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The conditions for both the stability and the breakdown of the topological classification of gapped ground
states of noninteracting fermions, the tenfold way, in the presence of quartic fermion-fermion interactions are
given for any dimension of space. This is achieved by encoding the effects of interactions on the boundary gapless
modes in terms of boundary dynamical masses. Breakdown of the noninteracting topological classification occurs
when the quantum nonlinear σ models for the boundary dynamical masses favor quantum disordered phases.
For the tenfold way, we find that (i) the noninteracting topological classification Z2 is always stable, (ii) the
noninteracting topological classification Z in even dimensions is always stable, and (iii) the noninteracting
topological classification Z in odd dimensions is unstable and reduces to ZN that can be identified explicitly
for any dimension and any defining symmetries. We also apply our method to the three-dimensional topological
crystalline insulator SnTe from the symmetry class AII + R, for which we establish the reduction Z → Z8 of
the noninteracting topological classification.

DOI: 10.1103/PhysRevB.92.125104 PACS number(s): 72.10.−d, 73.20.−r, 71.27.+a

I. INTRODUCTION

Topological insulators (TIs) and topological superconduc-
tors (TSs) of noninteracting fermions are characterized by
topological numbers (Z or Z2) that encode the nontrivial
topology of the occupied single-particle wave functions and
are accompanied by gapless excitations that are localized
along any boundary [1,2]. The integer quantum Hall effect
(IQHE) is characterized by the Hall conductivity quantized
by the integer ν = 1,2, . . . , in units of e2/h. The topological
integer ν counts the number of extended chiral edge modes
propagating at the boundary of the sample. The Z2 topological
insulator is characterized by the parity of the number of
Kramers’ doublets of extended boundary modes. Together with
polyacetylene and a two-dimensional p + ip superconductor
[3,4], both instances are now understood to be nontrivial entries
in the periodic table (i.e., the tenfold way) for noninteracting
topological insulators and superconductors [5–7].

The gapless modes appearing at the boundary in the IQHE
are robust to both elastic and inelastic scattering resulting
from one-body impurity potentials and many-body electron-
electron interactions [8,9]. Similarly, the gapless modes in the
Z2 TIs are immune to both backscattering resulting from one-
body impurity potentials and many-body electron-electron
interactions, provided time-reversal symmetry (TRS) is neither
explicitly nor spontaneously broken [10–13].

Given the robustness to many-body fermion-fermion inter-
actions of the edge states in the IQHE, it was a remarkable
observation made by Fidkowski and Kitaev in 2010 that it
is possible to gap out eight Majorana zero modes localized
at the end of a one-dimensional topological superconducting
wire through many-body interactions without closing the
spectral gap in the bulk [14,15]. In the terminology of the
10-fold way [5–7], it was demonstrated in Refs. [14,15]
that the Z topological classification for the noninteracting
one-dimensional symmetry class BDI, when interpreted as a
superconductor, is (i) unstable to quartic contact interactions

that neither break explicitly nor spontaneously the TRS and
(ii) this instability reduces the noninteracting topological
classification Z to Z8.

Subsequently, noninteracting two-dimensional topological
crystalline superconductors (TCSs) from the symmetry class
DIII + R (where “+R ” indicates the presence of an addi-
tional reflection symmetry) and three-dimensional topological
superconductors from the symmetry class DIII were shown
in Refs. [16,17] and Refs. [18–22] to display the reduction
patterns Z → Z8 and Z → Z16, respectively, when perturbed
by quartic contact interactions that break neither explicitly nor
spontaneously the defining symmetries [23]. The reductions
Z → Z4 and Z → Z8 for the three-dimensional symmetry
classes CI and AIII were obtained in Ref. [21].

We present in Sec. II a method that allows us to derive the
reduction pattern of all noninteracting topological insulators
and superconductors without and with reflection symmetries
for any dimensionality d of space in the presence of quartic
contact interactions that neither break explicitly nor sponta-
neously the defining symmetries. This method relies on the
topology of the classifying spaces from K-theory. It extends
the applicability of K-theory for obtaining the tenfold way of
noninteracting fermions [6,24], to obtaining the breakdown of
the tenfold way induced by interactions.

