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Spiral magnets with Dzyaloshinskii-Moriya interaction containing defect bonds
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We present a theory describing spiral magnets with Dzyaloshinskii-Moriya interaction (DMI) subject to bond
disorder at small concentration c of defects. It is assumed that both DMI and exchange coupling are changed
on imperfect bonds. Qualitatively the same physical picture is obtained in two models which are considered
in detail: B20 cubic helimagnets and layered magnets in which DMI leads to a long-period spiral ordering
perpendicular to layers. We find that the distortion of the spiral magnetic ordering around a single imperfect
bond is long range: values of additional turns of spins decay with the distance r to the defect as 1/r2 being
governed by the Poisson’s equation for electric dipole. At finite concentration of randomly distributed imperfect
bonds, we calculate correction to the spiral vector. We show that this correction can change the sign of spin
chirality even at c � 1 if defects are strong enough. It is demonstrated that impurities lead to a diffuse elastic
neutron scattering which has power-law singularities at magnetic Bragg peaks positions. Then, each Bragg peak
acquires power-law decaying tails. Corrections are calculated to the magnon energy and to its damping caused
by scattering on impurities.
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I. INTRODUCTION

In crystals without center of inversion, Dzyaloshinskii-
Moriya interaction (DMI) is caused by an antisymmetric
spin-orbit interaction [1,2]. The competition of the symmetric
ferromagnetic (FM) or antiferromagnetic (AF) exchange
interaction and DMI can result in a spiral magnetic structure
[3]. Although a long time has passed since the spiral ordering
was observed for the first time, helimagnets with DMI
still attract a lot of attention. This interest is stimulated by
discovery of rich phase diagrams and exotic spin structures
caused by DMI which arise under certain conditions. Phases
with such topological states as chiral soliton lattices in layered
helimagnets (e.g., in Cr1/3NbS2) [4] and skyrmion lattices
in B20 cubic chiral magnets (e.g., in MnSi) [5] are widely
discussed now. These materials are attractive not only from
a fundamental but also from a technological point of view
owing to their potential applications in spintronic devices.

Mixed B20 spiral compounds have been considered ex-
perimentally recently [6]. It is shown in Ref. [6] that the
modulus of the spiral vector q in Mn1−xFexGe depends on
dopant concentration x and the magnetic chirality changes its
sign (and q goes through zero) at x ≈ 0.75. This observation
is quite expected because MnGe and FeGe are B20 cubic
helimagnets with opposite signs of the spin chirality. Evidently,
such a behavior is a consequence of the fact that the exchange
interaction and DMI change around dopant ions which can be
considered as defects at x � 1 or x ≈ 1. These experimental
results are interpreted phenomenologically by renormalization
of constants in the Hamiltonian describing the pure translation-
ally invariant B20 magnets. Then, a more detailed theoretical
description of mixed spiral materials is required.

Motivated by this experimental activity, we address in this
paper the problem of spiral magnets with DMI subject to bond
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disorder at small concentration c of defects. We assume that
both exchange interaction and DMI are changed on imperfect
bonds. Two models are considered in detail: (i) spiral magnets
on a simple cubic lattice with FM exchange coupling and
small DMI between nearest-neighbor spins, where the DMI
vector is directed along the line connected couple of spins,
and (ii) layered magnets with small DMI which acts between
nearest-neighbor spins from different layers and which vector
is directed along z (chiral) axis perpendicular to layers (see
Fig. 1). The most famous and the most studied compounds
described by the model of the first type is probably MnSi
and those of the second type are Cr1/3NbS2 and CsCuCl3. At
zero magnetic field and small temperature, DMI leads to long-
period helix structures in these materials along one of the space
cubic diagonals and along the z axis, correspondingly [7–9].

We obtain qualitatively the same physical picture in both
models. The one-impurity problem is addressed first. We
show that the perturbation of the spiral ordering around the
defect bond (i.e., values of additional turns of spins due to
the defect) is described by the Poisson’s equation for electric
dipole.1 Then, the magnetic ordering disturbance made by
one impurity is long range: values of additional turns of
spins decay with the distance r to the defect as 1/r2. This
finding can be easily extended to the corresponding models on
lattices with space dimensions d � 2, the result being 1/rd−1.
The spin texture around a ferromagnetic bond observed in
two-dimensional collinear AFs follows the same law (see
Refs. [10,11] and references therein). In contrast, different
types of site disorder produce distortions of magnetic ordering
decaying more rapidly: as 1/rd+1 (see, e.g., Refs. [12–14]) or
even exponentially [15–18].

1It should be noted that this fruitful electrostatic analogy is not new
in physics of mixed magnets. It was discovered first by Villain [31,32]
in a spin-glass problem. Later, the electrostatic analogy was used also
in discussion of La2−xSrxCuO4 [10,11].
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FIG. 1. (Color online) Two types of spiral magnets with DMI
considered in this paper. (a) Layered spiral magnet (1) with tetragonal
lattice in which DMI acts only between nearest-neighbor spins
from neighboring xy planes (DMI vector D is depicted). Exchange
coupling constants between neighboring spins inside xy planes (J1)
and along z axis (J0) are also shown. The long-period helix propagates
along the z axis. Similar models with hexagonal xy planes describe
Cr1/3NbS2 and CsCuCl3. The imperfect bond is shown by dashed
line. (b) Crystal structure of MnSi that is probably the most famous
representative of spiral cubic B20 magnets. The helix can propagate
along any space diagonal of the cube.

At finite defects concentration c � 1, spiral magnets we
discuss are equivalent to a dielectric with randomly distributed
electric dipoles which lead to a finite average “polarization” of
a unit volume proportional to c. This “electrical polarization”
corresponds to a correction δq ∝ c to the modulus of the spiral
vector q.

Our analysis of the elastic neutron scattering cross section
predicts magnetic Bragg peaks (satellites) on momenta transfer
Q = ±(q + δq) + τ , where τ is a reciprocal lattice vector.
Besides, we obtain a diffuse scattering. Quite unexpectedly
for diffuse scattering caused by disorder, its cross section has
power-law singularities at positions of magnetic Bragg peaks.
This feature is attributed to the long-range character of the per-
turbation made by defect bonds. Thus, impurities result in the
shift by δq of the magnetic Bragg peaks positions and in power-
law decaying tails of each peak. We calculate also magnon
spectrum renormalization due to the scattering on defects in
the first order in c. These calculations are performed in the
layered helimagnets only for FM exchange coupling constants.

The rest of this paper is organized as follows. Sections II
and III, which have similar structures, are devoted to layered
helimagnets and to B20 cubic spiral magnets with DMI,
respectively. In Secs. II A and III A, we consider Hamiltonians
of pure systems using the conventional Holstein-Primakoff
spin transformation. We discuss in Secs. II B and III B the
perturbation of the magnetic ordering around one imperfect
bond and consider small concentration of such bonds. Then,
we present our results for elastic neutron scattering cross
section in systems with bond disorder (Secs. II C and III C).
In Secs. II D and III D, magnon spectrum renormalization is
considered. All calculations in Secs. II A–II D are carried out
for layered helimagnets with FM exchange interaction. We
show in Sec. II E that these results (except for the spectrum
renormalization) are applicable after simple modifications to
many other layered helimagnets with bond disorder. Section IV
contains the summary and the conclusion. One appendix is
added with some details of the magnon spectrum calculation.

II. LAYERED SPIRAL MAGNETS WITH DMI

A. Pure system

In this section, we consider a magnet containing FM xy

planes with a simple square lattice and the exchange coupling
between neighboring spins only. Planes are stacked along the
z axis. We take into account the exchange coupling and DMI
between neighboring spins from neighboring planes. The DMI
vector D = Dez is the same for all bonds along the z axis,
where ez = (0,0,1) is the unit vector directed along the z

axis and we assume for simplicity that the distance between
all neighboring sites is equal to unity [see Fig. 1(a)]. The
Hamiltonian of this system has the form

H0 = −J0

∑
in

SinSin+1 − J1

∑
〈ij〉n

SinSjn

−
∑
in

D · [Sin × Sin+1], (1)

where J0,J1 > 0, J0,J1 � D, Sin is an operator of the spin
sitting at the ith site of the nth plane, and 〈ij 〉n denote
nearest-neighbor sites in the nth plane. The last term in Eq. (1)
containing antisymmetric combinations of spins [Sin × Sin+1]
can be eliminated by applying the rotation about the z axis by
a pitch q [19]:

Sx
in = Sx ′

in cos nq − S
y ′
in sin nq,

S
y

in = Sx ′
in sin nq + S

y ′
in cos nq, (2)

Sz
in = Sz′

in.

