
PHYSICAL REVIEW B 92, 125108 (2015)

Enhancement of superconductivity at the onset of charge-density-wave order in a metal
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We analyze superconductivity in the cuprates near the onset of an incommensurate charge-density-wave (CDW)
order with momentum Q = (Q,0)/(0,Q), as observed in experiments. We first consider a semiphenomenological
charge-fermion model in which hot fermions, separated by Q, attract each other by exchanging soft CDW
fluctuations. We find that in a quantum-critical region near the CDW transition, Tc = Aḡc, where ḡc is charge-
fermion coupling and A is the prefactor, which we explicitly compute. We then consider the particular microscopic
scenario in which the CDW order parameter emerges as a composite field made of primary spin-density-wave
fields. We show that charge-fermion coupling ḡc is of the order of spin-fermion coupling ḡs . As a consequence,
superconducting Tc is substantially enhanced near the onset of CDW order. Finally, we analyze the effect of
an external magnetic field H . We show that, as H increases, the optimal Tc decreases and the superconducting
dome becomes progressively more confined to the CDW quantum-critical point. These results are consistent with
experiments.
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I. INTRODUCTION

An understanding of the nature of charge order in high-Tc

cuprates and of its effect on superconductivity is essential for
a full understanding of the complex physics in these materials.
Charge order was observed in the cuprates quite some time
ago [1,2] but was originally though to be present only in
La-based materials. The recent wave of discoveries of an
incommensurate charge-density-wave (CDW) order in Y-, Bi-,
and Hg- based cuprates [3–10] has demonstrated that charge
order is ubiquitous to all families of high-Tc cuprates. A true
long-range CDW order has so far been observed only in a
finite magnetic field, but short-range static order (probably
pinned by impurities) exists already in zero field. In a phase
diagram, CDW order has been detected within the pseudogap
region, and its onset temperature is the highest around doping
level x ∼ 0.12. The CDW has an incommensurate momentum
Q = Qy = (0,Q) or Qx = (Q,0) and the order is likely
uniaxial; i.e., it develops, within a given domain, with only
Qx or Qy [8].

The discovery of CDW order raised a number of questions
about its origin [11–21], a potential discrete symmetry break-
ing before a true CDW order sets in [4,14,22–28], and the
relation between CDW order (or its fluctuations) to pseudogap
behavior [14,18,20,27] and Fermi surface (FS) reconstruction
[29].

In this paper we discuss another issue related to CDW:
its effect on superconductivity. We take as inputs three
experimental facts. First, Tc, as a function of doping, has a dip
or a plateau at around x ∼ 0.12, where the onset temperature of
CDW is the highest [30,31]. Second, when CDW is suppressed
by applying pressure [32], superconducting Tc increases.
Third, when a magnetic field is applied [33], the dip grows
and with a high enough field the superconducting dome splits
into two, and the one at higher dopings is centered at the same
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x at which CDW order develops at T = 0 [33]. In other words,
superconductivity forms a dome on top of the quantum-critical
point (QCP) for the onset of CDW order.

The first two results can be naturally understood if we
assume that CDW and d-wave superconductivity are just
competing orders; i.e., when one order is at its peak, the other
one is suppressed. The third observation, on the other hand,
requires one to go beyond a simple “competing order” scenario
because the presence of the dome of superconductivity on
top of CDW QCP indicates that superconductivity is at least
partly caused by soft fluctuations of CDW order which then
must develop at higher energies than the ones related to
superconductivity.

In our analysis we explore CDW-mediated superconductiv-
ity in some detail. We perform our analysis in two stages.
In the first stage we put aside the issue of what causes
CDW order, assume that this order develops below some
critical doping, and consider a semiphenomenological model
of fermions interacting by exchanging soft CDW fluctuations
with momenta Q. This model is quite similar to the spin-
fermion model, considered in earlier studies of spin-mediated
superconductivity for cuprates, Fe-pnictides, and other corre-
lated materials [34–39], and we dub this model the “charge-
fermion model.” The charge-fermion and spin-fermion models
are similar but differ in detail because of the difference between
the CDW momentum Q and the antiferromagnetic momentum
(π,π ) and, also, because of the difference in the spin struc-
tures of charge-mediated and spin-mediated interactions (spin
Kronecker δ functions vs spin Pauli matrices). One qualitative
consequence of these differences is that a charge-mediated
interaction gives rise to superconductivity with a full gap in
each region where the FS crosses the Brillouin-zone boundary
(antinodal regions in the cuprate terminology), but it does
not couple superconducting order parameters from different
regions, hence it alone cannot distinguish between s-wave and
d-wave pairing symmetries [40].

We perform a quantitative analysis of the pairing within the
charge-fermion model in the most interesting quantum-critical
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regime right above the QCP for CDW order. In this regime,
a charge-mediated interaction gives rise to the pairing but
also destroys the coherence of hot fermions (those at the
FS separated by Q). The superconducting T ch

c is determined
by the interplay between the strong tendency towards pairing
and the strong pair-breaking effects associated with the self-
energy. We compute the Landau damping of soft bosons
and fermionic self-energy and then obtain and solve the
linearized gap equation with renormalized fermionic and
bosonic propagators. We show that in the quantum-critical
region Tc is finite and scales with the effective charge-fermion
coupling constant ḡc: T ch

c = Acḡc, where Ac ≈ 0.0025.
In the second stage we consider the specific microscopic

scenario for CDW order: the one in which the CDW is a
composite order parameter made up of primary (π,π ) spin fluc-
tuations. Within this scenario, spin fluctuations are assumed
to develop first, at energies comparable to the bandwidth,
while CDW fluctuations develop at lower energies and do
not provide substantial feedback on spin fluctuations. This
composite order scenario requires fermion-fermion interaction
to be comparable to the bandwidth (otherwise spin fluctuations
do not develop at high energies) and inevitably is partly
phenomenological. We do not discuss a complementary,
renormalization-group-based, truly weak-coupling scenario in
which all fluctuations (spin, charge, superconducting) develop
simultaneously at a low energy and mutually affect each other
[41].

Various versions of magnetically induced charge bond
and site orders have been proposed over the last few years
[11–14,16–18,20,21,42,43], some focused on the CDW with
diagonal momentum (Q,Q) and others on the CDW with
momenta Qx = (Q,0) and Qy = (0,Q). Motivated by ex-
periments, we consider soft fluctuations of the CDW order
parameter with a momentum near the axial Qx or Qy . Previous
studies have found [44] that the axial CDW has a partner—an
incommensurate pair-density wave (PDW)—and fluctuations
in CDW and PDW channels develop simultaneously. To keep
the presentation focused, we concentrate on CDW and neglect
PDW fluctuations. The latter can, in principle, also mediate
pairing interactions but are unlikely to destructively interfere
with CDW fluctuations.

In an earlier work [14] we have shown that axial CDW order
develops in a paramagnet at a finite Tcdw, provided that the
magnetic correlation length ξs is large enough. As ξs decreases,
Tcdw also decreases and vanishes at some finite ξs,cr, setting up
a CDW QCP at a finite distance from a magnetic QCP (the
one at ξs = ∞). Near ξs,cr, CDW fluctuations become soft and
give rise to a singular pairing interaction mediated by these
fluctuations. We show the behavior of Tcdw vs ξs schematically
in Fig. 1.

Whether this additional pairing interaction substantially
affects the superconducting Tc depends on the interplay
between the charge-fermion coupling ḡc and the coupling
ḡs between fermions and primary spin fluctuations. The
argument is that spin-fluctuation exchange by itself gives rise
to superconducting pairing, and at large ξs the corresponding
T

sp
c scales with ḡs : T

sp
c = Asḡs , where As ≈ 0.007 [46]. As ξs

decreases, T sp
c also decreases but remains finite. The two-dome

structure of Tc(x), observed in the cuprates in an applied
magnetic field, can be understood within this approach only
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FIG. 1. (Color online) Doping range where CDW order with mo-
mentum (Q,0) or (0,Q) emerges within the itinerant spin-fluctuation
scenario. The effective interaction in the CDW channel is made
up of two spin-fluctuation propagators. CDW order develops only
when the system is sufficiently close to a magnetic instability and
terminates at doping xch

cr , differently from x
sp
cr for antiferromagnetism.