This method is applied first to the breakdown of the tenfold
way in Sec. III [25]. In doing so, we prove the following
properties that we report in Table I:

(1) All Z2 entries of the periodic table irrespectively of
the dimensionality of space are stable to quartic contact
interactions.

(2) All Z entries of the periodic table when the dimension-
ality of space is even are stable to quartic contact interactions.

(3) Only the Z entries of the periodic table when the
dimensionality of space is odd are unstable to quartic contact
interactions with a reduction pattern that is computed explicitly
and shown to break the Bott periodicity of two for the complex
symmetry classes and of eight for the real symmetry classes.
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TABLE I. (Color online) The 10 Altland-Zirnbauer (AZ) symmetry classes and their topological classification when (i) fermion-fermion
interactions break their defining symmetries neither explicitly nor spontaneously and (ii) the many-body ground state is short-ranged entangled.
Two complex and eight real symmetry classes are characterized by the presence or the absence of time-reversal symmetry (T ), particle-hole
symmetry (C), and chiral symmetry (�5). Their presence is complemented by the sign multiplying the identity in T 2 = ±1 or C2 = ±1 and
by 1 for �5. Their absence is indicated by 0. For each symmetry class and for any dimension d = 0,1,2, . . ., of space, the classifying space Vd ,
the space of normalized Dirac masses allowed by symmetry, is given in the fifth column. Explicit forms of the classifying spaces Cq and Rq

and their stable homotopy groups are found in Table XVI from Appendix B. The reduction, if any, that arises from the effects of interactions
on the topological classification of noninteracting fermions for d = 1, . . . ,8 is given in the last eight columns. Each entry with a nontrivial
Abelian group defines equivalence classes of interacting topological insulators (superconductors) with a short-ranged entangled many-body
ground state. We show in blue the entries corresponding to a given symmetry class and a given column of odd dimensionality d to indicate that
this entry is a quotient group Gint of G = Z. The reduction Z → Gint results from an instability of the noninteracting topological classification
to fermion-fermion interactions. The four entries corresponding to the symmetry classes BDI and CII and the dimensions d = 1 and d = 5
occur in pairs depending on whether these two classes are interpreted as describing superconductors (i.e., interacting Majorana fermions) or
insulators (i.e., interacting complex fermions), respectively.

Class T C �5 Vd d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

A 0 0 0 C0+d 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 C1+d Z4 0 Z8 0 Z16 0 Z32 0

AI +1 0 0 R0−d 0 0 0 Z 0 Z2 Z2 Z
BDI +1 +1 1 R1−d Z8,Z4 0 0 0 Z16,Z8 0 Z2 Z2

D 0 +1 0 R2−d Z2 Z 0 0 0 Z 0 Z2

DIII −1 +1 1 R3−d Z2 Z2 Z16 0 0 0 Z32 0
AII −1 0 0 R4−d 0 Z2 Z2 Z 0 0 0 Z
CII −1 −1 1 R5−d Z2,Z2 0 Z2 Z2 Z16,Z16 0 0 0
C 0 −1 0 R6−d 0 Z 0 Z2 Z2 Z 0 0
CI +1 −1 1 R7−d 0 0 Z4 0 Z2 Z2 Z32 0

This method is then applied to the three-dimensional
topological crystalline insulators (TCIs) from the symmetry
class AII + R, which are of relevance to SnTe, in Sec. IV. We
show the reduction Z → Z8 in the presence of quartic local
fermion-fermion interactions.