The value of q is chosen so that the antisymmetric spin
combinations disappear in the Hamiltonian. Simple calculation
gives

tan q = D

J0
� 1. (3)

After transformation (2), Hamiltonian (1) obeys the following
form:

H = −
∑
in

[
J0S

z′
inS

z′
in+1 + J̃0

(
Sx ′

inS
x ′
in+1 + S

y ′
inS

y ′
in+1

)]
−J1

∑
〈ij〉n

S′
inS′

jn, (4)

where J̃0 = J0

√
1 + (D/J0)2 and S′

in = (Sx ′
in,S

y ′
in,S

z′
in). Thus,

the initial Hamiltonian (1) of the system with the spiral spin
ordering described by the vector q = (0,0,q), where q is given
by Eq. (3), is equivalent to a FM described by Hamiltonian (4).
As J̃0 > J0, the xy plane is the easy one in FM (4). Then, DMI
forces spins to lie in the plane perpendicular to D.

For further consideration of Hamiltonian (4), we use the
Holstein-Primakoff spin representation

Sx ′
in = S − a+

inain,

S
y ′
in ≈

√
S

2

(
a+

in + ain − a+
ina

2
in

4S
− a+2

in ain

4S

)
, (5)

Sz′
in ≈ −i

√
S

2

(
ain − a+

in − a+
ina

2
in

4S
+ a+2

in ain

4S

)
.
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FIG. 2. (Color online) (b) The xz plane containing the defect bond which is shown by bold line. Lattice sites are drawn by blue circles.
Contour plot is also shown at J1 = J0/4 of the function ρ(r) given by Eq. (21) and divided by Q/J0. (a),(c) Plots of ρ(r) along dashed lines
depicted in panel (b). Squares represent the result of numerical solution of Eqs. (16) for the cluster with 24 × 24 × 24 sites. It is seen that
the analytical result (21)–(23) starts working right from sites adjacent to the defect bond. Inset in panel (a) illustrates the meaning of the
“condensate density” ρin [as well as its counterpart ρ(r) in the continuum limit] in our consideration. Appearance of ρin 	= 0 at site in signifies
a rotation of the magnetic moment at that site by angle ρin

√
2/S in the xy plane.

After simple calculations, one obtains that there are no terms in
the Hamiltonian which are linear in Bose operators and which
contain products of three Bose operators. Terms containing
products of two operators of creation and annihilation have
the form

H2 = SJ0

∑
in

(2a+
inain − a+

inain+1 − a+
inain−1)

+ 2SJ1

∑
〈ij〉n

(a+
inain − a+

inajn), (6)

where we omit terms of the second order in D/J0 � 1.

B. Perturbation of the magnetic ordering by defects

Let us discuss a defect bond with DM vector D′ =
(0,0,D′) 	= D and J ′

0 	= J0 between spins at sites 00 and
01 [see Fig. 1(a)]. The following additional terms arise in
Hamiltonian (1):

V = Vdm + Vex = −udmez · [S00 × S01] − uexS00 · S01, (7)

udm = D′ − D, (8)

uex = J ′
0 − J0. (9)

One obtains for the perturbation of Hamiltonian (4) from
Eq. (7) using Eqs. (2) and (5)

Vdm = −Sudm

√
S

2
(a+

01 + a01 − a+
00 − a00), (10)

Vex = Suex

√
S

2

D

J0
(a+

01 + a01 − a+
00 − a00)

+ Suex(a+
01a01 + a+

00a00 − a+
01a00 − a+

00a01), (11)

where we take into account only linear and bilinear terms in
Bose operators which are of the zeroth and of the first orders
in DMI (in particular, we put cos q = 1 and sin q = D/J0).

Terms in Eqs. (10) and (11) linear in Bose operators signify
a distortion of the FM ordering around the imperfect bond. To
eliminate the linear terms in the Hamiltonian, one has to make

the shift

ain = bin + ρine
iϕin , a+

in = b+
in + ρine

−iϕin , (12)

where ρin and ϕin are constants (the “condensate density” and
the “phase,” respectively) which describe perturbation of the
spin ordering due to the defect. As the easy-plane anisotropy
in the Hamiltonian forces all spins to lie within the xy plane
and we do not consider AF coupling on the defect bond (i.e.,
J ′

0 > 0), we set ϕin = 0 in the following to eliminate the
magnetization component perpendicular to the easy axis. As
it is seen from Eq. (5) and illustrated by inset in Fig. 2(a), a
real ρin 	= 0 describes a rotation of the magnetization at site in

within the xy plane. To restrict ourselves to terms of leading
powers in ρin in subsequent calculations, we assume that
|ρin| � √

S. Then, the rotation angle is equal approximately
to ρin

√
2/S (because S

y′
in ≈ √

2Sρin and Sx′
in = S − ρ2

in ≈ S).
The bilinear part of the Hamiltonian (6) acquires the

following form after shift (12):

H2 = H(0)
2 + H(1)

2 + H(2)
2 , (13)

H(1)
2 = SJ0

∑
in

b+
in(2ρin − ρin+1 − ρin−1)

+ 2SJ1

∑
〈ij〉n

b+
in(ρin − ρjn) + H.c., (14)

where H.c. denotes the Hermitian-conjugated terms, H(0)
2 does

not contain Bose operators, and H(2)
2 is obtained from Eq. (6)

by the replacement of operators a by operators b. One has
to dispose of linear in bin and b+

in terms in the Hamiltonian
by choosing proper ρin. As usual, a minimum of the classical
energy (i.e., the part of the Hamiltonian not containing Bose
operators) is realized at those ρin which cancel the linear terms
in the Hamiltonian. Let us find such ρin in two steps: we
consider first Vdm only assuming that uex = 0 and then we
take into account both Vdm and Vex given by Eqs. (10) and
(11), respectively.
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1. Defects in DMI only (uex = 0)

We start with the one-impurity problem and then we
consider a finite concentration of defects. One has from
Eq. (10) after shift (12)

Vdm = udmS

√
S

2
(2ρ00 − 2ρ01 + b+

00 + b00 − b+
01 − b01).

(15)

In order linear terms die out in the Hamiltonian, the following
equations should hold for every site in which follows from
Eqs. (14) and (15):

J1

∑
j

(ρin − ρjn) + J0(2ρin − ρin−1 − ρin+1)

= −udm

√
S

2
(δin,00 − δin,01), ∀ in (16)

where j enumerates nearest neighbors of the ith site in the nth
plane and δ is the Kronecker delta. It is well known that the
second derivative of a function f (x) can be written as

d2f (x)

dx2
≈ f (x + h) + f (x − h) − 2f (x)

h2
(17)

with a good precision if f (x) does not change considerably
at a distance of h. Thus, Eq. (16) can be represented in the
differential form in the continuum limit as follows:

J1

(
∂2ρ(r)

∂x2
+ ∂2ρ(r)

∂y2

)
+ J0

∂2ρ(r)

∂z2

= udm

√
S

2
[δ(r) − δ(r − r0)], (18)

where δ(r) and δ(r − r0) are delta functions defining positions
of two spins involved in the defect bond and r0 = (0,0,1). One
expects that the solution of Eq. (18) describes well the solution
of Eq. (16) not very close to the imperfect bond, in which region
ρ(r) changes rapidly. After rescaling in xy planes,

x̃ =
√

J0

J1
x and ỹ =

√
J0

J1
y, (19)