In the hatched region near x
sp
cr , localization of electronic states (Mott

physics) becomes relevant [45], and the spin-fluctuation approach
needs to be modified. In this region, the onset temperature of CDW
order drops.

if near ξs = ξs,cr, T ch
c � T

sp
c . If this does not hold, i.e., T ch

c is
smaller than T

sp
c , the contribution to superconductivity from

charge-mediated exchange is only subdominant to the one
from spin fluctuations. In this situation, the only effect on Tc

from the CDW is due to direct competition between CDW
and superconducting orders. This competition may give rise
to an additional reduction of Tc in a magnetic field, given the
experimental evidence that CDW order increases in a field.
However, it cannot give rise to a peak of Tc above CDW QCP.

We evaluate charge-fermion coupling ḡc within a random
phase approximation (RPA)-type analysis of charge fluctu-
ations near the CDW QCP, U eff

c (q) ∝ Uc/(1 − Uc�c(q)) ≡
ḡc/(ξ−2

c + (q − Q)2), and show that ḡc is comparable to
the spin-fermion coupling ḡs . This result may look strange
because charge fluctuations, viewed as composite objects
made up of spin fluctuations, develop only in a narrow range
near the FS points separated by Qx or Qy , with the width
in momentum space of order � ∼ ξ−1

s . As a consequence,
ḡc ∼ Ucξ

−2
s . However, the “bare” interaction in the charge

channel, Uc, is a composite object made up of two spin
fluctuation propagators and two fermionic Green’s functions
(see Fig. 8). This composite object behaves as ḡsξ

2
s . As a

consequence, Ucξ
−2
s is not reduced by ξs , and ḡc differs from

ḡs only by a numerical factor.
To properly calculate the ratio ḡc/ḡs one needs to do

full-scale dynamical calculations, even if one is restricted to
ladder series of diagrams, as in the RPA. In this work, we
use a simplification and approximate the bare interaction in
the charge channel Uc by a constant within the momentum
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FIG. 2. (Color online) Schematic phase diagram for the interplay
between superconductivity mediated by spin and that mediated by
charge fluctuations. (a) Onset temperature T sp

c of spin-mediated
superconductivity, as a function of doping. We assume that impurities
kill superconductivity above a certain doping. (b) Onset temperature
T sp

c of charge-mediated superconductivity near the onset of CDW
order. We compute T ch

c in this work. (c) Full phase diagram. The
nonmonotonic Tc(x) is obtained by combining the spin-mediated and
charge-mediated contributions to Tc from (a) and (b) (dashed lines).

range � ∼ ξ−1
s around proper FS points (hot spots) and set it

to 0 outside this range. We compute the polarization operator
�c(q,�m) and use the RPA to obtain charge-mediated effective
interactions within fermions. We use the condition for the
CDW QCP 1 = Uc�c(Q) to fix � and obtain the explicit
relation between ḡc and ḡs . Within this approach, we find
ḡc � ḡs .

We argue, based on this analysis, that the enhancement
of superconductivity near a CDW QCP is substantial; i.e.,
superconductivity in the cuprates comes from both spin and
charge fluctuations. We present the phase schematic in Fig. 2.
This scenario explains the developments of two domes of Tc in
a high magnetic field: one, at a lower doping, is due to critical
spin fluctuations, and the other, at a higher doping, is due to
critical charge fluctuations.

1. Relation to earlier works

Pairing by charge fluctuations has been studied before.
In the context of the cuprates, DiCastro, Castellani, Grilli,
and their collaborators [40] analyzed in detail the pairing
mediated by axial CDW fluctuations near the onset of charge
order, which was assumed to develop on its own rather

than being induced by spin-density-wave (SDW) fluctuations.
They found that a charge-mediated four-fermion interaction is
attractive in both d-wave and s-wave channels and does not
distinguish the two. They argued that some other mechanism,
e.g., antiferromagnetic spin fluctuations, lifts the degeneracy
in favor of the d wave. We obtain the same results in Sec. II.
The novel part of our analysis in that section is the calculation
of the charge-mediated Tc in the quantum-critical regime.

This pairing problem near the CDW QCP has certain
similarities to the pairing at the onset of a nematic order,
which has been extensively studied in recent years [47–50].
It has been argued that Q = 0 nematic fluctuations enhance
all partial components of the pairing susceptibility. The case
of QCP at small Qx/Qy is less unrestrictive in this respect,
but still, s-wave and d-wave channels are degenerate for CDW
fluctuations.

The analysis of the electron-mediated pairing near a
QCP for density-wave order is also quite interesting from a
general perspective, as it adds one important new element not
present for the pairing away from a QCP. Namely, the same
interaction which gives rise to strong attraction also destroys
fermionic coherence and prevents fermions from developing
supercurrents [51,52]. Superconductivity then may or may not
emerge, depending on the interplay between these two opposite
tendencies [47,53].

The rest of this paper is organized as follows. In Sec. II
we introduce and analyze the charge-fermion model of
itinerant electrons coupled to near-critical CDW fluctuations.
In Sec. II A we derive bosonic and fermionic self-energies. In
Sec. II B we study the pairing problem and obtain T ch

c due to
charge-fluctuation exchange near a CDW QCP. We show that
T ch

c scales with the charge-fermion coupling constant ḡc. In
Sec. III, we relate ḡc and the spin-fermion coupling ḡs within
the magnetic scenario for CDW. In this scenario, a CDW order
parameter field emerges as a composite object made up of two
spin-fluctuation propagators. We show that ḡc is comparable to
ḡs and may even exceed it. In Sec. IV we discuss in more detail
the superconducting dome around the CDW QCP. Finally, in
Sec. V we discuss the results and present our conclusions.

II. THE CHARGE-FERMION MODEL

We begin with a semiphenomenological analysis. We
assume, without specifying the reason, that CDW order with
momentum Qy = (0,Q) and/or Qx = (Q,0) develops at some
critical doping xcr

c and consider the model of two-dimensional
fermions interacting by exchanging near-critical, soft charge
fluctuations. We dub this the “charge-fermion model” by
analogy with the spin-fermion model, which was introduced
to describe a system near a magnetic QCP. As our goal
is to describe low-energy physics (energies well below the
bandwidth), we focus on momentum ranges around the CDW
“hot” spots on the FS, defined as points which are separated by
CDW momentum Qx or Qy . For a generic Q there are 16 CDW
hot spots, 8 corresponding to Qy and another 8 corresponding
to Qx . For simplicity we consider the case where Q is such
that CDW hot spots are at or near the crossing between the
FS and symmetry lines in the Brillouin zon, kx ± ky = ±π .
Then hot spots from the Qy sector merge with hot spots from
the Qx sector, and the total number of hot spots becomes
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FIG. 3. (Color online) Fermi surface of a two-dimensional elec-
tronic system on a square lattice and location of hot spots for charge-
mediated interactions. CDW “hot” spots are defined as points on the
Fermi surface separated either by Qy = (0,Q) or by Qx = (Q,0). In
a generic situation, there are eight hot spots for Qy and eight for Qx .
Motivated by experiments, we consider the case where hot spots for
Qy and for Qx merge. In this situation, CDW hot spots coincide with
hot spots for (π,π ) magnetism, and there are eight of them on the
Fermi surface We label these hot spots 1–8 (5 ≡ −2, 6 ≡ −1, etc.).
The arrow shows the direction of the Fermi velocity at hot spot 1.
Fermi velocities at the other seven hot spots are related to this one
by symmetry. Near CDW instability hot fermions interact with each
other by exchanging CDW fluctuations with momenta Qx,y . Here and
in subsequent figures dashed lines represent charge fluctuations.

eight. We label these points 1–8 in Fig. 3. This approximation
works reasonably well for the values of Q extracted from
experiments [6].

