc (r)jL(pr)

∣∣∣∣2

, (26)

where Slmi
(r̂) are the real spherical harmonics, jL(pr) is the

spherical Bessel function and G are the real Gaunt coefficients
GLM

limi lj mj
= ∫

d
Slimi
(r̂)Slj mj

(r̂)SLM (r̂) (see Ref. [24]).

The valence contribution ρvk(p) is calculated for each
k point separately, each time resulting in a momentum
distribution given on a different grid (shifted by k) in the
reciprocal space. In the above expressions we consider that
the positron wave function occupies only one band and one k
point (the � point).

III. PRACTICAL IMPLEMENTATION

In practice we implemented the TCDFT as a double
loop on the electronic and positronic densities: during each
subloop, one of the two densities (and Hamiltonians) is kept
constant while the other is being converged (see Fig. 1). If
the CONV scheme is performed (e.g., for perfect lattice)
the calculation is stopped after two subloops, one electronic
and one positronic, and the positron lifetime and momentum
distribution are calculated. If a self-consistent scheme is used,
the electronic and positronic steps are repeated until the
convergence criterion is reached. Additionally, forces acting on
atoms and stresses, including contributions from the electrons
and the positron (see Appendix E), can be calculated and
the calculation continued for the new atomic configuration
and/or new geometry. To decrease the computational time
when atomic relaxation is performed, each new ionic step
is started with an electronic calculation taking into account
the potential due to the positron from the last calculation, what

vH
e-p[ ]

c
e-p[ , ]

vH
e-p[ ]

c
e-p[n , ]

ne
w
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to
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Computation of forces
acting on atoms

Positronic SCF

Momentum
distribution
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FIG. 1. (Color online) Illustration of the fully self-consistent
two-component density functional theory calculations in ABINIT.
n−

conv and n+
conv refer to converged electronic and positronic densities,

respectively.
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can help to decrease significantly the number of iterations. It is
worth noting that thanks to the self-consistency and using the
same bases for the positron and the electrons we have access to
all the force contributions. Therefore, we do not have to make
any additional approximations, like it was done for instance in
Ref. [5], where atomic-superposition (ATSUP) approximation
was used to calculate the positron-induced forces.

In this implementation we use a unified formalism for the
positron and the electrons: the wave functions of the electrons
and the positron in the system are expressed on the same
mixed basis (plane waves and atomic orbitals). Thanks to this,
we can use the same PAW data sets for electrons and positron
(the sign of the external potential is inverted when the positron
is treated), which makes the implementation easy to use.

Several electron-positron correlation functionals have been
included and can be used in our implementation:

(i) LDA zero-positron density limit parametrized by
Boroński and Nieminen [4] using the data provided by
Arponen and Pajanne [16],

(ii) LDA zero-positron density limit fitted by Sterne
and Kaiser [26] using the data provided by Arponen and
Pajanne [16],

(iii) GGA zero-positron density limit using the gradient
correction proposed by Barbiellini et al. [27] applied to the
LDA parametrization of Boroński and Nieminen [4],

(iv) GGA zero-positron density limit using the gradient
correction proposed by Barbiellini et al. [27] applied to the
LDA parametrization of Sterne and Kaiser [26],

(v) LDA full electron-positron correlation functional pro-
vided by Puska, Seitsonen, and Nieminen [22].

If the full electron-positron correlation functional (depend-
ing on the positron density) is used, the calculated lifetime of
the perfect lattice will depend strongly on the size of the cell.
In order to improve the convergence of the lattice lifetime with
the cell size, we allow the positron occupation to be set to a
value lower than one. This means that a calculation in a one
atom cell with the positron occupation set to 1/1000 will be
equivalent to the case of a cell containing 1000 atoms and one
positron. The occupations larger than one are not allowed and
the positron can only occupy one band.

In the self-consistent calculations, as implemented in this
work, we use the same number of k points in both subloops.
This means that, even though the thermalized positron in the
lattice should occupy the k = 0 point only, we calculate its
density and wave function at all the points that are chosen
in the electronic calculation. In the momentum distribution
calculations, however, we take only the positron wave function
at the � point.

The momentum distribution of annihilation radiation can
be viewed as a Fourier transform of the product of electrons
and positron wave functions. For the plane-wave part of the
valence contribution to the momentum distribution [first part
of Eq. (25)] this transformation is calculated using fast Fourier
transform (FFT) routines as implemented in ABINIT. The grid
on which the momentum distribution is calculated is, therefore,
equivalent to the grid used for wave functions in the reciprocal
space. For each k point FFT is performed separately, each time
giving a result on a different (shifted) grid in the momentum
space. The grids are combined at the end of the calculation
giving the final momentum grid, whose size is related to the

cut-off energy used in the calculation and spacing to the cell
size and the k-point mesh. We observed that using a cut-
off energy of around 25 Ha is usually sufficient to obtain
Doppler spectra converged up to 40 mrad, unless a higher
value is needed to converge the total energy of the system.
In calculations of the partial valence and core contributions
[second part of Eq. (25) and Eq. (26)] we choose to take the
p vectors corresponding to the points of the rectangular grid
used for the plane-wave part.

The TCDFT calculations implemented in this work have
been parallelized on three levels, allowing one to use
the locally optimal block preconditioned conjugate gradient
(LOBPCG) [28] or the Chebyshev filtering algorithm [29].
That means that the processors can be distributed between
the k points, bands, and FFT grid points during the density,
lifetime, and momentum distribution calculations.

A. Basis completeness

1. PAW basis completeness for positron wave function

Deriving the expressions used in TCDFT in the PAW for-
malism we considered that the PAW basis is complete enough
to describe the positron wave function inside the augmentation
region. The PAW data sets, however, are generated in order to
describe electronic wave functions and not the positronic ones.
The nature of the electron-ion and positron-ion interactions
and, hence, the shapes of the corresponding wave functions
differ strongly. Therefore, in some cases, a standard PAW data
set can be inappropriate for the positron description.