Eq. (18) turns into the Poisson’s equation

�̃ρ(r) = udm

J1

√
S

2
[δ(r) − δ(r − r0)], (20)

where �̃ = ∂2/∂x̃2 + ∂2/∂ỹ2 + ∂2/∂z2. Equation (20)
describes electrostatic field of a dipole

ρ(r) = Q

4πJ1

(
1

|r̃ − r0| − 1

r̃

)
, (21)

Q = udm

√
S

2
, (22)

d = 1

4π

Q

J1
ez, (23)

where r̃ = (x̃,ỹ,z) and d is the dipole moment. Then, the
magnetic ordering distortion produced by one defect bond is
long range: it decays with the distance r as 1/r2. We observe
by numerical solution of Eq. (16) that the result (21) starts

FIG. 3. (Color online) Illustration of the correspondence be-
tween the electrostatic picture proposed in the text and the spiral
magnet (1). Horizontal dashed line represents the plane perpendicular
to the defect bond and to the dipole moment (23). The condensate
density ρ(r) given by Eq. (21) (the field of the dipole) has opposite
signs above and below this plane. This signifies that spins lying above
and below this plane acquire additional turns in opposite directions
which are depicted by blue arrows and which values are governed by
|ρ(r)| as it is explained in the text [see also inset in Fig. 2(a)].

working well right from sites neighboring to the defect bond in
a broad range of parameters (see Fig. 2). The correspondence
between the electrostatic picture and the spiral magnet (1) is
illustrated by Fig. 3.

Distortion of the FM ordering in the spin system (4) with
a finite concentration c � 1 of such randomly distributed
defects is described by the electric field from a set of randomly
distributed dipoles having the same dipole moment d given by
Eq. (23). Averaging over the system volume, one obtains for
the “electric polarization”

P = c

ṽ0
d, (24)

where ṽ0 = J0/J1 is the unit-cell volume after rescaling (19).
The field ρ(r) inside the uniformly polarized system is given
by the equation

�∇ρ(r) = 4πP, (25)

which has the following explicit form in our case:

∂ρ(r)

∂z
= c

ṽ0

udm

J1

√
S

2
= c

udm

J0

√
S

2
. (26)

The solution of Eq. (26) gives an averaging solution of our
problem which has the form

ρ(r) = zc
udm

J0

√
S

2
, (27)

where we omit a constant corresponding to a rotation of
all spins in the system by the same angle. Equation (27)
corresponds to the following correction to pitch (3):

δq = S
y′
in

Sx′
in

− S
y′
in−1

Sx′
in−1

= c
udm

J0
� 1. (28)

It should be noted that the requirement |ρin| � √
S is

essentially important for calculations leading to Eq. (27),
whereas Eq. (27) contradicts it. This discrepancy can be
easily removed by applying rotation (2) by the pitch q + δq
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rather than by q, where q and δq are given by Eqs. (3) and (28), respectively. Carrying out again the corresponding calculations,
we obtain, in particular, Eq. (25) with P = 0 which solution is ρ(r) = 0. Then, we conclude again (not violating the requirement
|ρin| � √

S) that defects lead on average to the correction (28) to the spiral pitch (3).
After rotation (2) by the pitch q + δq, one obtains for the condensate densities not very close to impurities

ρin =
Nd∑
j=1

d · (R̃in − R̃j )

|R̃in − R̃j |3
− 4πc

J1

J0
d · Rin, (29)

where d is given by Eq. (23) and j enumerates Nd defect bonds in the system. The first term in Eq. (29) is the field from all
dipoles in the lattice and the second one arises due to the additional turn by δq. Naturally, averaging of Eq. (29) over the whole
system gives zero.

2. Defects both in the exchange interaction and DMI

Taking into account also the imperfection of the exchange interaction (11) on the defect bond, we obtain from Eqs. (7), (10),
and (11) for the part of V which is linear in Bose operators

V (1) = S

((
udm − uex

D

J0

)√
S

2
+ uex(ρ00 − ρ01)

)
(b+

00 + b00 − b+
01 − b01). (30)

The counterpart of Eq. (16) has the form in this case

J1

∑
j

(ρin − ρjn) + J0(2ρin − ρin−1 − ρin+1) = (δin,00 − δin,01)

[(
uex

D

J0
− udm

)√
S

2
+ uex(ρ01 − ρ00)

]
, ∀ in. (31)

These equations are more complicated than Eq. (16) because one cannot solve them directly in the continuum limit. As it is
pointed out above, the solution in the continuum limit does not describe the solution of the initial equations near the defect bond.
On the other hand, the solution of Eq. (31) in the continuum limit is essentially determined by condensate densities at sites
involved in the defect bond (because the right-hand side depends on ρ01 and ρ00). Then, we use the following self-consistent
scheme to solve Eq. (31). First, we put

ρ01 − ρ00 = α (32)

in the right-hand side of Eq. (31) and treat α as an unknown constant. As a result one returns to the problem considered in the
previous subsection which solution is given by Eq. (21), where now

Q =
√

S

2

(
udm − uex

D

J0

)
− αuex. (33)

Second, we consider two equations (31) for n = 0 and 1:

4J1(ρ00 − ρ10) + J0(2ρ00 − ρ01 − ρ0−1) = −uex(ρ00 − ρ01) −
√

S

2

(
udm − uex

D

J0

)
, (34)

4J1(ρ01 − ρ11) + J0(2ρ01 − ρ00 − ρ02) = uex(ρ00 − ρ01) +
√

S

2

(
udm − uex

D

J0

)
, (35)

where ρ10 and ρ11 are condensate densities at sites neighboring to spins involved in the defect bond and lying in planes with
n = 0 and 1, respectively (i.e., we use the system symmetry). One obtains by subtracting Eq. (34) from (35)

J1(4α − 8ρ11) + J0(3α − 2ρ02) = −2αuex +
√

2S

(
udm − uex

D

J0

)
, (36)

where we use that one can turn the coordinate system to fulfill relations ρ02 = −ρ0−1 and ρ10 = −ρ11. Using our finding that the
result (21) obtained in the continuum limit starts working well right from sites neighboring to the defect bond in a broad range of
parameters, we derive ρ02 and ρ11 from Eqs. (21) and (33). Then, Eq. (36) turns into an equation for α which solution is given by

α =

√
S
2

(
udm − uex

D
J0

)[
2 + J0

4πJ1
+ 2

π

(√
J1
J0

−
√

J1
J1+J0

)]
3J0 + 4J1 + uex

[
2 + J0

4πJ1
+ 2

π

(√
J1
J0

−
√

J1
J1+J0

)] . (37)

One has from Eqs. (33) and (37)

Q =
√

S

2

(
udm − uex

D

J0

)
3J0 + 4J1

3J0 + 4J1 + uex

[
2 + J0

4πJ1
+ 2

π

(√
J1
J0

−
√

J1
J1+J0

)] . (38)
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It should be noted that Eq. (37) can give an infinitely large result at J1 < 0.1J0 and −1 < uex < 0. This signifies that more
equations (31) should be considered in addition to Eqs. (34) and (35) to find ρ00 and ρ01. The corresponding analysis is out of
the scope of this paper. Our numerical solutions of Eq. (31) on finite clusters show that Eqs. (21) and (38) work well beyond the
region J1 < 0.1J0

⋃−1 < uex < 0 not very close to the defect bond.
As it is done above, we derive for the correction to the spiral pitch [cf. Eq. (28)]

δq = c

(
udm − uex

D

J0

)
3 + 4J1/J0

3J0 + 4J1 + uex

[
2 + J0

4πJ1
+ 2

π

(√
J1
J0

−
√

J1
J1+J0

)] � 1. (39)

Values of ρin are determined by Eq. (29), where d and Q are given by Eqs. (23) and (38), respectively.
It is interesting to note that the influence of imperfections in the DMI and in the exchange interaction on the spiral ordering

weaken each other substantially at udm ≈ uexD/J0 [see Eqs. (38) and (39)].