We linearize the fermionic dispersion in the vicinity of hot
spot i as εi,k̃ = vi · k̃i , where vi is the Fermi velocity and k̃i

is the momentum deviation from hot spot i. We define the
Fermi velocity at hot spot 1 as v1 = (vx,vy); the velocities at
other hot spots are related by symmetry. In cuprates, the FS in
the antinodal region is “flattened,”,and we have vx < vy (see
Fig. 3). We define α = vx/vy < 1.

The action of the charge-fermion model can be written as

S =
∫

dk̃
∑
i,α

c
†
iα(k̃)(−iωm + εik̃)ci,α(k̃)

+
∫

dq̃χ−1
0c (q̃)

∑
a=x,y

φa(q̃)φ†
a(q̃)

+ gc

∑
i = 1,3,5,7;

α

f i
y

∫
dk̃dk̃′ c

†
iα(k̃)ci+1,α(k̃′)φ†

y(k̃′ − k̃)

+ gc

∑
i = 1,2,3,4;

α

f i
x

∫
dk̃dk̃′ c

†
iα(k̃)ci+4,α(k̃′)φ†

x(k̃ − k̃′)

+ H.c., (1)

where ciα is a fermion field with i labeling hot spots and α

labeling spin projections. Hot spots i and i + 1 are separated by
CDW momentum Qy , and hot spots i and i + 4 are separated
by Qx (see Fig. 3). The scalar field φx,y is a CDW order
parameter field with a momentum near Qx/Qy . In Eq. (1) we
have used the shorthands k̃ = (ωm,k̃) and q̃ = (�m,q̃), where
ωm(�m) are fermionic (bosonic) Matsubara frequencies. The
bosonic momentum q̃ is measured as the deviation from the
CDW momentum Qx or Qy , and the fermionic momentum
k is measured as the deviation from the corresponding hot
spot. The form factors f i

x,y determine the relative magnitude
and sign between CDW orders in different hot regions. In
general, CDW order has both d-wave and s-wave components.
A pure d-wave order would correspond to f 1,5

y = −f 3,7
y = 1

and f 1,2
x = −f 3,4

x = 1.
We assume, as is done in the spin-fermion model, that

static charge susceptibility comes from fermions with ener-
gies higher than the one relevant to superconductivity and
approximate it by a simple Ornstein-Zernike form, χc =
χ0c/(q̃2

x + q̃2
y + ξ−2

c ), where ξc is the CDW correlation length.
The prefactors for q̃2

x and q̃2
y may in general differ [54] because

Qx and Qy are not along Brillouin-zone diagonals, but this
difference can be absorbed into the rescaling of q̃ and does not
affect our analysis.

The coupling gc is a phenomenological charge-fermion
coupling constant. The corresponding charge-mediated four-
fermion interaction term in the Hamiltonian is (we set Q = Qy

for definiteness)

Hint = −U eff
c (q)

∑
k,p

c
†
k,αc†p,γ ck−q,δck+q,βδαβδγ δ, (2)

with

U eff
c (q) = g2

cχc(q) = ḡc

ξ−2
c + (q − Qy)2

. (3)

The effective coupling ḡc = g2
cχ0c, and the sign convention

is such that the interaction appears with a factor −1 in the
diagrammatic theory.

The charge-fermion model is defined self-consistently
when its fluctuations cannot modify the physics at lattice
energies, and this requires that ḡc must be small compared
to the fermionic bandwidth.

A. Normal-state analysis

For the computation of superconducting T ch
c , mediated

by charge fluctuations, we need to know the normal-state
properties. We use Eq. (1) and compute self-energies for
the bosonic fields φx and φy and for the fermionic field.
We show the corresponding diagrams in Fig. 4. We compute
the bosonic and fermionic self-energies in a self-consistent
fashion, as done in the earlier works on the spin-fermion
model [11,39,52]. Namely, we first evaluate the one-loop
bosonic self-energy (the bosonic polarization operator) using
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FIG. 4. One-loop diagrams for (a, b) the bosonic self-energy �x,y

and (c) the fermionic self-energy �i .

free fermions and show that it has the form of Landau damping,
then use the full dynamical bosonic propagator to calculate the
one-loop fermionic self-energy and show that it is strong but
predominantly depends on the frequency, and then verify that
the frequency-dependent fermionic self-energy does not affect
the Landau damping. This self-consistent procedure becomes
exact if we neglect subleading terms in the self-energy, which
depend on the fermionic dispersion εk . This can be rigorously
justified if we extend the model to M fermionic flavors and
take the limit M → ∞ (e.g., Ref. [11]) or extend the number of
pairs of hot spots from 4 to N and take the limit N → ∞ (e.g.,
Ref. [52]). We use the latter extension to justify our analysis.

1. Bosonic polarization operators

The bosonic polarization operator for φy is given by the
diagram in Fig. 4(a), and the expression for φx is related
by symmetry. The full polarization operator is the sum of
contributions from four pairs of hot fermions which are
separated by Qy . These pairs are (1,2), (3,4), (5,6), and (7,8).
There are no Umklapp processes for incommensurate CDW
order, in distinction to the SDW case, in which Q = (π,π ) and
Umklapp processes are allowed.

For the contribution to � from fermion pair (1,2) we obtain

�1(�m,q̃) = −2g2
c T

∑
ωm,k̃

G1(ωm,k̃)G2(ωm + �m,k̃ + q̃),

(4)

where the factor 2 comes from summation over spin indices. To
simplify the notations we drop the tildes on momenta hereafter.
The Green’s functions are given by G1,2 = 1/(iωm − ε1,2)
and fermionic dispersions can be written as ε1,2 = v1,2 · k.
We transform the momentum integral dkxdky into dε1dε2

by adding the Jacobian J = 1/|v1 × v2| = 1/v2
F × (α2 +

1)/(2α), where vF =
√

v2
x + v2

y . Because this Jacobian is inde-

pendent of q, the polarization operator in this approximation is
a function of the frequency only. We subtract from �1(�m) its
frequency-independent part �1(0), which only renormalizes
the position of the CDW QCP and is not of interest to us.
The subtraction makes the integral over the internal frequency
convergent, and evaluating the integrals we obtain, at zero

temperature,

�1(�m) = − g2
c

4π3v2
F

α2 + 1

α

∫
dωmdε1dε2

×
[

1

(iωm − ε1)[i(ωm + �m) − ε2]

− 1

(iωm − ε1)(iωm − ε2)

]

= g2
c

4πv2
F

α2+1

α

∫
dωm[sgn (ωm) sgn(ωm + �m)−1]

= − g2
c

4πv2
F

α2 + 1

α
|�m|. (5)

This is a conventional Landau damping term. We do the
same calculation for hot spot pairs (3,4), (5,6), and (7,8).
Because the Jacobians 1/|v1 × v2| = 1/|v3 × v4| = 1/|v5 ×
v6| = 1/|v7 × v8| = 1/v2

F × (α2 + 1)/(2α), all contributions
are the same as (5). Therefore �y(�m) = 4�1(�m). It is easy
to verify that for φx the self-energy is the same as for φy , i.e.,
�x = �y .

Including the polarization operator into the propagators for
the φx and φy fields, we obtain

χc(�m,q) = χ0c

ξ−2
c + q2

x + q2
y + γc|�m| , (6)

where

γc = 4ḡc

4πv2
F

α2 + 1

α
, (7)

and we recall that ḡc = g2
cχ0c. The overall factor of 4 in the

numerator of (7) is the number of pairs of hot fermions. To
extend the model to large N one just has to replace 4 with N .
We use this extension below.

The total dynamical interaction mediated by charge fluctu-
ations can then be written as

U eff
c (q,�m) = g2

cχ (q) = ḡc

ξ−2
c + (q − Qx)2 + γc|�m| . (8)

2. Fermionic self-energy

We now use Eq. (6) and evaluate the one-loop fermionic
self-energy. The corresponding diagram is presented in
Fig. 4(c). Observe that for any hot fermion, interactions
mediated by both bosonic fields, φx and φy , contribute to the
self-energy. For example, for a fermion at hot spot 1, φx and
φy scatter it to hot spots 2 and 5, respectively.