In Fig. 2 we illustrate the effect of the choice of the PAW
data set on the positron wave function in a Si lattice. The
electronic orbitals contained in various data sets used are listed
in Table I. First, we used a standard Si PAW data set with four
valence electrons (3s and 3p basis orbitals)—data set A. With
a complete basis we should have �̃+(r) = ∑

i φ̃i(r)〈p̃i |�̃+〉.
However, the corresponding pseudo (PS) and partial pseudo
(PS on-site) contributions in Fig. 2(a) are not equal in the
augmentation regions. Additionally, we can observe a peak at
the (0,0,0) point, which corresponds to the center of a silicon
atom, where the positron wave function should be smooth
and have its minimum [30,31]. This data set is clearly not
appropriate for the positron wave function representation. In
Fig. 2(b) we show the positron wave function obtained using
a PAW data set with 12 valence electrons (2s, 2p, 3s, and 3p

basis orbitals)—data set B. In this case the PS and PS on-site
are equal, which means that the basis is complete. There is still
a nonzero value of the all-electron wave function at the (0,0,0)
point, however, it is much smaller than the one yielded by the
four valence electrons data set. It is worth pointing out that we
could also enlarge the PAW data set by including projectors
corresponding to excited states. However, our test showed that
a better description of the positron was always achieved when
adding the semicore electron orbitals.

Figure 2 shows clearly that by adding additional states
in the PAW data set we obtain a better description of the
positron wave function. However, increasing the number of
the valence electrons taken into account for a given element
leads to more time-consuming calculations. In the cases when
large supercells are required (when modeling defects) the
computational cost can become too high. We decided to test if

125113-5
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FIG. 2. (Color online) Positron wave functions in Si lattice ob-
tained using PAW data sets containing four and twelve valence
electrons—data sets A and B (see Table I. The wave functions
are plotted between two Si atoms at (0,0,0) and (0,0,1) reduced
coordinates. All electron (AE), pseudo (PS), partial all electron (AE
on-site), and partial pseudo (PS on-site) contributions are presented.

it is possible to add the partial waves corresponding to the
semicore electrons in the basis used only for the positron
wave function description, while keeping the initial number of
valence electrons. For instance, in the case of Si, we will still
consider four valence electrons, but we will add the 2s and 2p

states in the positron wave function basis. This corresponds to
the data set C in Table I. In practice, we generate the PAW data
sets (using a modified version of the ATOMPAW generator [32])
in which we add the partial waves and projectors corresponding
to these additional states after the standard basis functions.
During the self-consistent calculation, when the electronic step
is performed, we put to zero all quantities corresponding to
these additional states, so that the wave function basis for the
electrons is equal to the one calculated with the data set A. This

TABLE I. Electronic orbitals included in positron and electron
basis sets in various PAW data sets used for Si.

Orbitals in the Orbitals in the
Dataset positron basis set electron basis set

A 3s, 3p 3s, 3p

B 2s, 2p, 3s, 3p 2s, 2p, 3s, 3p

C 2s, 2p, 3s, 3p 3s, 3p
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FIG. 3. (Color online) Positron wave functions in a Si lattice
obtained using three different PAW data sets, A, B, and C (see Table I).
The wave functions are plotted between two Si atoms at (0,0,0) and
(0,0,1) reduced coordinates.

allows us to obtain a better description of the positron wave
function without a significant increase of the computational
cost. The positron wave function obtained for the Si lattice
using the C data set is presented in Fig. 3 and compared
with those calculated using data sets A and B. The positron
wave functions obtained using data sets B and C are equal,
which suggests that both including the semicore electrons in
the valence and adding the corresponding states only to the
positron wave function basis equally improves the positron
description.

It should be emphasized one more time that the choice
of the basis set for the positron wave function description
is due to practical and not physical reasons. The positron is
described using the electron PAW basis set, to enable the self-
consistency and to make the code simple to use. Even though
none of the electron wave functions is directly suitable to
describe a positron, when a basis set is complete enough, it
can describe any function. We did not observe that adding any
particular electron state was more efficient in improving the
positron description than the other ones (apart from semicore
states making reaching the completeness faster than the excited
states). In the case of Si described here, we added both s- and
p-type functions. We first expected that adding the smooth 2p

function should be enough to describe the positron, however,
it was not the case. Therefore, we believe that the problem
is more mathematical than physical and that it is difficult to
predict what should be the exact features of the added functions
and projectors, apart from making the basis mathematically
more complete.

We also tried also to generate basis sets specific to the
positron. This did not work, since it was inconsistent with
the PAW formalism, which is based on the compensation of
the pseudoterms (plane waves and on-site). When using a
positron-specific basis set, this compensation was not possible,
therefore we believe that the only possibility is to use the
same basis for the electrons and the positron. Additionally,
we considered adding functions more adapted for the positron
description in the positron basis set, as it is done with the
semicore states. However, the basis set needs to be orthogonal
and during the orthogonalization process these additional
functions were transformed to the electron-type functions.

125113-6



TWO-COMPONENT DENSITY FUNCTIONAL THEORY . . . PHYSICAL REVIEW B 92, 125113 (2015)

TABLE II. Positron lifetimes for bulk elemental metals in
picoseconds. The calculated values are obtained using the CONV
scheme. Our results are compared to the work by Takenaka et al.
using FLAPW [37]. The corresponding experimental values are given
in the fourth column.

Material PAW FLAPWa Expt.b

Li 297 298 291
Al 163 166 163
Fe 100 100 106
Mo 106 104 103
Ag 125 124 133

aReference [37].
bReference [38].

IV. TESTS

A. Positron lifetime

Our implementation of self-consistent calculations of
positron lifetimes has been already successfully applied to
study defects in silicon carbide [33–35] and uranium diox-
ide [36]. In Ref. [33] we also included tests performed for Si
lattice and monovacancy with a discussion of the partial-waves
basis completeness. Here, some additional tests on positron
lifetimes will be shown.