C. How defect bonds seen in elastic neutron scattering experiments

The cross section of elastic neutron scattering is given by [20]

dσ

d�
∝
∑
in,jm

eiQ(Rin−Rjm)
∑
χ,η

(δχη − Q̂χQ̂η)
〈
S

χ

in

〉〈
S

η

jm

〉
, (40)

where Q is the momentum transfer, Q̂ = Q/Q, χ,η = x,y, 〈. . . 〉 denotes an average over quantum and thermal fluctuations,〈
Sx

in

〉 ≈ S cos nq ′ −
√

2Sρin sin nq ′ − ρ2
in cos nq ′, (41)〈

S
y

in

〉 ≈ S sin nq ′ +
√

2Sρin cos nq ′ − ρ2
in cos nq ′, (42)

q ′ = q + δq, (43)

ρin are given by Eq. (29), q and δq are given by Eqs. (3) and (39), respectively, and we omit terms of orders higher than the second
power of ρ. Terms in Eqs. (41) and (42) not containing ρ lead to the well-known result for a spiral magnet without disorder(

dσ

d�

)
Bragg

∝ N2π3S2
(
1 + Q̂2

z

)∑
τ

[δ(Q + q′ − τ ) + δ(Q − q′ − τ )], (44)

where N is the number of sites in the lattice, q′ = q ′ez, τ are reciprocal lattice vectors, and delta functions describe the magnetic
Bragg peaks (satellites) at Q = ±q′ + τ . Terms in Eq. (40) linear in ρ give zero after averaging over disorder configurations.
Most of the second order in ρ terms give either zero or contributions proportional to Eq. (44) with a small factor cQ2. The only
important quadratic in ρ term has the following structure:

S
(
1 + Q̂2

z

)∑
in,jm

eiQ(Rin−Rjm)ρinρjm cos (m − n)q ′, (45)

where the line denotes the averaging over disorder configurations. This averaging can be easily carried out using the following
expression for the Fourier transform of the field from a single dipole:∫

dr eik·r
(

1∣∣r̃ − R̃0 − 1
2 ez

∣∣ − 1∣∣r̃ − R̃0 + 1
2 ez

∣∣
)

= 4πJ1

k̃2J0
eik̃·R̃0 (eikz/2 − e−ikz/2), (46)

where R0 specifies the dipole center, k̃ = (kx

√
J1/J0,ky

√
J1/J0,kz), and k = (kx,ky,kz) [cf. Eq. (19)]. As a result, one obtains

for the elastic cross section

dσ

d�
∝
(

dσ

d�

)
Bragg

+ NcS

(
Q

J0

)2(
1 + Q̂2

z

)∑
τ

(
1 − cos (Qz + q ′ − τz)

(Q̃ + q′ − τ̃ )4
+ 1 − cos (Qz − q ′ − τz)

(Q̃ − q′ − τ̃ )4

)
, (47)

where the first term is given by Eq. (44) and the second one describes the diffuse magnetic scattering due to the disorder. Quite
unexpectedly for diffuse scattering caused by disorder [20], the second term in Eq. (47) has the power-law singularities at the
magnetic Bragg peaks positions [cf. Eq. (44)]. Then, one obtains that Bragg peaks acquire power-law decaying tails (see Fig. 4).
This feature is attributed to the long-range character of the perturbation made by defect bonds.

D. Magnon spectrum renormalization in the layered magnet with DMI

In this section, we discuss defects impact on the magnon spectrum in the model (1). We remind first the well-known results
for the pure system.
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FIG. 4. Sketch illustrating Eqs. (47) and (85) for elastic neutron
scattering cross section at systems with defect bonds. The magnetic
Bragg peak at momentum transfer Q = q′ is shown by solid line
(Qx = Qy = 0). Power-law decaying tails are shown by dashed lines
which are given by the second terms in Eqs. (47) and (85).

1. Spectrum of the pure system

One obtains for the bilinear part of the Hamiltonian using
Eqs. (4) and (5)

H2 =
∑

k

[
Aka

+
k ak − Bk

2
(aka−k + a+

k a+
−k)

]
, (48)

Ak = 2S[J0(1 − cos kz) + J1(2 − cos kx − cos ky)]

+ S
D2

2J0
(2 − cos kz), (49)

Bk = S
D2

2J0
cos kz. (50)

Then, the bare gapless spectrum ε
(0)
k =

√
A2

k − B2
k reads at small

k as

ε
(0)
k =S

√[
J0k2

z + J1
(
k2
x + k2

y

)][
J0k2

z + J1
(
k2
x + k2

y

)+ D2/J0
]
.

(51)
Two regimes can be distinguished:

ε
(0)
k = SDk̃, k̃ � D/J0 (52)

ε
(0)
k = SJ0k̃

2, D/J0 � k̃ � 1 (53)

where k̃ =
√

k2
z + (k2

x + k2
y)J1/J0.

2. Spectrum corrections

We imply first that only DMI is changed at imperfect bonds.
One has to take into account diagrams shown in Fig. 5 to find
the spectrum corrections. Calculations are simplified by the
fact that vertexes in all of the diagrams are proportional to
udm which is much smaller than exchange constants. Some
details of the cumbersome diagram analysis can be found in
Appendix A, where the following expression for the magnon
energy is obtained:

δεk = Scqudm(2 − cos kz) + c
u2

dm

J0
(I1k + I2k + I3k), (54)

(a) (b) (c)

(d)

FIG. 5. Diagrams giving leading corrections to the magnon
spectrum in the first order in the defects concentration.

where I1k, I2k, and I3k are smooth functions of k which are of
the order of unity and which are given by Eqs. (A14), (A19),
and (A23), respectively.

The magnon damping is given by the following term which
stems from the diagram shown in Fig. 5(b):

γk = c
k3

εk

(SudmD)2

J0J1

t

2π
, (55)

where t = 1 and 1
2 for, respectively, k̃ � D/J0 and k̃ � D/J0

[see Eqs. (51)–(53)].
It is seen from Eqs. (55) and (51)–(53) that the magnon

damping is much smaller than the bare spectrum at all
momenta. In contrast, the correction to the magnon energy
(54) (that is finite at k = 0) becomes much larger than the
bare gapless spectrum at sufficiently small k. It implies that
our results obtained in the first order in c are inapplicable and
further analysis is required for particularly small k that is out
of the scope of this paper. Besides, this effect can be screened
in real materials by a small gap in the spectrum originating
from, e.g., a small anisotropic interaction.

Let us take into account also the defect in the exchange
interaction on imperfect bonds. In contrast to the defect in
DMI, one cannot assume in general that |uf m| � J0,J1. Then,
one has to sum an infinite set of diagrams of the type shown
in Fig. 5(d) to find spectrum corrections in the first order in
c. As a result of tedious calculations, some details of which
can be found in the Appendix A, one leads to the following
counterparts of Eqs. (54) and (55):

δεk = Scq

(
udm − quex

2

)
(2 − cos kz) + c

(udm − quex)2

J0
I1k

+ c
2Q2

SJ0
I2k + c

√
2

S

(udm − quex)Q

J0
I3k, (56)

γk = c
k3

εk
S2

(
udm − quex

2

)2
D2

J0J1

t

2π
, (57)

where Q is given by Eq. (38).

E. Some other layered helimagnets with DMI

In this section, we discuss briefly some other models
of layered helimagnets with defect bonds to which our
theory is applicable after some modifications. The first model
differs from that discussed above by the sign of J1 [i.e., by
replacement in Eq. (1) of J1 > 0 by −J1 < 0] that results in
AF xy planes. It is convenient to rewrite transformation (2) in
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the following more general form:

Sx
in = Sx ′

in cos (k0Rin) − S
y ′
in sin (k0Rin),

S
y

in = Sx ′
in sin (k0Rin) + S

y ′
in cos (k0Rin), Sz

in = Sz′
in, (58)

where k0 = (π,π,q) is the vector of magnetic structure. In
pure system, the spiral propagates along the z axis and q is
given by Eq. (3). The operator of perturbation (30) and the
system of equations for ρin [Eq. (31)], which determine the
spin texture around defect, remain the same. Then, Eq. (39)
for the corrections to q does not change either.