The self-energy depends on the location of a fermion on
the FS and on the distance to the CDW QCP. Below we are
interested in superconductivity right at the CDW QCP, hence
we need the self-energy right at this point. Accordingly, we set
ξ−1
c = 0 in the charge fluctuation propagator.

For the self-energy contribution to a fermion at hot spot 1
from Qy scattering, we have

�y(k,ωm) = T
∑
ω′

m,k′
U eff

c (k − k′,ωm − ω′
m)G2(ω′

m,k′), (9)

where k is the deviation from hot spot 1. We place k on the FS,
i.e., set k⊥ ≡ v̂1 · k = 0, which gives ky = −αkx . At T = 0,
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we rewrite Eq. (9) as

�y(k‖,ωm) = −ḡc

8π3

∫
dω′

mdk′
⊥dk′

‖
iω′

m − vF k′
⊥

1

(k̄‖ − k′
‖)2 + (k̄⊥ − k′

⊥)2 + γc|ωm − ω′
m| , (10)

where k′
⊥ and k′

‖ are perpendicular and parallel components of k′ with respect to the FS at hot spot 2, i.e., k′
⊥ ≡ v̂2 · k′, and k̄‖

and k̄⊥ are components of external k, defined relative to the FS at the hot spot 2, i.e., k̄⊥ ≡ v̂2 · k, where v2 = (vx, − vy). Using
ky = −αkx we obtain

k̄⊥ = 2αk‖/(α2 + 1). (11)

We integrate over k′
⊥ first and complete the integration contour over the half-plane with only one pole. We obtain

�y(k‖,ωm) = iḡc

8π2vF

∫
dk′

‖dω′
m sgn(ω′

m)√
(k̄‖ − k′

‖)2 + γc|ωm − ω′
m|

1√
(k̄‖ − k′

‖)2 + γc|ωm − ω′
m| + [|ω′

m|/vF + ik̄⊥ sgn(ω′
m)]

. (12)

We will see that typical internal frequencies ω′
m are of the same order as external ωm. Then at low enough frequencies one can

safely neglect the |ω′
m|/vF term in the denominator. With this simplification we obtain

�y(k‖,ωm) = iḡc

8π2vF

∫
dk′

‖dω′
m sgn(ω′

m)

(k̄‖ − k′
‖)2 + γc|ωm − ω′

m| + k̄2
⊥

= iḡc

2πvF γc

sgn(ωm)[
√

γc|ωm| + k̄2
⊥ − |k̄⊥|]. (13)

Plugging Eq. (11) into Eq. (13) we finally obtain

�y(k‖,ωm) = iḡc

2πvF γc

sgn(ωm)

⎡
⎣

√
γc|ωm| +

(
2αk‖

α2 + 1

)2

−
∣∣∣∣ 2αk‖
α2 + 1

∣∣∣∣
⎤
⎦

= 2ivF

N

α

α2 + 1
sgn(ωm)

⎡
⎣

√
γc|ωm| +

(
2αk‖

α2 + 1

)2

−
∣∣∣∣ 2αk‖
α2 + 1

∣∣∣∣
⎤
⎦. (14)

The self-energy from Qx scattering is obtained in the same way:

�x(k,ωm) = −ḡcT
∑
ω′

m,k′
χc(ωm − ω′

m,k − k′)G5(ω′
m,k′). (15)

As the Fermi velocities at hot spots 5 and 2 are antiparallel, we have G5(ω′
m,k′) = G2(ω′

m, − k′). Comparing Eqs. (9) and (15),
we then immediately find that �x = �y . Combining the two we obtain

�(k‖,ωm) = iḡc

πvF γc

sgn(ωm)

⎡
⎣

√
γc|ωm| +

(
2αk‖

α2 + 1

)2

−
∣∣∣∣ 2αk‖
α2 + 1

∣∣∣∣
⎤
⎦

= 4ivF

N

α

α2 + 1
sgn(ωm)

⎡
⎣

√
γc|ωm| +

(
2αk‖

α2 + 1

)2

−
∣∣∣∣ 2αk‖
α2 + 1

∣∣∣∣
⎤
⎦. (16)

It is easy to verify that this result holds around all hot regions 1–
8, and in each region k‖ is the deviation from the corresponding
hot spot along the FS. The functional form of the self-energy
as in Eq. (16) was first obtained for the spin-fermion model in
Ref. [52] (for α = 1) and Ref. [11] (for arbitrary α). Right at
a hot spot, the fermionic self-energy has a non-Fermi-liquid
(NFL) form,

�(0,ωm) = i sgn(ωm)
√

ω0c|ωm|, (17)

where ω0c = (4/N )ḡc/π × α/(α2 + 1). Away from a hot spot,
at k2

‖ � γc|ωm|, the self-energy �(ωm,k‖) retains a Fermi
liquid (FL) form at the smallest ωm; i.e., we have

�(ωm,k‖) = iωm

|k‖|
(

ḡc

πvF

α2 + 1

4α

)
+ O

(
ω2

m

)
. (18)

One can easily verify that the inclusion of the fermionic self-
energy �(k,ωm) ∝ i sgn(ωm) will not change the polarization
operator; i.e., �(�m) retains the same form even if we compute
it using dressed fermions.

To verify self-consistency of the calculations, we also
computed the self-energy away from the FS. We found
�(k⊥,0) ∝ (1/N )vF k⊥ log(�/|vF k⊥|), where � is the upper
cutoff in the momentum integration. The presence of the
logarithm implies that the Fermi velocity also acquires singular
renormalization at the CDW QCP [11,52]. This singularity
breaks the self-consistency of the one-loop calculation of the
fermionic and bosonic self-energies if we keep N finite, but
a self-consistent procedure still remains rigorously justified
at this loop order if we set N → ∞. The situation gets more
complex at higher loop orders due to the special role of forward
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scattering and backscattering processes which give rise to the
dependence of � on k⊥ without the factor 1/N [48,50,55,56].
How important are these effects is unclear, and in this work
we restrict ourselves to the one-loop self-energy.

B. The pairing problem

We now use the normal-state results as input for the analysis
of pairing mediated by CDW fluctuations with momenta
around Qx and Qy . To leading order in 1/N , the pairing
problem can be analyzed without vertex corrections, by
summing up the ladder series of diagrams in the particle-
particle channel [11,52].

We first focus on the momentum region where hot spots 1,
2, 5 = −2, and 6 = −1 are located (see Fig. 3). We introduce
the superconducting order parameters �1 ∼ 〈c1c6〉 = 〈c1c−1〉
and �2 ∼ 〈c2c5〉 = 〈c2c−2〉 and obtain in the standard way a
set of coupled gap equations for the two condensates. The
interactions with momentum transfer Qx = (Q,0) and Qy =
(0,Q) connect hot spots 1 and 5 with 2 and 6 and hot spots 1 and
2 with 5 and 6, respectively. As a consequence, the interactions
relate �1 to �2, and vise versa. We show the equation for �1

diagrammatically in Fig. 5. In analytical form, we have

�1(k) = T
∑
k′

U eff
c (k − k′) × [G2(k′)G5(−k′)�2(k′)

+ G2(−k′)G5(k′)�2(−k′)], (19)

where k = (ωm,k) and k′ = (ω′
m,k′), and k and k′ are mo-

mentum deviations from the corresponding hot spots. The
fermionic Green’s function is given by Gi(k) = 1/[iωm −
εi(k) + �i(k)]. The equation for �2 in terms of �1 has the
same form, and thus �1 and �2 have the same magnitude.

Because the two kernels in Eq. (19) (the prefactors for �2

on the right-hand side) are both positive (we recall that Ueff

is positive), the U (1) order parameters �1 and �2 have the
same phase, i.e., �1 = �2. By the same token, the SC order
parameters in the momentum range near hot spots 3, 4, 7, and 8,
namely, �3 ∼ 〈c3c8〉 = 〈c3c−3〉 and �4 ∼ 〈c4c7〉 = 〈c4c−4〉,
are also equal. The kernels of the gap equations in regions 1,
2, 5, and 6 and 3, 4, 7, and 8 are the same, hence the magnitudes
of �1 = �2 and �3 = �4 are identical. However, there is no
specification of the relative phase between superconducting
order parameters in the two regions. Setting aside more exotic
possibilities of phase difference equal to a fraction of π , we
are left with two options for the pairing symmetry: an s wave,
for which the phases of �1 and �3 are identical, and a dx2−y2

wave, for which �3 = −�1 (see Fig. 3).