1. Perfect lattices

In Table II we present the positron lifetime obtained for
perfect lattices of elemental metals, compared to the work
by Takenaka et al. [37] using the all-electron full-potential
linearized augmented plane-wave method (FLAPW) and to
experimental values. It is worth noting that the FLAPW
method is the most accurate implementation of DFT available
up to now. The lifetimes calculated using our implementation
are in good agreement with the reference ones.

In Table III we present the positron lifetimes calculated for
perfect lattices of Si, Al, Cu, and Fe, with and without the
semicore electrons (sc. and no sc., respectively). The results
are compared with those of Takenaka et al. [37]. For Al the
positron lifetime is in good agreement with the reference data
both with and without the semicore electrons. For Si, Fe, and
Cu, however, we can observe the change in the lifetime when

TABLE III. Positron lifetimes for perfect lattices of Si, Al, Cu,
and Fe, with and without the semicore electrons (sc. and no sc.,
respectively). Results are compared to the work of Takenaka et al. [37]
using FLAPW. The corresponding experimental values are given in
the fourth column.

Material no sc. sc. FLAPWa Expt.

Si 225 209 211 219b

Al 162 163 166 163c

Fe 97 101 100 106c

Cu 123 111 107 110d

aReference [37].
bReference [39].
cReference [38].
dReference [40].

TABLE IV. Relative Srel and Wrel parameters of silicon monova-
cancy obtained using different calculations schemes (CONV, GGGC,
and PSN). The relaxation, calculated as a percentage of the nearest
neighbor distance compared with the ideal vacancy. The positron
lifetime calculated using each method is also given.

Scheme Srel Wrel rel. (%) τ (ps)

CONV unrel. 1.027 0.830 0.0 241
CONV rel. 1.050 0.723 +7.4 264
GGGC 1.046 0.526 +7.4 270
PSN 1.030 0.802 +5.0 272

the semicore electrons are included. It means that in these cases
the partial-waves bases without semicore electrons were not
complete enough to describe the positron wave function and
density. It is worth stressing that the differences between the
results obtained with and without the semicore electrons were
mainly due to the description of the positron density as the
electronic density was not significantly affected by the choice
of the PAW data set.

2. Vacancy defects

To test our implementation in the case of defect, we first
performed calculations for a silicon monovacancy, using a
216 atom supercell, taking the PAW data set with four valence
electrons and 2s and 2p states added in the positron wave func-
tion basis, using three different calculation schemes, CONV,
GGGC, and PSN. We performed two different calculations
using the CONV scheme, first taking unrelaxed positions and
then taking the relaxed positions from the GGGC calculation.
This test was performed without the semiconductor correction,
hence 1/ε∞ is set to zero in the BN enhancement factor.
The results are presented in Table IV. The positron lifetimes
obtained with both PSN and GGGC schemes (272 and 270 ps,
respectively) are in good agreement with the result obtained
by Makkonen et al. [5] (272 ps) and with the experimental
lifetimes measured by Mäkinen et al. (273 ps) [41] and Polity
et al. (282 ps) [42] for VSi.

We also performed a test for a silicon divacancy. Kauppinen
et al. [43] detected divacancy with a charge −1 and positron
lifetime of 300 ps. We performed a calculation in a charged
216 atom supercell, using the PSN scheme and performing a
full relaxation. The calculated lifetime of 302 ps is in very
good agreement with the experimental value.

B. Momentum distribution

1. Perfect lattice

To validate our implementation of the Doppler broadening
calculations we compare results obtained using ABINIT to
theoretical and experimental spectra presented in literature.
Following Makkonen et al. [17] we will first compare ratios
between spectra of perfect materials. To be able to compare our
results to those of Makkonen et al. we performed calculations
for Si, Al, Fe, and Cu. Additionally, we performed tests for
SiC and C in order to be able to make a comparison with ratios
of experimental Doppler spectra of diamond, Si and SiC of
Rempel et al. [44]. We also test our implementation for the
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FIG. 4. (Color online) Doppler spectra of Si perfect lattice calcu-
lated using three different PAW data sets, A, B, and C (see Table I).
Spectra are convoluted with a Gaussian function with a FWHM
of 3.7 mrad. The results are compared with a theoretical spectrum
given by Makkonen [46] and experimental data obtained by Ranki
et al. [45].

case of a monovacancy in silicon. In the following tests the
calculations results for three different directions, [001], [011]
and [111] are averaged, unless stated otherwise.

The first tests have been performed on the perfect lattice of
silicon. In this case different PAW data sets containing different
number of valence electrons can be used in calculations.
These data sets have been discussed in Sec. III A 1. The first
data set tested included 3s and 3p states in the valence and
1s, 2s, and 2p states in core. The corresponding Doppler
spectrum is presented in Fig. 4 (blue line). We can see that
the results obtained using this data set are incorrect. We
observe an unphysically high probability at high momenta in
the spectrum. This is related to the errors in the positron wave
function obtained using this data set [see Fig. 2(a)]. In the
core region the positron wave function should be smooth and
have its minimum [30,31]. Its value at the nucleus should be
smaller for heavier elements and can be close to zero already
for Na [31]. Meanwhile, in the case of Si, when data set A
is used, we observe a peak in the positron wave function
in the core region. As a result, for instance, in Eq. (26) we
multiply the core contribution by a high value, instead of one
tending to zero, which explains the high probability at high
momenta. It is worth noting that there was also a nonzero
value in the positron wave function calculated using the two
more complete data sets, however, the error and the affected
region was smaller. We suppose, hence, that the corresponding
errors in the Doppler spectrum will appear at momenta above
the range that is usually compared with experiments which is
around 40 mrad.