The strategy that we use to study the robustness of ν

boundary modes to quartic contact fermion-fermion inter-
actions is inspired by the (unpublished) approach pioneered
by Kitaev in Refs. [18,26], see also Ref. [22]. It consists
of three steps. First, a noninteracting topological phase is
represented by the many-body ground state of a massive
Dirac Hamiltonian with a matrix dimension that depends on
ν. Second, a Hubbard-Stratonovich transformation is used to
trade a generic quartic contact interaction in favor of dynamical
Dirac masslike bilinears coupled to their conjugate fields (that
will be called “Dirac masses”). These dynamical Dirac masses
may violate any symmetry constraint other than the particle-
hole symmetry (PHS) [27]. Third, the ν boundary modes that
are coupled with a suitably chosen subset of dynamical masses
are integrated over. The resulting dynamical theory on the
(d − 1)-dimensional boundary is a bosonic one, a quantum
nonlinear σ model (QNLSM) in [(d − 1) + 1]-dimensional
space and time with a target space that depends on ν. The
reduction pattern is then obtained by identifying the smallest
value of ν for which this QNLSM cannot be augmented by a
topological term. The presence or absence of topological terms
in the relevant QNLSM is determined by the topology of the
spaces of boundary dynamical Dirac masses, i.e., the topology
of classifying spaces. Now, K-theory provides a systematic
way to study the topology of the classifying space. Hence,
this is why the same approach that was used to obtain the
tenfold way of noninteracting fermions can be relied on to
deduce a classification of topological short-range entangled

(SRE) phases [also known as symmetry-protected topological
(SPT) phases] for interacting fermions [28].

Other topological phases are also interesting on their
own right. For example, bosonic SPT (SRE) phases show
many novel topological phases driven by strong interactions.
They have been reviewed in Ref. [29]. The classification
of bosonic SPT (SRE) states has been obtained by diverse
approaches that include group cohomology [30,31], the K-
matrix approach [32], enumerating surface topological order
[33], wire constructions [34,35], and so on. Topological order
with long-range entanglement (LRE) is also a subject of
intensive study, which has relied on parton constructions
[36–39], topological field theories [40–42], exactly soluble
models [43–48], and wire constructions [49–52].

II. STRATEGY

In this section, we present our strategy to obtain a topologi-
cal classification for interacting fermions with gapped ground
states as an application of K-theory to certain dynamical Dirac
masses for boundary fermions.

Noninteracting fermions always belong to 1 of the 10
Altland-Zirnbauer (AZ) symmetry classes defined by the
presence or absence of the following three symmetries: TRS,
PHS, and chiral symmetry (CHS) (see Appendix A). Within
any one of these 10 symmetry classes, the defining topological
attributes of noninteracting topological insulators and super-
conductors are shared by equivalence classes of Hamiltonians.
Any two members within a topological class can be deformed
into each other by a smooth (adiabatic) deformation of the
matrix elements of these Hamiltonians without closing the
bulk energy gap. These equivalence classes are endowed with
an Abelian group structure G. For any given dimensionality d
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of space, topological invariants G are nontrivial for 5 of the 10
AZ classes. Specifically, 3 of the 10 AZ classes support Abelian
groups G = Z, while 2 of the 10 AZ classes support Abelian
groups G = Z2. The TRS, PHS, and CHS can be augmented
by crystalline symmetries. Noninteracting fermions obeying
crystalline symmetries can also be understood as realizing
topologically distinct equivalence classes, i.e., TCIs [53].

The topological classification with the Abelian group G

for noninteracting TIs, TSs, or TCIs can break down in
the presence of many-body interactions. Namely, an Abelian
group Gint that encodes the topological equivalence classes of
gapped ground states for interacting fermions can be smaller
than G as a group (some quotient group of G).

In order to establish the instability of the noninteracting
classification of TIs, TSs, and TCIs, we choose a family of
massive Dirac Hamiltonians,

H(0) := −i

d∑
j=1

∂

∂xj
α̃j ⊗ 1 + m(x)β̃ ⊗ 1, (2.1)

as representative single-particle Hamiltonians. Here Dirac
matrices α̃ and β̃ anticommute with each other and have
the minimal dimension (rank) rmin under the symmetry
constraints, i.e., rmin is the minimal rank to realize a Dirac
Hamiltonian of the form (2.1). The dimension of the unit
matrix 1 is ν = 1,2, . . . . The integer ν ∈ G is then related
to the dimension r(ν) = rmin ν of the Dirac matrices that
we choose. The question that we want to address is that
of the stability or instability of the boundary states of a
noninteracting TI, TS, or TCI in the presence of many-body
interactions that do not break the protecting symmetries of the
noninteracting limit [54]. Here, whenever ν �= 0, the extended
single-particle boundary states are governed by the massless
Dirac Hamiltonian