FIG. 5. Diagrammatic representation of the coupled ladder equa-
tions for superconducting order parameters �1 and �2, which involve
fermions in hot regions 1 and 2 in Fig. 1.

When only CDW-mediated interaction is considered, the
two pairing states are degenerate. This has been noted before
[40], and it was argued that the degeneracy is lifted by other
interactions, e.g., antiferromagnetic spin fluctuations would
favor d waves.

We now proceed with the calculation of T ch
c . We assume

and then verify that �1(k) = �2(k) = �(k) are even functions
of the momentum k. The linearized gap equation, (19), whose
solution exists right at T = Tc, then becomes

�(k) = 2T
∑
k′

|U eff
c (k − k′)|G2(k′)G5(−k′)�(k′). (20)

On the right-hand side of Eq. (20) we first integrate over the
momentum transverse to the FS. Neglecting terms small in
1/N , we obtain

�(ωm,k‖) = ḡcT

vF

∑
m′

∫
dk′

‖
2π

�(ω′
m,k′

‖)

|ω′
m − i�(ω′

m,k′
‖)|

× 1

k2
‖ + k′2

‖ − 2βk‖k′
‖ + γc|ωm − ω′

m| , (21)

where β = (1 − α2)/(1 + α2). This factor appears in the last
term in (21) because k‖ and k′

‖ are parallel components of
momenta in different segments of the FS, namely, near hot
spots 1 and 2, respectively.

A similar gap equation has been analyzed in the context
of spin-mediated pairing near the SDW QCP [11,46,52]. To
make this paper self-contained, we present some details of the
computation of T ch

c in our case.
It is usually more convenient not to solve Eq. (21) directly,

but to add to the right-hand side of the gap equation an
infinitesimal pairing condensate �0 and compute the pairing
susceptibility χpp = �/�0. The transition temperature Tc is
the one at which the pairing susceptibility diverges. This
approach has the advantage that the pairing susceptibility can
be analyzed within perturbation theory.

The first iteration gives

�(ωm ∼ T ,0) = �0

(
1 + l

2π
log2 ω0c

T

)
, l = 2α

α2 + 1
,

(22)

where, we remember, ω0c ∼ ḡc is the upper edge of NFL
behavior. We note that neither the coupling constant ḡc nor
1/N directly appears in Eq. (22); i.e., once the temperature
is expressed in units of ω0c, the renormalization of �0 is
fully universal. The presence of the log2 term (i.e., one extra
power of log compared to BCS theory) is the consequence
of the singular dependence of the fermionic self-energy
on the momentum along the FS. The log2 term comes
from the momentum range where �(ωm,k‖) ∼ iωm/|k‖| [see
Eq. (18)]. At ḡc/vF � |k‖| � √

γc|ω0c| the term 1/|ω′
m −

i�(ω′
m,k′

‖)| in Eq. (21) scales as |k‖/ωm|. To logarithmical
accuracy, the momentum integral over k′

‖ in Eq. (21) yields∫
γc|ω′

m| dk2
‖/k2

‖ ∝ log |ω′
m|, and the frequency integral over

ω′
m then yields

∫
T

(log |ω′
m|)/|ω′

m|dω′
m ∝ log2(1/T ). For the

spin-fermion model, this result was first obtained in Ref. [11].
The log2 T renormalization of the pairing vertex has been

found in other contexts [57–60]. To see how it is relevant for
Tc one has to go beyond one loop order. To gain insight, we
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first consider the “weak-coupling” limit by formally replacing
the actual coupling l = 2α/(α2 + 1) with an effective lε =
2εα/(α2 + 1) and taking the limit ε � 1. In this limit, the
series of log2 renormalizations can be summed up explicitly,
and the result is � = �0e

lε/(2π) log2 (ω0c/T ). We see that, at
the log2 level, the pairing susceptibility does increase with
decreasing T , but it does not diverge at any finite T . One
then has to go beyond the log2 approximation and include
subleading O(log) terms. In the weak-coupling limit ε � 1
this can be done rigorously, along the lines specified in
Ref. [46], and the result is that subleading O(log) terms do
give rise to the divergence of the pairing susceptibility at a
finite T ch

c given by

T ch
c ∼ ω0ce

−1/ε . (23)

The exponential dependence is the same as in the BCS formula,
which is not accidental because in the limit ε � 1 the main
contribution to superconductivity comes from fermions away
from the hot regions, where self-energy has the FL form.
However, in distinction to the BCS formula, the prefactor ω0c

is not the upper cutoff for the attraction but rather the scale
set by the coupling constant ḡc. The proportionality of T ch

c to
the coupling ḡc is the fingerprint of the pairing near a QCP
[47,61].

For the physical case ε = 1, we expect from (23) T ch
c ∼ ω0c.

To obtain the exact relation we solved Eq. (21) directly,
using the finite-temperature form of the fermionic self-energy.
Typical internal momentum and typical internal frequency are
of order k2

‖ ∼ γcωm ∼ γω0c and ω ∼ ω0c. In this situation,
fermions from both NFL and FL regions contribute to
pairing. For numerical evaluation of T ch

c we extracted the
fermionic dispersion in hot regions from ARPES data for
Bi2Sr2CaCu2O8+x [62] and obtained α = 0.074. Using this
value for α we obtained numerically

T ch
c = 0.0025ḡc. (24)

For comparison, in the spin-fermion model the critical tem-
perature at the SDW QCP is [46] T

sp
c = 0.0073ḡs (T sp

c ∼
140 K for ḡs ∼ 1.7 eV). We see that Tc in spin-fermion
and charge-fermion models on top of the corresponding
QCP are comparable if ḡc � ḡs . If this is the case, then
CDW fluctuations give rise to substantial enhancement of
the superconducting Tc around the CDW QCP. One also
should keep in mind that the result we quoted for T

sp
c due

to spin-fluctuation exchange is T
sp
c right on top of the SDW

QCP. Near the CDW QCP, the magnetic ξs is finite and the
spin-mediated T

sp
c is reduced.

Away from the CDW QCP, charge-fluctuation exchange
preserves FL behavior and the charge-mediated Tc drops
and eventually follows the weak-coupling BCS formula. The
self-energy at a finite charge correlation length ξc is modified
compared to Eq. (16) and is given by

�(k‖,ωm) = iḡc

πvF γc

sgn(ωm)

⎡
⎣

√
γc|ωm| +

(
2αk‖

α2 + 1

)2

+ ξ−2
c

−
√(

2αk‖
α2 + 1

)2

+ ξ−2
c

⎤
⎦. (25)

Now even right at a hot spot (at k‖ = 0) the self-energy has an
FL form,

�(ωm,0) = λc(iωm) − i
ω2

m

4ωcf
, (26)

where

λc = ḡcξc

2πvF

and ωcf = ξ−2
c

γc

= ḡc

4πλ2
c

α

α2 + 1
. (27)

The dimensionless charge fermion coupling λc (the ratio of
ḡc to the typical fermionic energy vF ξ−1

c ) decreases when
ξc decreases. Once λc � 1, the charge-relaxation scale ωcf

becomes the upper energy cutoff for the pairing, and Tc follows
the BCS-Eliashberg-McMillan formula [63]

Tc ∼ ωcfe
− 1+λc

λc . (28)

We present the numerical result for the behavior of T ch
c as a

function of ξc in Fig. 11 [upper (red) line]. A similar reduction
in the charge-mediated T ch

c is expected on the other side of the
CDW QCP, in the charge-ordered state.

III. CHARGE-FERMION COUPLING CONSTANT
FROM THE SPIN-FERMION MODEL

To compare the magnitudes of ḡc and ḡs we compute their
ratio within a particular microscopic model for charge order in
the cuprates. Namely, we assume, as in earlier works by several
groups including us [11,12,52,61,64–67], that spin fluctations
develop at higher energies than CDW (and superconducting)
fluctuations, and CDW order emerges due to spin-fluctuation
exchange, as a composite order.