Let us assume that both J0 and J1 are antiferromagnetic
[i.e., we replace in Eq. (1) J0 > 0 and J1 > 0 by −J0 < 0
and −J1 < 0, respectively]. In this case, k0 = (π,π,π − q)
in Eq. (58). The operator of perturbation (30) from a single
imperfect bond changes its sign that leads to the dipole with
opposite dipolar momentum. Then, the vector of magnetic

structure acquires the form (π,π,π − q − δq), where δq is
given by Eq. (39).

The third model contains antiferromagnetic triangular xy

planes [i.e., we replace J1 > 0 by −J1 < 0 in Eq. (1) and
assume that xy planes are triangular]. This model is relevant
to CsCuCl3 (see, e.g., Refs. [19,21] and references therein). In
pure system, 120◦ spin ordering is realized in each xy plane
and a spiral ordering arises along the z axis. Then, the vector of
the magnetic structure k0 can be equal either to (0, 4π

3 ,q) or to
(0, − 4π

3 ,q) (we assume for simplicity that distances between
all nearest-neighbor spins are equal to unity) which describe
120◦ spin structures with different arrangements of chiralities
of triangles in xy planes (see, e.g., Ref. [21]). One obtains
the same operator of perturbation (30). The system of linear
equations has the form (31), where J1 should be replaced
by J1/2 and one has to take into account that there are six
nearest-neighbor spins in the xy plane. In the continuum limit,
we obtain Eq. (18) in which J1 should be replaced by 3J1/4.
Counterparts of Eqs. (38) and (39) have the form

Q = 3

√
S

2

(
udm − uex

D

J0

)
J0 + J1

3J0 + 3J1 + uex

[
2 + J0

3πJ1
+ 2

π

(√
3J1
4J0

−
√

3J1
3J1 + 4J0

)] , (59)

δq = c

(
udm − uex

D

J0

)
1 + J1/J0

J0 + J1 + uex

3

[
2 + J0

3πJ1
+ 2

π

(√
3J1
4J0

−
√

3J1
3J1+4J0

)] � 1. (60)

The vector of magnetic structure has the form (0, ± 4π
3 ,q +

δq). Changing of the sign of J0 in this model leads to the
replacement of Q by −Q and to the vector of magnetic
structure (0, ± 4π

3 ,π − q − δq).
Results for the spectrum corrections in these systems

are not simple modifications of those obtained above for
the ferromagnetic exchange because all these models have
different bare spectra. Corresponding calculations are out of
the scope of this paper.

III. CUBIC B20 MAGNETS

A. Pure cubic B20 magnets

Our consideration of cubic B20 magnets is based on
Refs. [22,23] which are devoted to pure systems. We present
in this section the well-known results which are important
for further analysis of disordered systems. For discussion of
low-energy dynamics, the following Hamiltonian is proposed
which contains the exchange coupling Hex , DM term Hdm,
and small anisotropic exchange interaction (AEI) Hae:

H0 = Hex + Hdm + Hae, (61)

Hex = −1

2

∑
JRR′SR · SR′ , (62)

Hdm = −1

2

∑
DRR′ · [SR × SR′ ], (63)

Hae = 1

2

∑
ν

FRR′
(
∂νS

ν
R

)(
∂νS

ν
R′
)
, (64)

where summations on R and R′ are taken over all sites of
a simple cubic lattice and ν = x,y,z. As it is frequently
done in theoretical considerations, we take the cubic lattice
structure rather than the full B20 structure mainly for technical
simplicity. Besides, little is known now about interaction
between four magnetic ions in the cubic unit cell of the
widely discussed itinerant materials having B20 structure.
It is assumed that all interactions in Eq. (61) act between
nearest-neighbor spins: JRR′ = J , DRR′ = D, DRR′ ||(R − R′),
and FRR′ = F . We imply below that J � D � F and put
the lattice constant to be equal to unity. The following local
orthogonal coordinate frame is defined at each site:

ζR = a cos(q · R) + b sin(q · R), (65)

ηR = b cos(q · R) − a sin(q · R), (66)

ξR = c, (67)

where a × b = c. Spins are represented in the local
coordinate system as SR = S

ζ

RζR + S
η

RηR + S
ξ

RξR. We use the
Holstein-Primakoff representations (5) for spins components
S

ζ,η,ξ

R with the following axes correspondence: x ′ ↔ ζ ,
y ′ ↔ η, and z ↔ ξ .
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The ground-state energy per unit cell has the form at q � 1

Ecl = −JS2

(
3 − q2

2

)
− DS2(q · c) + 3

2
S2FI, (68)

where I = ∑
ν q2

ν (a2
ν + b2

ν). Obviously, Ecl is minimal if q‖c,
i.e., spins rotate in the plane perpendicular to q. The direction
of q relative to the lattice is determined by the last term in
Eq. (68). For F > 0, q should be directed along the cube edge
to minimize the cubic invariant I . If F < 0, one infers that the
helix vector is oriented along one of the cubic space diagonals
and I = 2q2/3. In both cases, one has

q = D

J
c. (69)

The main role of AEI is to determine the q direction and it can
be omitted in other calculations due to its smallness. As F < 0
in many B20 magnets including MnSi, we discuss this case in
the following. Henceforth, c is directed along one of the cubic
space diagonals.

The bosonic analog of spin Hamiltonian (61) has no terms
linear in Bose operators and one has for the bilinear terms

H(2)
ex = JS

∑
R,ν

[(
a+

R aR + a+
R+eν

aR+eν

)(
1 − q2

ν

2

)

+ (
aRaR+eν

+ a+
R a+

R+eν

)q2
ν

4

− (
a+

R aR+eν
+ aRa+

R+eν

)(
1 − q2

ν

4

)]
, (70)

H(2)
dm = 1

3
DSq

∑
R,ν

[(
a+

R aR + a+
R+eν

aR+eν

)
−1

2

(
aRaR+eν

+ a+
R a+

R+eν
+ a+

R aR+eν
+ aRa+

R+eν

)]
,

(71)

where ν = x,y,z and eν are basis vectors of the cubic lattice.

B. Perturbation of the magnetic ordering by defects

Let us consider an imperfect bond between sites R0 = (0,0,0) and R1 = ez = (0,0,1). The perturbation in the Hamiltonian
has the following form:

V = Vdm + Vex = −udm

(
ez · [SR0 × SR1

])− uexSR0 · SR1 . (72)

Omitting terms containing products of more than two Bose operators, one derives for Vdm and Vex

Vdm = 1

3
Sudmq

[
a+

0 a0 + a+
1 a1 − 1

2
(a0a1 + a+

0 a+
1 + a+

0 a1 + a+
1 a0)

]
+ Sudm√

3

√
S

2
(a0 + a+

0 − a1 − a+
1 ), (73)

Vex = Suex

[
(a+

0 a0 + a+
1 a1)

(
1 − q2

z

2

)
+ (a0a1 + a+

0 a+
1 )

q2
z

4
− (a+

0 a1 + a+
1 a0)

(
1 − q2

z

4

)
(74)

+ qz

√
S

2
(a1 + a+

1 − a0 − a+
0 )

]
,

where indexes 0 and 1 stand for R0 and R1, respectively. To dispose of terms in the Hamiltonian linear in Bose operators, we
make the shift similar to (12) which we write in the form

aR = bR + ρ̃R = bR + ρ ′
R + iρ ′′

R, (75)

where ρ ′
R and ρ ′′

R are real. Simple but tedious calculations show that the following conditions should hold in order terms in the
Hamiltonian vanish which are linear in operators bR and b+

R :∑
ν

[
J

(
2ρ̃R − ρ̃R−eν

− ρ̃R+eν
− q2

ν ρ̃R + q2
ν

2

(
ρ ′

R+eν
+ ρ ′

R−eν

))+ 1

3
Dq

(
2ρ̃R − ρ ′

R+eν
− ρ ′

R−eν

)]