H(0)
bd := −i

d−1∑
j=1

∂

∂xj
αj ⊗ 1 ≡ −i∂ · α ⊗ 1, (2.2)

which is obtained by introducing a domain wall in the mass
m(x) along the xd direction that enters Hamiltonian (2.1). The
Dirac matrices α ⊗ 1 have a dimension r(ν)/2 that is half that
of the bulk massive Dirac Hamiltonian H(0). The dimension of
the matrices α is rmin/2.

The breakdown (reduction) of the topological classification
for noninteracting fermions takes place when the boundary
states of the TIs, TSs, or TCIs can be gapped by many-
body interactions that preserve their defining symmetries.
By assumption, we consider many-body interactions that are
weak relative to the bulk gap. If so, it is sufficient to treat
the effects of many-body interactions for the massless Dirac
fermions propagating on the (d − 1)-dimensional boundary.
To establish an instability of the noninteracting topological
classification, we need not consider all possible many-body
interactions. It suffices to establish that at least one family of
strong (on the boundary) interactions implies the instability of
the noninteracting classification G by gapping out all boundary
Dirac fermions. To this end, we limit ourselves to contact
interactions.

Contact interactions are constructed from taking squares
of local bilinears in the Dirac fermions. We have two options

for these bilinears. The bilinear under consideration either
commutes or anticommutes with the kinetic contribution to
the Dirac Hamiltonian. We shall call the latter option a Dirac
mass. In this paper, we only consider the contact interactions
obtained from taking squares of those bilinears built of Dirac
mass matrices, for only these can gap the noninteracting mass-
less boundary Dirac fermions in a mean-field approximation.
Because we assume that the protecting symmetries forbid the
presence of Dirac masses on the boundary that are consistent
with the protecting symmetries, the only possible Dirac masses
induced by a mean-field treatment of a symmetry-preserving
quartic interaction on the boundary must be odd under at
least one of the protecting symmetries. We shall call such
a boundary Dirac mass a boundary dynamical mass and label
it with the Greek letter β.

We are thus led to consider the many-body interacting Dirac
boundary Hamiltonian

Ĥbd := Ĥ
(0)
bd + Ĥ

(int)
bd , (2.3a)

where (the subscript “bd” stands for boundary)

Ĥ
(0)
bd :=

∫
dd−1x �̂†(t,x)H(0)

bd �̂(t,x) (2.3b)

and

Ĥ
(int)
bd := λ

∑
{β}

∫
dd−1x [�̂†(t,x) β �̂(t,x)]2. (2.3c)

We have chosen the real-valued coupling λ with the dimension
of (length)d−2 to be independent of β for simplicity. This
coupling constant is marginal in d = 2 and irrelevant when
d > 2. (Of course, it can very well be that the set {β} is empty.
If so, we anticipate that G = Gint must hold. This is what
happens for the strong topological insulators in the symmetry
classes A, D, and C when d = 2.) At this stage, it is convenient
to treat the many-body Hamiltonian (2.3) with the help of the
path integral

Zbd :=
∫

D[�,�†] e−Sbd , (2.4a)

where the action in Euclidean time τ is

Sbd :=
∫

dτ

∫
dd−1x Lbd, (2.4b)

with the Lagrangian density

Lbd := �†[∂τ + H(0)
bd

]
� + λ

∑
{β}

(�†β �)2. (2.4c)

The path integral is over Grassmann-valued Dirac spinors.
We rewrite the quartic interaction terms by performing

a Hubbard-Stratonovich transformation with respect to the
bosonic fields φβ conjugate to �†β �,

Zbd ∝
∫

D[�,�†,φβ] e−S ′
bd . (2.5a)

Here the action in Euclidean time τ is

S ′
bd :=

∫
dτ

∫
dd−1x L′

bd, (2.5b)
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with the Lagrangian density