The Doppler spectra obtained using the PAW data sets
with twelve valence electrons and with four valence electrons
and additional 2s and 2p are presented in black and red,
respectively, in Fig. 4. We can see that in both cases the errors at
high momenta are suppressed. The spectra are compared with
the theoretical results of Makkonen et al. and experimental data
by Ranki et al. [45]. Our results are in very good agreement
with those of Makkonen and slightly above the experimental
data at higher momenta. The latter is characteristic for the
calculations in the state-dependent scheme using the LDA
formulation of the enhancement factor [5,15].
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FIG. 5. (Color online) Si lattice/SiC lattice ratio curves of mo-
mentum distribution of annihilation radiation. The theoretical results
obtained using different silicon PAW data sets are compared with
experimental data obtained by Rempel et al. [44]. The theoretical
curves are convoluted with a Gaussian function with a FWHM
of 3.6 mrad.

The next test consisted of calculating Si lattice/SiC lattice
ratio curves (Fig. 5). For Si we used the PAW data sets
with twelve valence electrons and four valence electrons and
additional 2s and 2p states. For carbon, we use a data set
including all six electrons in valence state. The ratio curves
are compared with experimental results of Rempel et al. [44].
The theoretical results obtained using both PAW data sets are in
very good agreement with the experimental data. In the figure
we present the results obtained for both 3C-SiC and 6H -SiC.
It can be noticed that the momentum distributions of the silicon
carbide lattice are very similar for the two polytypes.

We further test our implementation of Doppler broadening
calculations in the ABINIT code by repeating some of the tests
performed by Makkonen et al. in Ref. [17]. In Fig. 6 we plot the
Cu lattice to Fe lattice ratio curves of momentum distributions.
In this calculation for Cu we used a PAW data set containing
19 valence electrons (3s, 3p, 3d, 4s, and 4p) and 2s and 2p

states added in the positron wave function basis. In the case of
Fe we used 16 valence electrons (3s, 3p, 3d, and 4s) and 2s

and 2p states added in the positron wave function basis. We
compare our ratio curve with theoretical results of Makkonen
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theory this work

0 10 20 30 40 50

2

1.8

1.6

1.4

1.2

1

0.8

p (mrad)

In
te

ns
it

y 
ra

ti
o 

C
u 

to
 F

e 

FIG. 6. (Color online) Cu lattice/Fe lattice ratio curves of mo-
mentum distributions of annihilation radiation. The result obtained
in this study is compared with experimental data obtained by Nagai
et al. [47] and with theoretical results of Makkonen et al. [17]. The
theoretical curves are convoluted with a Gaussian function with a
FWHM of 4.7 mrad.
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FIG. 7. (Color online) Cu lattice/Al lattice ratio curves of mo-
mentum distributions of annihilation radiation. The result obtained
in this study is compared with experimental data obtained by Nagai
et al. [48] and with theoretical results of Makkonen et al. [17]. The
theoretical curves are convoluted with a Gaussian function with a
FWHM of 4.3 mrad.

et al. and experimental data obtained by Nagai et al. [47]. The
reference results were extracted from Ref. [17]. We can see that
our results are in very good agreement with both theoretical
and experimental reference data.

In Fig. 7 we plot the Cu lattice to Al lattice ratio curves
of momentum distributions. In this calculation we used a
PAW data set with 11 valence electrons (2s, 2p, 3s, and
3p). In Fig. 8 we plot the Si lattice to Fe lattice and Al
lattice to Fe lattice ratio curves. For Si we use the PAW
data set with four valence electrons and additional 2s and
2p states as described previously. We can observe that all the
ratio curves obtained using our implementation are in good
agreement with the calculations of Makkonen et al. and the
experimental data of Nagai et al. It is worth noting that above
30 mrad the agreement worsens, however, since the relative W

parameter that is usually used to describe the high-momentum
contribution to the momentum distribution is calculated below
that value, this should not be an issue.
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FIG. 8. (Color online) Si lattice/Fe lattice and Al lattice/Fe lattice
ratio curves of momentum distributions of annihilation radiation.
The result obtained in this study is compared with experimental data
obtained by Nagai et al. [47] and with theoretical results of Makkonen
et al. [17]. The theoretical curves are convoluted with a Gaussian
function with a FWHM of 4.7 mrad.
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FIG. 9. (Color online) VSi/Si lattice ratio curves of momentum
distributions of annihilation radiation in the [001] direction. The
results obtained in this study are compared with the results of
Makkonen et al. [17]. The theoretical curves are convoluted with
a Gaussian function with a FWHM of 3.7 mrad.

2. Vacancy defects

We test our implementation in the case of a neutral
monovacancy and divacancy in Si. We performed calculations
using a 216 atom supercell, taking the PAW data set with four
valence electrons and 2s and 2p states added in the positron
wave function basis. The results presented in Fig. 9 were
obtained using three different calculation schemes, CONV,
GGGC and PSN. The vacancy was relaxed using the PSN
and GGGC schemes. In the case of the CONV method we
performed a calculation first taking unrelaxed positions and
then taking the relaxed positions from the GGGC calculation.
The results are compared with the results of Makkonen
et al. [17]. First, we can observe that the low-momentum
regions are similar in all calculations and a maximum near
10 mrad is always found. However, the high-momentum
parts differ strongly. The GGGC scheme yields the lowest
high-momentum ratio, which corresponds to the fact that this
scheme overestimates the localization of the positron in the
defect and thus predicts a lower positron density in the core
region. As in the PSN scheme the positron localization is
weaker, the ratio curve obtained using this method is closer to
one. The calculation performed for the relaxed monovacancy
using the CONV scheme can be compared with the result
of Makkonen et al., since they used a similar method in
their study. The spectra are in rather good agreement up to
20 mrad, with a slightly higher high-momentum ratio yielded
by our calculation. Above 20 mrad the agreement worsens.
This can be due to the fact that the methods used in these two
calculations are not exactly the same.

In experimental studies, relative Srel and Wrel parameters
are often considered. In Table IV we present these quantities
calculated for silicon monovacancy using the four methods
described before. The Srel and Wrel parameters were calculated
as ratios of vacancy and lattice Doppler spectra in the
[001] direction integrated from 0–3 mrad and from 11–20
mrad. We can notice that the Srel and Wrel parameters are
much more sensitive to the choice of the calculation scheme
than the positron lifetimes. The PSN and GGGC methods
yield very similar lifetimes for the silicon monovacancy,
while the low- and high-momentum contributions to the
momentum distribution differ strongly. The fact that the Srel
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and Wrel parameters calculated using the CONV scheme in the
unrelaxed configuration and the PSN are very close is most
probably a coincidence.