To this end, we consider a two-dimensional itinerant
electron system in which the primary interaction between
fermions is mediated by soft collective spin fluctuations
at the antiferromagnetic momentum Qπ = (π,π ). Such an
interaction, shown as the wavy line in Fig. 6, scatters fermions
between hot spot 2 and hot spot 4, between hot spot 1 and
hot spot 3, etc., and is proportional to the dynamical spin
susceptibility,

Heff = −U eff
s (q,�m)

∑
k,p

c
†
k,α �σαβck+q,βc†p,γ �σγ δcp−q,δ, (29)

where

U eff
s (q,�m) = g2

s χs(q,�m)

= ḡs

ξ−2
s + (q − Qπ )2 + γs |�m| , (30)

where γs is the corresponding Landau damping coefficient
and the scale ḡs sets the magnitude of T

sp
c for spin-mediated

superconductivity.
Except for special cases, there is no rigorously justified

procedure for obtaining Eq. (29) starting from a model of
fermions interacting with some short-range interaction U (r)
because the main contribution to the static part of U eff

s

comes from fermions with high energies. One commonly used
approach is to treat the static part of a spin-mediated interaction
phenomenologically and just postulate the Ornstein-Zernike
form of the static χs(q,0) (this is the same procedure that
we used in the charge-fermion model). Once the model with
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FIG. 6. (Color online) Schematic of a spin-mediated interaction.
Near an antiferromagnetic quantum-critical point in a metal, hot
fermions scatter into each other by exchanging soft antiferromagnetic
spin fluctuations with momentum (π,π ) [wavy (red) lines].

a static spin-mediated interaction is established, one can
compute the dynamical part of χs(q,�m) (the Landau damping
term) within this model, as it comes from fermions with low
energies. Within this approach, one cannot relate ḡs to U (r),
but one can express the Landau damping coefficient γs via ḡs .
The relation is [52] γs = 2ḡs[2/(πv2

F )], where, for comparison
with the RPA below, we pulled out a factor of 2 due to spin
summation.

A complementary approach is to treat U eff
s as the

charge component of the fully renormalized vertex function
�αγ,βδ(q,�m) at momentum transfer q near Qπ . The vertex
function � is the opposite of a physical antisymmetrized
interaction (a direct interaction minus one with outgoing
fermions interchanged). The vertex function can be obtained in
the RPA by summing up particular ladder and bubble diagrams
which form geometrical series (for details see Ref. [68]). The
approach is best understood when U (r) is approximated as the
on-site Hubbard interaction U . The RPA gives

�αγ,βδ(q,�m) = − U

1 − U 2�2(q,�m)
δαβδγ δ

+ U

1 − U�(q,�m)
δαδδβγ

= − U

2(1 + U�(q,�m))
δαβδγ δ

+ U

2(1 − U�(q,�m))
�σαβ · �σγ δ, (31)

where, to split the vertex into spin and charge parts, we used
�σαβ · �σγ δ = −δαβδγ δ + 2δαδδβγ . For a repulsive interaction
U > 0, when the interaction in the spin channel is enhanced

and, at a large enough U , diverges at q, the static �(q,0) > 0
is at its maximum. We assume that the maximum of �(q,0) is
at q = Qπ .

Near �(Qπ ,0) = 1/U , the interaction in the spin channel
well exceeds the one in the charge channel, and one can keep
only the spin component of the interaction, i.e., approximate
the dressed interaction by Eq. (29) with

U eff
s �σαβ · �σγ δ = U

2(1 − U�(q,�m))
�σαβ · �σγ δ. (32)

Expanding the polarization operator near antiferromagnetic
momentum and zero frequency, we obtain

�(q,�m) = �(Qπ ,0) − Cπ (q − Qπ )2 − 2|�m|
πv2

F

(33)

(the last term comes from fermions near the FS and the
prefactor for �m term is known exactly). Substituting this
form into (32) we obtain after simple manipulations the same
U eff

s (q,�m) as in Eq. (30), with

ḡs = 1

2Cπ

, ξ−2
s = 1 − U�(Qπ ,0)

UCπ

, γs = 2ḡs

2

πv2
F

.

(34)
We see that the expression for the Landau damping coefficient
is exactly the same as in the other (semiphenomenological)
approach; the only new element of the RPA is that ḡs =
1/(2Cπ ) is related to the behavior of the static polarization
bubble. Formally, ḡs does not depend on U , but in reality, Cπ

is of the same order as �(Qπ ,0) (in units where the lattice
constant a = 1), and the latter is approximately 1/U near an
SDW QCP. As a result, ḡs in fact is of order U .

The interaction mediated by spin fluctuations gives rise to
d-wave superconductivity and to fermionic self-energy. In the
FL regime, �(ωm) ≈ λsωm, where λs = 3ḡ/(4πvF ξ−1

s ). This
self-energy gives rise to mass renormalization m∗/m = 1 + λs

and to quasiparticle residue 1/Z = 1/(1 + λs). We include this
renormalization in the calculations below.

We now proceed to construct the interaction in the CDW
channel. The CDW instability with the ordering momentum
Qx = (Q,0) and Qy = (0,Q) emerges in this approach as a
preliminary collective instability at a finite ξs , due to spin-
fluctuation exchange.

A way to obtain the CDW instability is to intro-
duce an infinitesimal CDW field �

Q
k , which couples to

the incommensurate component of the charge density as
�

Q
k c

†
k−Q/2,αδαβck+Q/2,β , and compute the susceptibility with

respect to this field. This has been done [13,14,17] by summing
up ladder series of renormalizations due to spin-fluctuation
exchange. Each act of spin-fluctuation exchange transforms
hot fermions near, say, hot points 1 and 2 in Fig. 6 into
another set of hot fermions near hot points 3 and 4. The
set 3,4 is generally different from the set 1,2 (because the
directions of the Fermi velocities are different), so to obtain
the susceptibility one has to solve the set of two coupled
equations for the fully renormalized �

Q
k with the center-of-

mass momentum k either between point 1 and point 2 or
between point 3 and point 4.

There is no rigorous justification why one should be re-
stricted to ladder diagrams, even at large N . The first nonladder
diagram is small numerically, but not parametrically, compared
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to the ladder diagram of the same loop order. Accordingly,
there is no point in keeping N as an artificially large parameter,
and in this section we set the number of pairs of hot spots N

to their actual value, N = 4.
We present diagrammatic representations of this set of

equations in Figs. 7(a) and 7(b). The linear “gap” equation
for �

Q
k has been analyzed in Ref. [14] and the outcome is

that the CDW susceptibility diverges at a finite Tcdw before
the system develops CDW order. The critical temperature Tcdw

decreases as ξs decreases and vanishes at a finite critical ξs ,
setting up a CDW QCP some distance away from the SDW
QCP [21] (see Fig. 1).

Alternatively, one can combine pairs of subsequent renor-
malizations of �

Q
k into a new effective interaction at small

momentum transfer [see Fig. 7(c)], which we label Uc

and show graphically in Fig. 8. This composite effective
interaction is the convolution of two fermionic propagators
and two spin-fluctuation propagators. Explicit calculation
shows [21,69] that Uc is numerically smaller than, but
parameter-wise of the same order as, a single spin-fluctuation
propagator: one extra power of ḡs in the numerator gets
canceled out by the Landau damping coefficient γs ∝ ḡs in the
denominator. This effective interaction is repulsive (Uc > 0)
because the polarization bubble in the particle-hole channel

FIG. 7. (Color online) Linearized “gap” equation for the CDW
order parameter �

Q

k ∼ 〈c†k+Q/2ck−Q/2〉. We define the center-of-mass
momentum of hot spots 1 and 2 as k0 and that of hot spots 3 and 4
as kπ . (a, b) Coupled gap equations for �

Q

k0
and �

Q

kπ
, respectively.

(c) Gap equation for �
Q

k0
only, obtained by combining (a) and (b).