=
√

S

2
(qzuex − udm/

√
3)
(
δR,R0 − δR,R1

)−
[
uex

(
ρ̃R0 − ρ̃R1 + q2

z

2

(
ρ ′

R1
− ρ̃R0

))+ 1

3
udmq

(
ρ̃R0 − ρ ′

R1

)]
δR,R0

−
[
uex

(
ρ̃R1 − ρ̃R0 + q2

z

2

(
ρ ′

R0
− ρ̃R1

))+ 1

3
udmq

(
ρ̃R1 − ρ ′

R0

)]
δR,R1 , ∀ R. (76)

Imaginary parts of Eq. (76) form a linear homogeneous system of equations for ρ ′′
R which gives ρ ′′

R = 0. Real parts of Eq. (76)
give equations for ρ ′

R which have the form similar to that of Eq. (31):∑
ν

[
J

(
1 − q2

ν

2

)
+ 1

3
Dq

](
2ρ ′

R − ρ ′
R−eν

− ρ ′
R+eν

)
= (

δR,R0 − δR,R1

){√S

2

(
qzuex − udm/

√
3
)+

[
uex

(
1 − q2

z

2

)
+ 1

3
udmq

](
ρ ′

R0
− ρ ′

R1

)}
, ∀ R. (77)
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(a)

(b)

FIG. 6. Defects in cubic magnets considered in the text. (a)
Imperfect bonds (marked by dashed lines) which can be oriented
along each cubic axis with equal probability. (b) Defect with six
imperfect bonds which can be relevant to mixed compounds of the
type Mn1−xFexGe at x � 1 or x ≈ 1.

Equation (77) can be solved as Eq. (31) with the result
[cf. Eq. (21)]

ρ ′(R) =
√

S

2

Q

4π

(
1

|R − R1| − 1

|R − R0|
)

. (78)

Then, ρ ′
R is given by the field of a dipole which momentum

has the form

d = ez

√
S

2

Q

4π
, (79)

Q = 7α

7 + tβ
, (80)

where t = 2 − (
√

2 − 9/4)/π ≈ 2.27 and

α = udm − quex√
3J (1 + q2/6)

, (81)

β = uex + udmq/3 − uexq
2/6

J
. (82)

Let us turn to the system with a finite concentration c � 1 of
such defects. We assume that randomly distributed imperfect
bonds orient randomly along three cubic axes as it is illustrated
by Fig. 6(a). In this case, a finite correction to the spiral
pitch arises. In terms of the electrostatic analogy, the system
“polarization” P = cd/

√
3c arises that is directed along the

cubic space diagonal. Correspondingly, the correction to the
spiral pitch q has the form

δq = c
Q√

3
. (83)

A substantial reduction should be pointed out of defects impact
on the system properties at udm ≈ uexq that follows from
Eqs. (80) and (81).

To verify Eqs. (80)–(83), we perform numerical calcu-
lations for a set of model parameters. We minimize the
classical energy of clusters with open boundary conditions
containing up to 1003 sites in the following way. Starting

FIG. 7. (Color online) Correction δq to the spiral vector as a
function of defect concentration c for J = 1, D = 0.3, uex = −0.2,
and udm = −0.6. Analytical result is given by Eqs. (80)–(83).
Numerical result is obtained as it is discussed in the text.

from a trial configuration, we arrange all magnetic moments
along their current molecular fields. After performing this
procedure many times (∼106–107), the system stabilizes
and we take the Fourier transformation of the final con-
figuration (ignoring spins near the cluster boundary) which
has a peak at the spiral vector q (for the given disorder
realization). Averaging over 10–20 disorder realizations, one
obtains the spiral vector. Representative results of such
calculations are shown in Fig. 7. It is seen that the agree-
ment is excellent at c < 0.03 of numerical findings with
Eqs. (80)–(83).

Another type of defect in B20 magnets which we consider
is presented in Fig. 6(b). It looks more natural for mixed
compounds Mn1−xFexGe considered recently experimentally:
one expects that substitution of one magnetic atom by another
in a unit cell of itinerant material changes couplings of this
unit cell with all its neighbors. The system of equations (76)
describing distortion of the spiral ordering caused by one
imperfect bond is linear. Then, the result for the considered
type of defect is a linear combination of solutions for six
defect bonds shown in Fig. 6(b). As a consequence, the
“polarization” and the correction to the spiral pitch are six
times as large as those for one imperfect bond: P = 2

√
3cdc

and

δq = 2
√

3cQ (84)

[cf. Eq. (83)].

C. Elastic neutron scattering

For the model of imperfect bonds shown in Fig. 6(a), the
main difference from layered magnets discussed above is that
there are dipoles with momenta directed along three cubic
axes. The concentration of dipoles directed along each cubic
axis is c/3. Taking this into account, we get the following
expression for the elastic neutron scattering cross section after
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tedious calculations [cf. Eq. (47)]:

dσ

d�

∝
(

dσ

d�

)
Bragg

+ N
c

3
S

(
Q

J0

)2(
1 + Q̂2

c

)∑
τ

∑
ν=x,y,z

×
(

1 − cos (Qν + q ′
ν − τν)

(Q̃ + q′ − τ̃ )4
+ 1 − cos (Qν − q ′

ν − τν)

(Q̃ − q′ − τ̃ )4

)
,

(85)

where the first term is given by Eq. (44). Then, Bragg peaks
in B20 magnets acquire power-law decaying tails (see Fig. 4).
The last term in Eq. (85) should be multiplied by 6 in the case
of defects shown in Fig. 6(b).

D. Magnon spectrum renormalization

It is well known [22,23] that the bare magnon spectrum
obtained from Eqs. (70) and (71) has the form

ε
(0)
k = SJqk, k � D/J

ε
(0)
k = SJk2, D/J � k � 1.

(86)

There is also a small gap in the spectrum which can be a result
of magnon-magnon and magnetoelastic interactions [24]. This
gap is important for interpretation of some experimental data
obtained in B20 magnets [23–25].

Carrying out calculations similar to those for layered spiral
magnets, we obtain for corrections to the spectrum

δεk =
∑

ν

Scq

9

(
udm − quex

2

)
(2 − cos kν)

+ c
(udm − quex)2

3J
I1k+c

Q2

J
I2k+c

(udm−quex)Q√
3J

I3k,

(87)

γk = c
k3

εk
S2

(
udm − quex

2

)2

q2 t

18π
, (88)

where ν = x,y,z and I1k, I2k, and I3k are values of the order
of unity which are smooth functions of k having the following
form:

I1k = S

16

J

(2π )6

∫
dk1dk2

1 − cos(k1z + k2z)

εk − εk1 − εk2

, (89)

I2k = SJ

12

∑
ν1,ν2,ν3

1

(2π )6

∫
dk1dk2

1 − cos
(
k1ν3 + k2ν3

)(
εk − εk1 − εk2

)
(k̃1 + k̃2)4

× [
1 + cos

(
k1ν1 + k2ν1

)− cos k1ν1

− cos k2ν1

][
1 + cos

(
k1ν2 + k2ν2

)− cos k1ν2 − cos k2ν2

]
,

(90)

I3k = SJ

6

∑
ν1,ν2

1

(2π )6

∫
dk1dk2

× 1 + cos
(
k1ν1 + k2ν1

)− cos k1ν1 − cos k2ν1(
εk − εk1 − εk2

)
(k̃1 + k̃2)2

× sin2 k1ν2 + k2ν2

2
, (91)

where ν1,2,3 = x,y,z. One can see from Eqs. (86) and (88)
that the damping is small compared to the bare spectrum
γk � ε

(0)
k . The correction to the magnon energy (87) is much

larger than the bare spectrum (86) for small enough momenta
signifying a new physics at such k. However, this effect is
screened in real B20 materials at c � 1 by the small gap in
the bare spectrum mentioned above.