We also performed a test for a negatively charged silicon
divacancy, to make a comparison with experimental mea-
surements, since this defect has been observed for instance
by Kauppinen et al. [43]. We convoluted the spectra with a
Gaussian function with a FWHM of 4.7 mrad to mimic the
experimental resolution in the reference study and calculated
the S and W parameters in ranges from 0–3 mrad and
from 11–20 mrad. The Srel and Wrel parameters calcu-
lated using our implementation and the PSN scheme, 1.050
and 0.72, respectively, are in good agreement with 1.052 ±
0.003 and 0.78 ± 0.02 obtained experimentally. We also
performed a calculation for the divacancy using the GGGC
scheme, which yielded S = 1.069 and W = 0.476. These
results are in much worse agreement with the experiments.
They are also consistent with the trend observed for the
monovacancy, where the GGGC method also overestimated
low-momentum and underestimated the high-momentum con-
tributions.

V. CONCLUSIONS

We implemented the two-component density functional
theory within the projector augmented-wave method (PAW)
in the ABINIT package. As opposed to the last implementations
of TCDFT of which we are aware, our version allows carrying
out fully self-consistent calculations of positron lifetimes
and momentum distributions, taking into account the atomic
relaxation according to the forces due to electrons as well as
the positron. The self-consistent TCDFT calculations in ABINIT

can be carried out in a single code run, using the same PAW
data set for electrons as well as the positron, which results in
an implementation that is easy to use. This tool also allows
using several different TCDFT calculation schemes.

In this paper we presented the derivation of expressions
for energies, positron lifetime, and momentum distribution of
annihilation radiation in the unified PAW formalism used for
both the positron and the electrons. It needs to be stressed
that the PAW method does not improve the description of
the positron wave functions and can even lead to some
difficulties in this task. However, we discussed the problem
of the partial-waves basis completeness for the positron wave
function description and showed that when the PAW data set is
carefully chosen and tested, a good description of the positron
can be obtained along with positron lifetimes and momentum
distributions in good agreement with experimental data. We
observed that the partial-waves basis can be extended by both
including semicore electrons and by adding the corresponding
states as additional functions in the positron basis.

While the inconveniences related to using the PAW method
to describe the positron wave function can be easily overcome,
this approach has many advantages. It allows one to perform
efficient, fully self-consistent TCDFT calculations with an
accurate description of the electron wave functions. Using this
implementation we can deal with supercells that contain few
hundreds to thousands of atoms to study point defects as well
as more extended defect clusters. Moreover, using the PAW
basis set allows us to use techniques able to, for instance, treat

strongly correlated systems or spin-orbit coupling, which are
necessary to study heavy elements such as the actinides or
their compounds.
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APPENDIX A: VARIOUS EXPRESSIONS
FOR THE TOTAL ENERGY

The direct expression of the total energy has the form:

E = Ẽ + E1 − Ẽ1 (A1)

with

Ẽ =
∑

n

fn〈�̃n| − 	

2
|�̃n〉 + Exc[ñ + n̂ + ñc]

+EH[ñ + n̂] +
∫

dr vH[ñZc](ñ + n̂) + U (R,Zion)

E1 =
∑
ij

ρij 〈φi | − 	

2
|φj 〉 + Exc[n1 + nc]

+EH[n1] +
∫


R

dr vH[nZc](n1)

Ẽ1 =
∑
ij

ρij 〈φ̃i | − 	

2
|φ̃j 〉 + Exc[ñ1 + n̂ + ñc]

+EH[ñ1 + n̂] +
∫


R

dr vH[ñZc](ñ1 + n̂). (A2)

Here, Ẽ is the plane-wave contribution to the total energy,
while E1 and Ẽ1 are on-site contributions.

It is also possible to write the double counting expression
to obtain the energy using the eigenvalues. In this case the total
energy takes the form:

E = Ẽdc + E1
dc − Ẽ1

dc (A3)

with

Ẽdc =
∑

n

fn〈�̃n|H̃ |�̃n〉 + Exc[ñ + n̂ + ñc]

−
∫

dr ṽeff(ñ + n̂) + U (R,Zion)

E1
dc = Exc[n1 + nc] −

∫

R

dr ṽeff(n
1)

Ẽ1
dc = Exc[ñ1 + n̂ + ñc] −

∫

R

dr ṽeff(ñ
1 + n̂). (A4)

In the above equations all missing definitions can be found in
Ref. [24]. It is worth noting that the two expressions for the
total energy give exactly the same value, when the density is
converged.
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APPENDIX B: CALCULATION OF THE POSITRON
LIFETIME

Positron lifetime is calculated using positron and electron
densities. We can, hence, represent it in the PAW formalism, by
introducing Eq. (11) into Eq. (6). In the following we consider
that nc is included in n1− and ñc in ñ− and ñ1−. Introducing
the PAW formulations of the electron and positron densities,
we obtain the expression:

λ = πr2
e c

∫
dr ([ñ−(r) + n1−(r) − ñ1−(r)]

+ [ñ+(r) + n1+(r) − ñ1+(r)]

+ g(ñ− + n1− − ñ1−,ñ+ + n1+ − ñ1+)). (B1)

The integral in the above expression can be divided in two
parts: the first over the augmentation region and the second
outside it, leading to:

λr∈
R = πr2
e c

∫
r∈
R

dr ([ñ−(r) + n1−(r) − ñ1−(r)]

× [ñ+(r) + n1+(r) − ñ1+(r)]

× g(ñ− + n1− − ñ1−,ñ+ + n1+ − ñ1+)) (B2)

and

λr/∈
R = πr2
e c

∫
r/∈
R

dr ([ñ−(r) + n1−(r) − ñ1−(r)]

× [ñ+(r) + n1+(r) − ñ1+(r)]