We treat the composite object in the dashed frame as the effective
interaction Uc (the prefactor −1 reflects that the interaction appears
in the diagram with a minus sign).

FIG. 8. Diagrammatic representation of the composite effective
interaction Uc [same as in the dashed frame in Fig. 7(c)]. This
effective interaction is a convolution of a particle-hole bubble and
two antiferromagnetic spin-fluctuation propagators.

is negative, as opposed to the bubble in the particle-particle
channel.

The corresponding term in the Hamiltonian is

Hc = Uc(c†2,αc2,ν)(c†1,μc1,β )

[
9

2
δαβδμν + 1

2
�σαβ · �σμν

]
, (35)

where subindices 1 and 2 indicate that the corresponding
momenta are near hot spots 1 and 2, and the spin factors
originate from

(�σγβ · �σαδ)(�σμγ · �σδν)

=
(

3

2
δαβδγ δ − 1

2
�σαβ · �σγ δ

)(
3

2
δδγ δμν − 1

2
�σδγ · �σμν

)

= 9

2
δαβδμν + 1

2
�σαβ · �σμν. (36)

Only the first, 9
2δαβδμν term is relevant to CDW instability as it

renormalizes �
Q
k , which acts between fermions near hot spots

1 and 2, with the same spin components (i.e., it is convoluted
with δαβ), therefore we can drop the 1

2 �σαβ · �σμν component in
Eq. (35).

The composite interaction Uc can be approximated as a
constant if the deviation of the fermionic momentum from
corresponding hot spots (e.g., regions 1 and 2 in Fig. 6)
is smaller than the inverse spin correlation length ξ−1

s . At
larger deviations from hot spots, Uc becomes a function of the
momentum and decreases.

We now turn to the calculation of the fermionic self-energy
and pairing instability. At first glance, an interaction with a
positive (repulsive) Uc cannot give rise to the pairing instability
with sign-preserving gap between region 1 and region 2. Upon
a more careful look, however, we note that the interaction in
Eq. (35) is the one at small momentum transfer (both incoming
and outgoing fermions are near the same hot spot), while to
analyze the CDW-mediated pairing (Fig. 5) and fermionic self-
energy [Fig. 4(c)] one needs a density-density interaction at
a momentum transfer approximately equal to the momentum
difference between hot spot 1 and hot spot 2; namely, Qy =
(0,Q). To obtain this interaction, we need to interchange one
creation and one annihilation fermionic operator. Then we
obtain from Eq. (35)

Hc = −9Uc

2
(c†2,αδαβc1,β )(c†1,μδμνc2,ν). (37)
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FIG. 9. The vertex function with momentum transfer near Qy in two-loop order (two spin-fluctuation propagators). Other two-loop diagrams
(not shown) contain spin-fluctuation propagators with small momentum transfer and are irrelevant for our purposes. The charge component of
this vertex function is 9Uc/2. The opposite of this charge component (i.e., −9Uc/2) is the bare interaction in the charge channel at a momentum
transfer near Qx or Qy .

Viewed in this way, the effective interaction is attractive and
is capable of giving rise to pairing.

Another, more standard way to verify that the density-
density interaction with momentum transfer Q is attractive is
to again extract it from the vertex function �αμ,βν(q,�m). To
second order in the spin-fluctuation propagator, there are two
direct and two antisymmetrized diagrams for �αμ,βν(q,�m)
which contain spin propagators with momenta near Qπ . We
show them in Fig. 9.

In evaluating these four diagrams, we additionally require
that both spin-fluctuation propagators carry the same mo-
mentu, as only then can one cancel the extra power of ḡs . It is
easy to show that only the fourth diagram (the one from the
antisymmetrized part) satisfies these conditions. This diagram
is exactly the same as the one in Fig. 8, but there is an extra
minus sign in front of it. Evaluation of the diagram itself
gives −Uc because the particle-hole bubble is negative. The
extra (−1) in front of this diagram cancels the overall minus
sign. As a result, the charge component of the vertex function
becomes

�c
αμ,βν = 9Uc

2
δαβδμν, (38)

where the spin structure is obtained in the same way as in
Eq. (36).

Associating the charge component of the vertex function
with the effective density-density interaction, we reproduce
Eq. (37). The effective interaction −(9Uc/2)c†2,αc1,αc

†
1,μc2,μ

is the bare interaction at momentum transfer Qy , and in this
respect 9Uc/2 plays the same role as the Hubbard U played
for our earlier derivation of a spin-mediated interaction within
the RPA. Just as we did for the spin case, we now address
the interaction by summing up a series of RPA diagrams (see
Fig. 10).

FIG. 10. RPA diagrams for the dressed effective charge inter-
action U eff

c . Each double solid line is the ”bare” Uc: the charge
component of the vertex function at two-loop order. The dressed
interaction U eff

c can be viewed as charge fluctuation exchange (see
text).

In this way we obtain a fully renormalized (within the RPA)
effective interaction in the charge channel

U eff
c = 9Uc

2

1

1 − 9Uc|�c(q,�m)| . (39)

Expanding the polarization operator �c near, say, Q = Qy ,
we obtain

|�c(q,�m)| = |�(Qy,0)| − Cy(q − Qy)2 − |�m|
πv2

F

α2 + 1

2α
.

(40)
Substituting this form into (39) we obtain the effective charge-
mediated interaction in the same form as in Eq. (8) with

ḡc = 1

2Cy

, ξ−2
c = 1 − 9Uc�(Qy,0)

9UcCy

, γc =l,ḡc

1

πv2
F

α2 + 1

α
.

(41)
To proceed further we approximate the dynamical spin
susceptibility χs(q,�m) by its value at q = Qπ and �m = 0
and integrate over fermions within the momentum range of the
width � around hot spots. As we said above, the approximation
of Uc by a constant is valid when momentum deviations from
a hot spot are, at most, of order ξ−1

s , so �ξs is generally of
order 1. We also assume for simplicity that the CDW order
parameter has a pure d-wave form, i.e., set our parameter α to
be 1. Within this last approximation, the polarization operator
has the same form between point 1 and point 2 and between
point 3 and point 4. Evaluating the polarization operator �c

we then find, near q = Qy [17],

|�c(q)| = �√
2π2vF (1 + λ)

[
1 − C̃y

(q − Qx)2

�2

]
, (42)

where C̃y is of order 1 and we remember that λ =
3ḡs/(4πvF ξ−1

s ) is the mass renormalization due to spin-
fluctuation exchange. The variable Cy , which we introduced
in (40), is related to C̃y as

Cy = C̃y

1√
2π2vF (1 + λ)�

. (43)

Within the same approximation the composite interaction Uc

is given by

Uc = (ḡsξ
2)2|�c(Qy)| = ḡ2

s ξ
3 �ξ√

2π2vF (1 + λ)
(44)

such that

9Uc|�c(Qy)| = (3ḡsξ )2 (�ξ )2

2π4v2
F (1 + λ)2

. (45)
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Using the condition 9Uc|�c(Qy)| ≈ 1, we eliminate the
unknown scale � and obtain

Cy = C̃y

3ḡsξ
2
s

2π4v2
F (1 + λ)2

. (46)

Hence

ḡc = 1

2Cy

= ḡs

3π2

16C̃y

(
1 + λ

λ

)2

≈ 2ḡs

1

C̃y

(
1 + λ

λ

)2

. (47)

We see that within this approximation the ratio ḡc/ḡs depends
on the value of the dimensionless parameter C̃y . To obtain
this parameter one needs to know more precisely the system
behavior at energies comparable to �. Still, if C̃y(λ/(1 +
λ))2 � 1, then ḡc � 2ḡs , in which case the superconducting
T ch

c from the exchange of near-critical charge fluctuations well
may exceed the T

sp
c from the spin-fluctuation exchange. This

is the central result of this section.
A more quantitative analysis requires extensive numerical

calculations and is beyond the scope of this work. We also
emphasize that there is no known controllable procedure
of the derivation of the effective interaction mediated by
near-critical collective bosonic fluctuations; the RPA which
we used is an uncontrollable approximation. And we also
recall that the composite interaction Uc (the convolution
of two fermionic propagators and two spin propagators)
does depend on the external momentum and frequency, and
already the calculation of Tcdw requires one to solve an
integral equation for the momentum- and frequency-dependent
full �

Q
k .