L′
bd := �†[∂τ + H(dyn)

bd

]
� + 1

λ

∑
{β}

φ2
β, (2.5c)

where we have introduced the dynamical one-body single-
particle Hamiltonian

H(dyn)
bd (τ,x) := H(0)

bd (x) +
∑
{β}

2i β φβ(τ,x), (2.5d)

under the assumption that the sign λ > 0 corresponds to a
repulsive interaction. In a saddle-point approximation, the
magnitude of the vector φ with the components φβ can be
frozen both in imaginary time and in (d − 1)-dimensional
space. Fluctuations that change this frozen magnitude are sup-
pressed by the second term on the right-hand side of Eq. (2.5c).
We will restrict the set {β} to pairwise anticommuting Dirac
mass matrices. If so, the direction in which the vector φ with
the components φβ freezes in the saddle-point approximation
is arbitrary [55]. Since fluctuations about this direction are soft,
these are the Goldstone modes associated with the spontaneous
breaking of a continuous symmetry.

The effective low-energy theory governing the fluctuations
of these Goldstone modes is obtained from a gradient expan-
sion of the fermion determinant

Det
[
∂τ + H(dyn)

bd

]
:=

∫
D[�,�†] e− ∫

dτ
∫

dd−1 x �†[∂τ +H(dyn)
bd ]�.

(2.6)

It is captured by the partition function

Zbd ≈
∫

D[φ] δ(φ2 − 1) e−SQNLSM−Stop , (2.7)

after we have rescaled the vector φ so it squares to 1. The
Euclidean action

SQNLSM = 1

2 g

∫
dτ

∫
dd−1x (∂iφ)2 (2.8)

is the action of the quantum nonlinear sigma model (QNLSM)
with the base space R(d−1)+1 in space and time and the target
space

SN(ν)−1 (2.9)

with the integer N (ν) counting the pairwise anticommuting
Dirac masses that have been retained in the set {β}. The
effective coupling constant g is positive. The topological term
Stop is present whenever any one of the homotopy groups

π0[SN(ν)−1],

π1[SN(ν)−1],

. . .

πd [SN(ν)−1],

πd+1[SN(ν)−1],

(2.10)

is nonvanishing [56]. (The reason why we ignore all topolog-
ical terms associated with nonvanishing homotopy group of
order larger than d + 1 is that such topological terms would
modify the local equations of motion derived from SQNLSM

in a nonlocal way.) It signals the existence of zero modes of
the Dirac Hamiltonian (2.5d) in the presence of topological
defects in the order parameter φ. We expect that these zero
modes prevent the gapping of the boundary Dirac fermions.
We define the smallest value νmin for the dimension ν of the
unit matrix 1 in Eq. (2.2) for which

π0[SN(νmin)−1] = 0,

π1[SN(νmin)−1] = 0,

. . .

πd [SN(νmin)−1] = 0,

πd+1[SN(νmin)−1] = 0.

(2.11)

As all homotopy groups of the spheres are known, one may
verify that

d + 1 < N (νmin) − 1. (2.12)

When Eq. (2.11) holds, the topological term Stop is absent,
and the effective action in the partition function is simply the
action (2.8) for a QNLSM on a sphere [57]. In this case,
the quantum-disordered phase at the strong-coupling fixed
point g → ∞ is stable. In this strongly interacting phase and
when G = Z, quantum fluctuations restore dynamically and
nonperturbatively all the symmetries broken by the saddle
point, including any protecting symmetries. If so, all boundary
Dirac fermions are gapped out. We then conclude that

Gint = Zνmin
. (2.13)

The stability

Gint = G (2.14)

when G = Z2 follows from the fact that one of the homotopy
groups πD[SN(ν=1)−1] with D � d + 1 is always nontrivial
when G = Z2 (see Sec. III D).