IV. SUMMARY AND DISCUSSION

To summarize, we develop a theory describing spiral
magnets with bond disorder at small concentration c of
defects. It is assumed that both DMI and exchange coupling
are changed on imperfect bonds. We obtain qualitatively the
same physical picture in two models which are considered
in detail: layered and B20 cubic helimagnets. Using the
Holstein-Primakoff spin representation, we find the distortion
of the spiral magnetic ordering around a single imperfect bond.
It is shown that values of additional turns of spins caused by the
impurity are given by Poisson’s equation for electric dipole.
Thus, the magnetic ordering distortion from a single imperfect
bond is long range: values of the additional turns of spins decay
with the distance r to the defect as 1/r2. Poisson’s equations
for the dipole in the corresponding models on lattices with
space dimensions d � 2 give the power-decaying law 1/rd−1.

It seems that bond disorder generally induces lower powers
of 1/r for the value of the magnetic ordering distortion than
site disorder. We illustrate this by the example of triangular
AF. Value of additional turns of spins δ�(r) at distant r � 1
from a defect is estimated as

δ�(r) ∼
∫

ddq eiqrχ⊥(q,ω = 0)βq, (92)

where χ⊥(q,ω = 0) is the static transverse susceptibility and
βq is the Fourier transform of an effective local magnetic
field acting on spins adjacent to the impurity. Equation (92) is
used in Ref. [14] for triangular AF with a vacancy in which
case χ⊥(q,ω = 0) ∝ 1/ε2

q, εq ∝ q, βq ∝ q3, and integration
in Eq. (92) gives 1/rd+1 at large r . However, the same
formula gives 1/rd−1 for a defect bond (with weakened
exchange coupling constant, for example) because βq ∝ q in
this case. Notice also that formula (92) works in the spiral
magnets with DMI too: χ⊥(q,ω = 0) ∝ 1/q2 [it follows from
Eqs. (48)–(50), (70), and (71)] and βq ∝ q result in 1/rd−1.

At finite concentration of randomly distributed defect
bonds, we calculate the observable quantities by averaging
over disorder configurations. We find that the direction of
the spiral vector does not change and its modulus acquires
a correction δq given by Eqs. (39) and (83) in the two models
considered. For defects of the type shown in Fig. 6(b) in
cubic magnets, δq is given by Eq. (84). It is seen from these
equations that the spiral vector correction can be zero, positive,
or negative depending on the particular parameters of defects.
For negative δq, the sign of chirality can change even at c � 1
if defects are strong enough.

In the elastic neutron scattering cross section, defects
manifest themselves in two ways. First, magnetic Bragg
peaks (satellites) are shifted from reciprocal lattice vectors
by ±(q + δq) (i.e., by values defined by the new spiral
vector). Second, diffuse scattering arises which has power-law
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singularities at Bragg peaks positions. Then, each Bragg peak
acquires the power-law decaying tails [see Eqs. (47), (85), and
Fig. 4]. This feature is attributed to the long-range character
of the perturbation made by defect bonds.

Corrections to the magnon energy and to the damping
caused by scattering on defects are given by Eqs. (56) and (57)
and (87) and (88) in layered and B20 magnets, respectively.
The magnon damping is found to be much smaller than the
bare spectra in both models. Although magnons are well
defined at k � q in both models, the ratio γk/εk ∼ c/k

is quite unusually large. Remember, this ratio is normally
proportional to a positive power of k and it does not exceed c in
magnetically ordered gapless magnets (see, e.g., Refs. [26–29]
and references therein). However, we have obtained recently
that γk/εk ∼ c/k2 under certain conditions in gapped
phases of three-dimensional (3D) spin systems with bond
disorder [30].

Corrections to the magnon energy exceed the bare spectra
at small enough momenta. This signifies that the analysis
cannot be restricted by the first order in defects concentration
at such k. It can also signify a localization of long-wavelength
magnons (see, e.g., Ref. [30] and references therein).
Consideration of this point is out of the scope of this paper.

Besides, these small-energy peculiarities can be screened
by a small gap in the bare spectra originating from a small
low-symmetry spin interaction.

Although all calculations for layered helimagnets are
performed for the model with FM exchange interactions, the
results obtained (except for the spectrum renormalization) are
applicable after simple modifications discussed in Sec. II E
to many other layered helimagnets with bond disorder. Our
consideration can be relevant to Mn1−xFexGe considered
recently experimentally in Ref. [6]. But, we are unable now
to verify our theory due to very small amount of experimental
data at x ≈ 1. For instance, there are only three experimental
points on the plot for dependence of the spiral vector modulus
on x at x > 0.75. Then, further experimental activity is needed
in this field.
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APPENDIX A: CALCULATION OF THE MAGNON SPECTRUM RENORMALIZATION IN LAYERED SPIRAL MAGNETS

First, we take into account the imperfection of the DMI only. In addition to terms in Vdm presented in Eq. (10), one needs also
the following terms for the magnon spectrum calculation:

V (2)
dm = Sudmq

∑
hm

(
a+

hmahm + a+
hm+1ahm+1 − 1

2
(a+

hma+
hm+1 + ahmahm+1 + a+

hmahm+1 + a+
hm+1ahm)

)
, (A1)

V (3)
dm =

√
S

2
udm

∑
hm

(
a+

hmahmahm+1 + a+
hma+

hm+1ahm + a+
hm+1a

2
hm+1

4
+ a+2

hm+1ahm+1

4

− a+
hm+1ahmahm+1 − a+

hma+
hm+1ahm+1 − a+

hma2
hm

4
− a+2

hmahm

4

)
, (A2)

where sums run over sites involved in defect bonds. Besides, one has to take into account terms in the Hamiltonian containing
products of four Bose operators

H4 = −J0

∑
in

[
a+

ina
+
in+1ainain+1 − 1

4

(
a+2

in+1ainain+1 + a+2
in ainain+1 + a+

ina
+
in+1a

2
in+1 + a+

ina
+
in+1a

2
in

)]

− J1

∑
〈ij〉n

[
a+

ina
+
jnainajn − 1

2

(
a+2

jn ainajn + a+
ina

+
jna

2
jn

)]
, (A3)

where we omit terms of the second order in D/J0 � 1.
Equation (A3) gives the following terms after shift (12) which contain products of one operator of creation and one operator

of annihilation:

H(2)
4 = −2

∑
in

∑
j

Jj

[
b+

inbin

(
ρ2

jn − ρinρjn

)− 1

2
b+

inbjn(ρin − ρjn)2

]
, (A4)

where j enumerates nearest neighbors of the ith site in the nth plane, Jj = J0 and Jj = J1 for neighbors from different planes and
from the same plane, respectively. It can be shown that terms containing products of two operators of creation or two operators
of annihilation give a negligible correction to the spectrum. Introducing the Fourier transform

bin = 1√
N

∑
k

bke
−ik·Rin , (A5)
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we have for Eq. (A4)

H(2)
4 = − 2

N

∑
k1,k2

b+
k1

bk2

∑
in

∑
j

Jj e
iRin·(k1−k2)

[
ρ2

jn − ρinρjn − 1

2
cos k2j (ρin − ρjn)2

]
, (A6)

where k2j = k2z and k2j = k2x or k2y for neighbors from different planes and from the same plane, respectively.
In much the same way, one obtains for terms containing products of three Bose operators and stemming from H4 [Eq. (A3)]

H(3)
4 = − 1

N3/2

∑
k1,k2,k3

b+
k1

b+
k2

bk3

∑
in

∑
j

Jj e
iRin·(k1+k2−k3)

[
eik1j (2ρjn − ρin) − e−ik3j (1 + ei(k1j +k2j ))

ρin

2

]
+ H.c. (A7)

Taking into account only terms in Eq. (A1) containing products of one operator of creation and one operator of annihilation
which give the main contribution to the spectrum renormalization, one obtains

V (2)
dm = Squdm

N

∑
k1,k2

b+
k1

bk2

∑
hm

eiRhm·(k1−k2)

[
1 + ei(k1z−k2z) − eik1z + e−ik2z

2

]
. (A8)

We have from Eq. (A2) after the Fourier transformation

V (3)
dm = udm

√
S/2

N3/2

∑
k1,k2,k3

b+
k1

b+
k2

bk3

∑
hm

eiRhm·(k1+k2−k3)

(
(eik1z + eik2z )(1 − e−ik3z )

2
+ ei(k1z+k2z−k3z) − 1

4

)
+ H.c. (A9)

Let us start the spectrum calculation with Eq. (A8). As q|udm| � J0,1, the main corrections to the magnon energy δεk and to
the damping γk originate from diagrams shown in Figs. 5(a) and 5(b), respectively, which give

δε
(1)
k = Scqudm(2 − cos kz), (A10)

γ
(1)
k = Im

⎛⎝ (Squdm)2

N2

∑
k1

1

εk − εk1 − i0

∣∣∣∣1 + ei(kz−k1z) − (eikz + e−ik1z )

2

∣∣∣∣2 ∑
hm,h′m′

ei(Rhm−Rh′m′ )·(k1−k)

⎞⎠
≈ Im

(
c

(Squdm)2

(2π )3

∫
d3k1

εk − εk1 − i0

)
≈ c

k3

εk

(SudmD)2

J0J1

t

2π
, (A11)

where Im denotes imaginary part, t = 1 and 1
2 for, respectively, k̃ � D/J0 and k̃ � D/J0 [see Eqs. (51)–(53)], hereafter the

line over an expression denotes averaging over disorder configurations, and we take into account that only terms with h = h′ and
m = m′ survive after the averaging over disorder configurations in the double sum over hm and h′m′.