IV. SHRINKING OF A SUPERCONDUCTING DOME
IN A MAGNETIC FIELD

Finally, we discuss the issue of how T ch
c , mediated by the

collective degrees of freedom, evolves in the presence of an
external magnetic field. For definiteness, we focus on the role
of near-critical charge fluctuations and neglect the contribution
to Tc from spin fluctuations.

It has been found experimentally [33,70] that in the
presence of a magnetic field H , the superconducting Tc, viewed
as a function of doping, splits into two domes, and the one at
a higher doping is centered at or very near the CDW QCP. As
H increases, the maximum of Tc in this dome is somewhat
reduced, but, most notably, the width of the dome shrinks; i.e.,
superconductivity is progressively confined to a CDW QCP.

We show that this behavior is reproduced within a
quantum-critical CDW pairing scenario. The argument is
rather straightforward: right at the CDW QCP, T ch

c is set
by the charge-fermion coupling ḡc, and to reduce T ch

c

one would need to apply a rather strong magnetic field
μBH ∼ ḡc. Away from the CDW QCP, in the FL regime,
T ch

c is reduced and eventually follows the BCS formula.
In the latter case, a much weaker μBH is needed to kill
superconductivity.

To see how this works in practice, we solved, for the
charge-mediated T ch

c at a finite charge, the correlation length
ξc by assuming that the dominant effect of the field is Zeeman
splitting of fermionic energies in the particle-particle bubble.
Within this approximation, the linearized integral equation for
the pairing vertex function �(ωm,k‖) (the one which has a

solution at T = T ch
c ) is

�(ωm,k‖)

= ḡcT

vF

∑
m′

∫
dk′

‖
2π

�(ω′
m,k′

‖) sgn(ω′
m)

ω′
m − i�(ω′

m,k′
‖) − iμBH

× 1

k2
‖ + k′2

‖ − 2βk‖k′
‖ + γc|ωm − ω′

m| + ξ−2
c

= ḡcT

vF

∑
m′

∫
dk′

‖
2π

�(ω′
m,k′

‖)|ω′
m − i�(ω′

m,k′
‖)|

[ω′
m − i�(ω′

m,k′
‖)]2 + (μBH )2

× 1

k2
‖ + k′2

‖ − 2βk‖k′
‖ + γc|ωm − ω′

m| + ξ−2
c

, (48)

where the self-energy is given by Eq. (25).
In the FL regime, when λc = ḡc/(2πvF ξ−1

c ) � 1, �(k‖,ωm)
can be, to logarithmical accuracy, approximated by a constant
�, and Eq. (48) reduces to

� = λc

1 + λc

log
ωcf

(T 2
c + H 2)1/2

�, (49)

where ωcf ∼ ḡc/λ
2 has been introduced in (27). The supercon-

ducting T ch
c becomes 0 at a critical λcr

c , given by

λcr
c

1 + λcr
c

log
ωcr

cf

H
= 1, (50)

or, with logarithmical accuracy, at λcr
c ∼ 1/ log(ḡc/μBH ). At

a smaller λc, i.e., at larger deviations from the CDW QCP,
there is no charge-mediated superconductivity.

We solved the gap equation numerically and obtained T ch
c

as a function of λc and μBH . We plot the results in Fig. 11

0 0.1 0.2 0.3 0.4 0.5

10
−1

10
0

1/ξ

T
c
/
T

c
(ξ

=
∞

)

← ξ = 4 .35

H = 5 × 10− 4E F

H = 0

FIG. 11. (Color online) Behavior of T ch
c ’s as a function of 1/ξc

with and without an external field H , obtained by explicitly solving
Eq. (48). Without a magnetic field T ch

c decreases as ξc becomes finite
and, at a small enough ξc, crosses over from quantum-critical to
BCS-like behavior [see Eq. (28)]. At a finite field, T ch

c at ξc = ∞
is somewhat reduced, but, most important, T ch

c now vanishes at a
finite ξ cr

c . In numerical calculations we used ḡc = 0.75EF , α = 0.076,
and μBH = 5 × 10−4EF (for EF = 1 eV, this H is ∼ 10 T). For
these parameters, ξ cr

c = 4.35/kF . The critical ξ cr
c is well described by

Eq. (50): plugging ξ cr
c into this equation gives 1.2 on the right-hand

side, close enough to the actual 1.
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FIG. 12. (Color online) Variation of the onset temperature of
superconducting order mediated by near-critical charge fluctuations
in the presence of an external field H . As our numerical results
show (Fig. 11), the range of the superconducting dome shrinks as the
magnetic field increases.

and present the corresponding schematic phase diagram in
Fig. 12. We see that, indeed, the superconducting dome gets
sharper in the field; i.e., charge-mediated superconductivity
is progressively confined to the CDW QCP. We did not do
calculations on the other (ordered) side of the CDW QCP,
but by generic reason we expect a similar shrinking of the Tc

range. The shrinking of the Tc range with increasing field is
fully consistent with the experimental data [33,70].

V. CONCLUSION

Motivated by the observation of a static charge order in
the cuprates and the enhancement of Tc at its onset, we have
studied in this work the pairing mediated by charge fluctuations
around the QCP towards an incommensurate charge order with
momentum Qx = (Q,0) or Qy = (0,Q). Our main goal was to
understand whether charge-mediated pairing near a CDW QCP
yields a Tc comparable to that obtained from spin-fluctuation
exchange.

We first considered a semiphenomenological charge-
fermion model in which hot fermions (those on the FS,
connected by Qx or Qy) interact by exchanging soft collective
excitations in the charge channel. We obtained bosonic and

fermionic self-energies in the normal state and used them as
input for the analysis of the quantum-critical pairing problem.
We found, in agreement with earlier work [40], that the charge-
mediated pairing interaction is attractive in both d-wave and
s-wave channels. The d-wave pairing becomes more favorable
once we include other contributions to the pairing interaction
from, e.g., antiferromagnetic spin fluctuations. We found that
the critical temperature Tc scales with the charge-fermion
coupling constant ḡc and that fermions from the NFL regime
very near a hot spot and from an FL region farther away
from a hot spot contribute to the pairing. In this respect, the
pairing near a CDW QCP is similar to the pairing by spin
fluctuations near an SDW QCP. We obtained the value of
T ch

c /ḡc numerically.
We next considered the microscopic model, in which spin

fluctuations emerge at higher energies than charge fluctuations
and are therefore the primary collective degrees of freedom.
Charge fluctuations emerge at lower energies as composite
fields, made up of pairs of spin fluctations. Within this model,
we were able to express the charge-fermion coupling ḡc via
the underlying spin-fermion coupling ḡs and relate the T ch

c

due to charge-fluctuations near a CDW QCP to the T
sp
c due to

spin fluctuations. We found that, at least within the RPA, the
T ch

c due to charge fluctuations is comparable to the T
sp
c due

to spin fluctations and may even exceed it; i.e., the supercon-
ducting Tc does get a substantial enhancement near a CDW
QCP.

Finally, we have analyzed the behavior of the charge-
mediated Tc in the presence of a magnetic field and
found that the dome of T ch

c around a CDW QCP indeed
shrinks as the magnetic field increases, because a field
destroys superconductivity more rapidly in the noncritical
regime than in the quantum-critical regime and hence en-
hances the charge-fluctuation component of Tc near a CDW
QCP.

This result and the result that the contribution to Tc

from critical charge fluctuations can be larger than the
contribution from noncritical spin fluctuations, despite the fact
that charge fluctuations are by themselves made up of spin
fluctuations, may explain the experimental observation that in a
magnetic field Tc is progressively confined to the doping range
around the doping at which charge order likely emerges at
T = 0.
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H. Meier, M. Einenkel, C. Pépin, and K. B. Efetov, Phys. Rev. B
88, 020506 (2013); H. Meier, C. Pépin, M. Einenkel, and K. B.
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