As an illustration of this method, we give in Table I the
equivalence classes of topological insulators and superconduc-
tors belonging to the 10 AZ symmetry classes in the presence
of interactions that select a short-ranged entangled many-body
ground state. It becomes apparent that the Bott periodicity of
the tenfold way, i.e., the periodicity of the (zeroth) homotopy
groups of the classifying spaces with respect to d, is lost. It
also becomes apparent that the reduction of the topologically
distinct equivalence classes of noninteracting fermions for any
given AZ symmetry class occurs only in odd dimensions of
space. Finally, two of the AZ symmetry classes, namely the
chiral symmetry classes BDI and CII, have the particularity
that they may be interpreted either as a superconductor or an
insulator. Correspondingly, the reduction of their classification
Z → Zm for the superconductor interpretation and Z → Zn

for the insulator interpretation of these symmetry classes obeys

m = 2n, (class BDI) (2.15a)

m = n, (class CII) (2.15b)

when the dimensionality of space is d = 1 mod 4.
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III. REDUCTION OF THE PERIODIC TABLE
FOR STRONG TI AND TS

In this section, we apply the strategy explained above to
study the breakdown of the tenfold way in the presence of
quartic contact interactions in the ascending order of the spatial
dimension d, i.e., d = 1,2,3, and higher dimensions.

We will use the following conventions. The operation of
complex conjugation will be denoted by K. Linear maps of
two-dimensional vector space C2 shall be represented by 2×2
matrices that we expand in terms of the unit matrix τ0 and the
three Pauli matrices τ1, τ2, and τ3. Linear maps of the four-
dimensional vector space C4 = C2 ⊗ C2 will be represented
by 4×4 matrices that we expand in terms of the 16 Hermitian
matrices

Xμμ′ ≡ τμ ⊗ σμ′ , μ,μ′ = 0,1,2,3, (3.1)

where σν is a second set comprised of the unit matrix and the
three Pauli matrices. Linear maps of the 2n-dimensional vector
space C2n = C2 ⊗ · · · ⊗ C2 will be represented by 2n × 2n

matrices that we expand in terms of the 4n Hermitian matrices

Xμ1···μn
≡ τμ1

⊗ τμ2
⊗ · · · ⊗ τμn

, (3.2)

where μ1, . . . ,μn = 0,1,2,3.

A. The case of one-dimensional space

Fidkowski and Kitaev showed in Ref. [14] that, in one
spatial dimension, any pair of Hamiltonian in the symmetry
class BDI whose noninteracting topological indices differ
by eight can be transformed into each other adiabatically
(i.e., without closing the spectral gap) in the presence of
a quartic contact interaction that preserves TRS. This work
was followed up in Refs. [15,58] with the construction of a
topological invariant for interacting fermions from the matrix
product representation of ground states. This topological
invariant establishes that the reduction Z → Z8 is exhaustive.
The same approach with matrix product states was used to
obtain an exhaustive classification of one-dimensional gapped
spin systems in Ref. [30].

Here we focus on the three chiral symmetry classes that
support the Z topological classification in the noninteracting
limit. We shall reproduce the reduction Z → Z8 and Z → Z2
when the symmetry classes BDI and CII are interpreted as
chains of Majorana fermions, respectively.

The one-dimensional chiral symmetry classes can be also
realized as chains of complex fermions with sublattice sym-
metry and fermion-number conservation, e.g., polyacetylene.
For example, polyacetylene-like chains realize the symmetry
class AIII when TRS is broken, the symmetry class BDI when
both TRS and the SU(2) spin-rotation symmetry are present,
and the symmetry class CII when TRS holds but not the
SU(2) spin-rotation symmetry if spin-orbit coupling is sizable.
We show that the reduction of the noninteracting topological
classification is Z → Z4 for the symmetry classes AIII and
BDI, while it is Z → Z2 for the symmetry class CII, provided
conservation of the fermion number holds.