The main contribution to the spectrum renormalization from Eq. (A9) originates from the diagram presented in Fig. 5(c).
After integration over internal frequency and averaging over disorder configurations, we have for it

cu2
dm

S

8N2

∑
k1,k2

1

εk − εk1 − εk2 − i0

∣∣∣∣(eik1z + eik2z )(1 − e−ikz ) + ei(k1z+k2z−kz) − 1

2

∣∣∣∣2. (A12)

The imaginary part of this equation is of the order of cu2
dmk10/εk. Thus, it is larger than Eq. (A11) only for quite large momenta

k � (D/
√

J0J1)2/7. The correction to the magnon energy has the form

δε
(2)
k ≈ c

u2
dm

J0
I1k, (A13)

I1k = S

16

J0

(2π )6

∫
dk1dk2

1 − cos(k1z + k2z)

εk − εk1 − εk2

(A14)

that should be taken into account together with Eq. (A10).
The main correction to the magnon energy from Eq. (A6) is given by the diagram shown in Fig. 5(a):∑

in

∑
j

Jj (cos kj − 1)(ρin − ρjn)2. (A15)

It is negligible compared to Eq. (A13) being of the order of cu2
dmk2. Contribution to the damping from Eq. (A6) stems from the

diagram depicted in Fig. 5(b) and it has the form

γ
(2)
k = Im

⎛⎝ 1

N2

∑
k1

1

εk − εk1 − i0

∑
in

∑
i ′n′

∑
j,j ′

JjJj ′ei(Rin−Ri′n′ )·(k1−k)
(
ρ2

in − ρ2
jn

)(
ρ2

i ′n′ − ρ2
j ′n′
)⎞⎠. (A16)

It can be discarded being of the order of cu4
dmk5/εk.
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The loop diagram shown in Fig. 5(c) with three-particle vertex (A7) gives∑
j1,j2

Jj1Jj2

4N3

∑
k1,k2

[
1 + cos

(
k1j1 + k2j1

)− cos k1j1 − cos k2j1

][
1 + cos

(
k1j2 + k2j2

)− cos k1j2 − cos k2j2

]
εk − εk1 − εk2 − i0

×
∑
in,jm

ρinρjmei(Rin−Rjm)·(k1+k2). (A17)

Using Eq. (46), one finds the following valuable contribution to the magnon energy from Eq. (A17):

δε
(3)
k = c

u2
dm

J0
I2k, (A18)

I2k =
∑
j1,j2

SJj1Jj2

4J0

1

(2π )6

∫
dk1dk2

1 − cos (k1z + k2z)

(εk − εk1 − εk2 )(k̃1 + k̃2)4

× [
1 + cos

(
k1j1 + k2j1

)− cos k1j1 − cos k2j1

][
1 + cos

(
k1j2 + k2j2

)− cos k1j2 − cos k2j2

]
, (A19)

which is of the order of cu2
dm as Eq. (A13). The imaginary part of Eq. (A17) is of the order of cu2

dmk8/εk. Thus, it is larger than
Eq. (A11) only for quite large momenta k � (D/

√
J0J1)2/5.

There are also corrections from the diagram shown in Fig. 5(b) which is built using both V (2)
dm and H(2)

4 . The corresponding
expression has the form

−
∑

ν

JνqudmS

N2

∑
k1

1

εk − εk1 − i0

⎧⎨⎩∑{in}
eiRin·(k1−k)

[
1 + ei(k1z−kz) − (eik1z + e−ikz )

2

]

×
∑
jm

eiRjm·(k−k1)

[
ρ2

jm+eν
− ρjmρjm+eν

− ρjm−eν
ρjm + e−ik1ν

(
ρjmρjm+eν

− ρ2
jm+eν

+ ρ2
jm

2

)

+ eik1ν

(
ρjmρjm−eν

− ρ2
jm−eν

+ ρ2
jm

2

)]
+ H.c.

⎫⎬⎭. (A20)

Corrections to the magnon energy and to the damping from this expression are negligible being of the order of cu3
dmD and

cu3
dmDk5/εk, respectively.
The second correction of this type comes from the loop diagram presented in Fig. 5(c) which contains both vertexes V (3)

dm and
H(3)

4 and has the form

∑
ν

√
S
2 udmJν

N3

∑
k1,k2

1

ω − εk1 − εk2 + i0

⎛⎝∑
{in}

eiRin·(k−k1−k2)

(
(e−ik1z + e−ik2z )(1 − eikz )

2
+ ei(kz−k1z−k2z) − 1

4

)

×
∑
jm

eiRin·(k1+k2−k)

{
ρjm

[(
e−ikν − 1

2

)(
eik1ν + eik2ν

2

)
− e−ikν

4
(1 + ei(k1ν+k2ν ))

]
(A21)

+ ρjm+eν

[(
1 − e−ikν

2

)(
eik1ν + eik2ν

2

)
− 1

4
(1 + ei(k1ν+k2ν ))

]}
+ H.c.

⎞⎠.

The imaginary part of this expression at small k is of the order of cu2
dmk8/εk. Then, it is negligibly small. The real part is given

by the following equation:

δε
(4)
k = c

u2
dm

J1
I3k, (A22)

I3k =
∑

ν

SJν

2(2π )6

∫
dk1dk2

1 + cos(k1ν + k2ν) − cos k1ν − cos k2ν

(εk − εk1 − εk2 )(k̃1 + k̃2)2
sin2 k1z + k2z

2
, (A23)

which is of the order of cu2
dm and should be taken into account.

Let us take into account the defect in the exchange interaction (11) which has the following form after the Fourier
transformation:

V (2)
ex = Suex

∑
{in}

∑
k1,k2

1

N
b+

k1
bk2e

iRin·(k1−k2)(1 − eik1z )(1 − e−ik2z ), (A24)
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where {in} denotes imperfect bonds. In general, one cannot assume that |uex | � J0,J1 as it was for udm. Then, one has to sum
an infinite set of diagrams of the type shown in Fig. 5(d) to find spectrum corrections in the first order in c from Eq. (A24). As a
result, the Green’s function denominator has the form

G(ω,k)−1 = ω − ε
(0)
k − T (ω,k), (A25)

T (ω,k) = c2Suex(1 − cos kz)

(
1 − 2Suex

∫
dq

(2π )3

(1 − cos qz)

ω − ε
(0)
q − i0

)−1

. (A26)

One has from this expression

γk = c
Su2

exk
6

6
√

2π2D(1 + I4uex)2
, (A27)

δεk = c
Suexk

2

1 + I4uex

, (A28)

I4 = 2S

∫
dq

(2π )3

1 − cos qz

ε
(0)
q

. (A29)

These results are negligible compared with those stemming from the defect in DMI which are considered above. There are also
corrections from diagrams of the type Fig. 5(d) made both from Eqs. (A8) and (A24). Their analysis shows that they are also
small.
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