× g(ñ− + n1− − ñ1−,ñ+ + n1+ − ñ1+)). (B3)

Inside the augmentation region, if the partial-waves and plane-
waves bases are complete, ñ = ñ1 and ñ+ = ñ1+, which leads
to:

λr∈
R = πr2
e c

∫
r∈
R

dr n1−(r)n1+(r)g(n1−,n1+). (B4)

Outside the augmentation region n1 − ñ1 = 0 and n1+ −
ñ1+ = 0, which leads to:

λr/∈
R = πr2
e c

∫
r/∈
R

dr [ñ−(r)(r)]ñ+(r)g(ñ−,ñ+). (B5)

Inside the augmentation region we can also write the
subtraction of two equal integrals, which will allow as to

simplify the expression for the annihilation rate:∫
r∈
R

dr ñ−(r)ñ+(r)g(ñ−,ñ+)

−
∫

r∈
R

dr ñ1−(r)ñ1+(r)g(ñ1−,ñ1+) = 0. (B6)

By adding the two integrals from Eq. (B6) to the decom-
posed λ from Eqs. (B4) and (B5) we obtain:

λ = πr2
e c

(∫
r/∈
R

dr ñ−(r)ñ+(r)g(ñ−,ñ+)

+
∫

r∈
R

dr ñ−(r)ñ+(r)g(ñ−,ñ+)

+
∫

r∈
R

dr n1−(r)n1+(r)g(n1−,n1+)

−
∫

r∈
R

dr ñ1−(r)ñ1+(r)g(ñ1−,ñ1+)

)
. (B7)

We can gather the first two integrals and extend the intervals
of the last two to the whole space, since they are equal to
zero outside the augmentation region. This leads to the final
expression for the annihilation rate decomposed in three terms:

λ = λ̃ + λ1 − λ̃1, (B8)

where

λ̃ = πr2
e c

∫
dr ñ−(r)ñ+(r)g(ñ−,ñ+)

λ1 = πr2
e c

∫

R

dr n1−(r)n1+(r)g(n1−,n1+)

λ̃1 = πr2
e c

∫

R

dr ñ1−(r)ñ1+(r)g(ñ1−,ñ1+). (B9)

Two possible ways of calculating the last terms in the above
equation are discussed in Appendix C. The expression for
the positron lifetime in the PAW formalism including a
compensation charge density n̂1−(r) can be also derived in
the same way as presented above. We observed, however, that
introducing the compensation charge density has no significant
effect on the calculated positron lifetimes. This is consistent
with, e.g., the two formalisms for the exchange-correlation
functionals in PAW, as described in Ref. [49].

APPENDIX C: CALCULATION OF ON-SITE CONTRIBUTIONS TO ELECTRON-POSITRON ANNIHILATION RATE

Two ways of calculating the PAW on-site contributions to the annihilation rate have been implemented. The first one consists
in estimating the two last terms in Eq. (24) [or Eq. (B9)] on each point of a radial grid (r,θ,φ). This method is straightforward
but requires important computational resources. The other scheme—much more efficient and inspired by the computation of
exchange-correlation potential [24]—uses a Taylor development of the densities around their spherical part.

Each on-site density is expanded over the real spherical harmonics, as well as the enhancement factor:

n1±(r) =
∑
LM

n1±
LM (r)SLM (r̂), (C1)

g(n1−(r),n1+(r)) =
∑
LM

gLM (r)SLM (r̂). (C2)
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At the second order around the spherically symmetric densities n1s±(r) = n1±
00 (r)S00(r̂), the enhancement factor becomes:

g(n1−(r),n1+(r)) = g[n1s−(r),n1s+(r)] + (n1−(r) − n1s−(r))
dg

dn− (n1s−,n1s+) + (n1+(r) − n1s+(r))
dg

dn+ (n1s−,n1s+)

+ (n1−(r) − n1s−(r))2

2

d2g

d2n− (n1s−,n1s+) + (n1+(r) − n1s+(r))2

2

d2g

d2n+ (n1s−,n1s+)

+ [n1−(r) − n1s−(r)][n1+(r) − n1s+(r)] × d2g

dn−dn+ (n1s−,n1s+). (C3)

Then, after some straightforward manipulations, we obtain the spherical moments of the enhancement factor

gLM (r) =
∫


R

d
g[n1−(r),n1+(r)]SLM (r̂), (C4)

g00(r) =
√

4πg[n1s−(r),n1s+(r)] + 1

2
√

4π

d2g

d2n− [n1s−(r),n1s+(r)]
∑

L′M ′〉0
[n1−

L′M ′(r)]2 + 1

2
√

4π

d2g

d2n+ (n1s−(r),n1s+(r))

×
∑

L′M ′〉0

[
n1+

L′M ′ (r)
]2 + 1√

4π

d2g

dn−dn+ [n1s−(r),n1s+(r)] ×
∑

L′M ′〉0

[
n1−

L′M ′(r)n1+
L′M′(r)

]
, (C5)

gLM〉0(r) = dg

dn− [n1s−(r),n1s+(r)]n1−
LM (r) + dg

dn+ [n1s−(r),n1s+(r)]n1+
LM (r) + 1

2

d2g

d2n− [n1s−(r),ns+(r)]

×
∑

L′M ′〉0

∑
L′′M ′′〉0

n1−
L′M ′ (r)n1−

L′′M ′′ (r)GLM
L′M ′L′′M ′′ + 1

2

d2g

d2n+ [n1s−(r),n1s+(r)]

×
∑

L′M ′〉0

∑
L′′M ′′〉0

n1+
L′M ′ (r)n1+

L′′M ′′ (r)GLM
L′M ′L′′M ′′ + d2g

dn−dn+ [n1s−(r),n1s+(r)]

×
∑

L′M ′〉0

∑
L′′M ′′〉0

n1−
L′M ′ (r)n1+

L′′M ′′ (r)GLM
L′M ′L′′M ′′ . (C6)

The on-site contribution to the total annihilation rate is finally given by:

λ1 =
∫


R

dr
∑
LM

n1−
LM (r)SLM (r̂)

∑
L′M ′

n1+
L′M ′(r)SL′M ′ (r̂) ×

∑
L′′M ′′

gL′′M ′′ (r)SL′′M ′′ (r̂)

=
∑
LM

∑
L′M ′

∑
L′′M ′′

GLM
L′M ′L′′M ′′ ×

∫
drn1−

LM (r)n1+
L′M ′(r)gL′′M ′′ (r). (C7)

To get the annihilation rate on-site contributions, it is only necessary to know g[n1s−(r),n1s+(r)] and its two first derivatives
on the one-dimensional radial grid. The derivatives can be computed via a finite differences scheme, as already done for the
exchange-correlation potential [24].

APPENDIX D: CALCULATION OF THE MOMENTUM DISTRIBUTION

1. Valence electrons

The first step towards expressing the valence contribution to the momentum distribution of the annihilating electron-positron
pairs in the PAW formalism is to implement the PAW form of the electron and positron wave functions into Eq. (4). The product
of electron and positron wave functions needed in this equation takes the form:

�+(r)�−
nk(r) =

(
�̃+(r) +

∑
i

(φi(r) − φ̃i(r))〈p̃i |�̃+〉
)

×
⎛
⎝�̃−

nk(r) +
∑

j

(φj (r) − φ̃j (r))〈p̃j |�̃−
nk〉

⎞
⎠. (D1)

Multiplication of the terms in the brackets leads to:

�+(r)�−
nk(r) = �̃+(r)�̃−

nk(r) + �̃+(r)
∑

j

(φj (r) − φ̃j (r))〈p̃j |�̃−
nk〉 + �̃−

nk(r)
∑

i

(φi(r) − φ̃i(r))〈p̃i |�̃+〉

+
∑
ij

φi(r)(φj (r) − φ̃j (r))〈p̃i |�̃+〉〈p̃j |�̃−
nk〉 −

∑
ij

φ̃i(r)(φj (r) − φ̃j (r))〈p̃i |�̃+〉〈p̃j |�̃−
nk〉. (D2)

By definition, outside the augmentation region the wave function is equal to the pseudo part only, hence φj (r) − φ̃j (r) is
equal to zero. Inside the augmentation region, on the other hand, if the basis is complete, �̃+(r) = ∑

i φ̃i(r)〈p̃i |�̃+〉 and
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�̃−(r) = ∑
j φ̃j (r)〈p̃j |�̃−〉. We can rewrite the products of quantities existing in the whole space and those that have nonzero

values only inside the augmentation region as:

�̃+(r)
∑

j

(φj (r) − φ̃j (r))〈p̃j |�̃−
nk〉 =

∑
ij

φ̃i(r)(φj (r) − φ̃j (r))〈p̃i |�̃+〉〈p̃j |�̃−
nk〉 (D3)

and

�̃−
nk(r)

∑
i

(φi(r) − φ̃i(r))〈p̃i |�̃+〉 =
∑
ij

φ̃j (r)(φi(r) − φ̃i(r))〈p̃i |�̃+〉〈p̃j |�̃−
nk〉. (D4)

This leads to:

�+(r)�−
nk(r) = �̃+(r)�̃−

nk(r) +
∑
ij

(φi(r)φj (r) − φ̃i(r)φ̃j (r))〈p̃i |�̃+〉〈p̃j |�̃−
nk〉, (D5)

therefore

ρk(p) = πr2
e c

∑
n

∣∣∣∣∣∣
∫

dr e−ip·r�̃+(r)�̃−
nk(r) +

∫
dr e−ip·r ∑

ij

(φi(r)φj (r) − φ̃i(r)φ̃j (r)) × 〈p̃i |�̃+〉〈p̃j |�̃−
nk〉

∣∣∣∣∣∣
2

. (D6)

We can see that inside the squared modulus above, we obtain a sum of two separate integrals: one containing the pseudo wave
functions and one containing partial waves. We can consider each of them separately.

We can further transform the second integral in Eq. (D6). By separating the partial waves into angular and radial parts we
obtain

φi(r) = φi(r)

r
Slimi

(r̂) (D7)

and

φ̃j (r) = φ̃j (r)

r
Slj mj

(r̂), (D8)

where SLM (r̂) are the real spherical harmonics. We can also express the exponential e−ip·r as:

e−ip·r = 4π
∑
LM

(−i)LSLM (p̂)SLM (r̂)jL(pr). (D9)

Separation of the angular and radial parts of the second integral from Eq. (D6), using dr = r2drd
, leads to:∫
dr e−ip·r ∑

ij

(φi(r)φj (r) − φ̃i(r)φ̃j (r))〈p̃i |�̃+〉〈p̃j |�̃−
nk〉

= 4π
∑
ij

〈p̃i |�̃+〉〈p̃j |�̃−
nk〉

∑
LM

SLM (p̂)(−i)L ×
(∫

d
Slimi
(r̂)Slj mj

(r̂)SLM (r̂)

)

×
(∫

dr
(
φi(r)φj (r) − φ̃i(r)φ̃j (r)

)
jL(pr)

)
. (D10)

By introducing the real Gaunt coefficients G (see Ref. [24]),

GLM
limi lj mj

=
∫

d
Slimi
(r̂)Slj mj

(r̂)SLM (r̂), (D11)

we finally obtain the expression∫
dr e−ip·r ∑

ij

(φi(r)φj (r) − φ̃i(r)φ̃j (r))〈p̃i |�̃+〉〈p̃j |�̃−
nk〉

= 4π
∑
ij

〈p̃i |�̃+〉〈p̃j |�̃−
nk〉

∑
LM

SLM (p̂)(−i)L × GLM
limi lj mj

∫
dr (φi(r)φj (r) − φ̃i(r)φ̃j (r))jL(pr). (D12)
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2. Core electrons

The contribution of the core electrons to the momentum distribution can be calculated independently to the valence contribution,
since each state is treated separately. The core momentum distribution is expressed as:

ρc(p) = πr2
e c

∑
jc

∣∣∣∣
∫

dr e−ip·r�+(r)�−
jc

(r)

∣∣∣∣2

. (D13)

We will express the positron wave function in the PAW formalism, and for the core electrons, we will assume that the core
electrons are unaffected by the crystal formation and their wave functions are equal to those of the isolated atom (frozen core
approximation),

�−
jc

(r) = φjc (r). (D14)

This leads to the following form of the core contribution to the momentum distribution:

ρc(p) = πr2
e c

∑
jc

∣∣∣∣∣
∫

dr e−ip·r ×
(

�̃+(r) +
∑

i

(φi(r) − φ̃i(r))〈p̃i |�̃+〉
)

φjc (r)

∣∣∣∣∣
2

. (D15)

We will further consider that the core electron wave functions are contained inside the augmentation region. This approximation
seems reasonable in the majority of considered cases and can be easily verified. If the pseudopartial waves φ̃i(r) form a complete
basis for the pseudo-wave-function �̃+(r) we have:∫

dr e−ip·r
(

�̃+(r) −
∑

i

〈p̃i |�̃+ > φ̃i(r)

)
φjc (r) = 0, (D16)

which leads to:

ρc(p) = πr2
e c

∑
jc

∣∣∣∣∣
∫

dr e−ip·r ∑
i

〈p̃i |�̃+〉φi(r)φjc (r)

∣∣∣∣∣
2

. (D17)

Further, we separate the partial waves into angular and radial parts and transform the equations in the same way as it was done
for the valence contribution, which leads to the final expression for the core contribution to the momentum distribution:

ρc(p) = πr2
e c

∑
jc

∣∣∣∣∣4π
∑

i

〈p̃i |�̃+〉
∑
LM

SLM (p̂)(−i)L × GLM
limi ljc mjc

∫
dr φi(r)φjc (r)jL(pr)

∣∣∣∣∣
2

. (D18)

APPENDIX E: CALCULATION OF FORCES

From the expression of the TCDFT total energy (1) we can compute the force acting on an atom at position R:

FR = −∂E[n+,n−]

∂R

∣∣∣∣
�i

= F−
R + F+

R + F+−
R (E1)

with

F−
R = −

∫
(ñ− + n̂−)(r)

∂vH[ñZc ]

∂R
dr −

∫
vxc[ñ− + n̂− + ñc]

∂ñc

∂R
(r)dr

−
∑
ij

∑
nk

fnk(D−
ij − ε−

nkOij )〈�−
nk|

∂|p̃i〉〈p̃j |
∂R

|�−
nk〉 −

∑
ij

ρ−
ij

∫
drṽ−

eff(r)
∑
LM

∂Q̂LM
ij (r)

∂R

F+
R =

∫
(ñ+ + n̂+)(r)

∂vH[ñZc ]

∂R
dr −

∑
ij

(D+
ij − ε+Oij )〈�+|∂|p̃i〉〈p̃j |

∂R
|�+〉 +

∑
ij

ρ+
ij

∫
drvH

[
ñZc

]
(r)

∑
LM

∂Q̂LM
ij (r)

∂R

F+−
R = −

∑
ij

∑
nk

fnkD
+−
ij 〈�−

nk|
∂|p̃i〉〈p̃j |

∂R
|�−

nk〉 −
∑
ij

D−+
ij 〈�+|∂|p̃i〉〈p̃j |

∂R
|�+〉

+
∑
ij

ρ+
ij

∫
drvH[ñ− + n̂− + ñZc ](r)

∑
LM

∂Q̂LM
ij (r)

∂R
. (E2)

In the above expression ε−
nk and ε+ are the Kohn-Sham eigenvalues of the electrons and the positron and Oij is the overlap

matrix (see Ref. [24]). D−
ij is defined in Eq. (15), ṽ−

eff is defined in Eq. (16). D+
ij D+−

ij and D−+
ij can be obtained from Eq. (15)
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by introducing the electron and positron densities accordingly and inverting the sign of the Hartree potential when necessary. A
similar expression to that for the forces can be also derived for the stress tensor.

[1] M. J. Puska and R. M. Nieminen, Rev. Mod. Phys. 66, 841
(1994).

[2] F. Tuomisto and I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013).
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Sci. 42, 329 (2008).
[29] A. Levitt and M. Torrent, Comput. Phys. Commun. 187, 98

(2015).
[30] M. J. Stott and P. Kubica, Phys. Rev. B 11, 1 (1975).
[31] J. Kuriplach and B. Barbiellini, Phys. Rev. B 89, 155111 (2014).
[32] N. A. W. Holzwarth, A. R. Tackett, and G. E. Matthews, Comput.

Phys. Commun. 135, 329 (2001).
[33] J. Wiktor, G. Jomard, M. Torrent, and M. Bertolus, Phys. Rev.

B 87, 235207 (2013).
[34] J. Wiktor, G. Jomard, and M. Bertolus, Nucl. Instrum. Meth.

327, 63 (2014).
[35] J. Wiktor, X. Kerbiriou, G. Jomard, S. Esnouf, M.-F. Barthe, and

M. Bertolus, Phys. Rev. B 89, 155203 (2014).
[36] J. Wiktor, M.-F. Barthe, G. Jomard, M. Torrent, M. Freyss, and

M. Bertolus, Phys. Rev. B 90, 184101 (2014).
[37] H. Takenaka and D. J. Singh, Phys. Rev. B 77, 155132 (2008).
[38] A. Seeger, F. Banhart, and W. Bauer, in Positron Annihilation,

edited by L. Dorikens-Vanpraet, M. Dorikens, and D. Segers
(World Scientific, Singapore, 1988), pp. 275–277.

[39] B. K. Panda, W. LiMing, S. Fung, and C. D. Beling, Phys. Rev.
B 56, 7356 (1997).

[40] H. E. Schaefer, W. Stuck, F. Banhart, and W. Bauer, Mater. Sci.
Forum 15-18, 117 (1987).
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