1. The symmetry class BDI when d = 1

Consider the one-dimensional bulk single-particle Dirac
Hamiltonian (with Dirac matrices of dimension r = 2 ≡ rmin),

H(0)(x) := −i∂x τ3 + m(x) τ2. (3.3a)

This single-particle Hamiltonian belongs to the symmetry
class BDI, for

T H(0)(x) T −1 = +H(0)(x), (3.3b)

C H(0)(x) C−1 = −H(0)(x), (3.3c)

where

T := τ1 K, C := τ0 K. (3.3d)

The Dirac mass matrix τ2 is here the only one allowed for
dimension-2 Dirac matrices under the constraints (3.3b) and
(3.3c). As was shown by Jackiw and Rebbi, if translation sym-
metry is broken by the mass term supporting the domain wall

m(x) = m∞ sgn(x), m∞ ∈ R, (3.4a)

at x = 0, then the zero mode

e−iτ3 τ2

∫ x

0 dx ′ m(x ′) χ = e−|m∞ x| χ, (3.4b)

where

τ1 χ = sgn (m∞) χ, (3.4c)

is the only normalizable state bound to this domain wall.
This boundary state is a zero mode. It is an eigenstate of the
single-particle boundary Hamiltonian

H(0)
bd = 0. (3.4d)

Suppose that we consider ν = 1,2, . . . , identical copies of
the single-particle Hamiltonian (3.3) by defining

H(0)
ν (x) := H(0)(x) ⊗ 1, (3.5a)

and

T := τ1 ⊗ 1K, C := τ0 ⊗ 1K, (3.5b)

where 1 is a ν × ν unit matrix. Observe that T and C commute
with τ1 ⊗ 1 and with each other. The domain wall (3.4a) must
then support ν linearly independent boundary zero modes.
They are annihilated by the boundary Hamiltonian

H(0)
bd ν = H(0)

bd ⊗ 1 = 0. (3.6)

The topological sectors for noninteracting Hamiltonians are
thus labeled by the integer ν taking values in Z in the limit
ν → ∞.

A generic local quartic interaction that respects the defining
BDI symmetries with the potential to gap out these boundary
zero modes reduces to a dynamical Dirac mass (that depends
on imaginary time τ in addition to space x) that belongs to the
symmetry class D, upon performing a Hubbard-Stratonovich
transformation. Hence, we must consider the dynamical bulk
single-particle Hamiltonian

H(dyn)
ν (τ,x) := [−i∂x τ3 + m(x) τ2] ⊗ 1 + V(τ,x). (3.7a)
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The dynamical Dirac mass V(τ,x) is here defined by the
condition that it anticommutes with H(0)(x) ⊗ 1, when inde-
pendent of x, and obeys the transformation laws dictated by
the symmetry class D, i.e., it is of the form

V(τ,x) := τ1 ⊗ γ ′(τ,x), γ ′(τ,x) := iM(τ,x), (3.7b)

where

M(τ,x) = M∗(τ,x), M(τ,x) = −MT(τ,x), (3.7c)

is a real-valued antisymmetric ν × ν matrix. Consequently,
TRS is only retained for a given V(τ,x) if

M(τ,x) = −M(−τ,x). (3.7d)

On the boundary, the operations for reversal of time and
charge conjugation are now represented by

Tbd := K, Cbd := K. (3.8a)

Hence, we must consider the dynamical single-particle bound-
ary Hamiltonian

H(dyn)
bd ν (τ ) ≡ γ ′(τ ) := iM(τ ), (3.8b)

where M(τ ) is a real-valued antisymmetric ν × ν matrix. The
space of boundary normalized Dirac mass matrices obtained
by demanding that γ ′ square to the unit ν × ν matrix is
topologically equivalent to the space

Vν = O(ν)/U (ν/2) (3.9)

for the symmetry class D in zero-dimensional space, provided
the rank ν � 2 and ν is even. The limit ν → ∞ of these spaces
is the classifying space R2. In order to gap out dynamically
the boundary zero modes without breaking the defining
symmetries of the symmetry class BDI, we need to construct
a (0+1)-dimensional QNLSM for the (boundary) dynamical
Dirac masses from the zero-dimensional symmetry class D
without topological obstructions. We construct explicitly the
spaces for the relevant normalized boundary dynamical Dirac
masses of dimension ν = 2n with n = 0,1,2,3 in the following
[59]. The relevant homotopy groups are given in Table II [60].

Case ν = 1: No Dirac mass is allowed on the boundary,
because the boundary is the end of a one-dimensional Z2
topological superconductor in the topologically nontrivial
phase of the symmetry class D.

Case ν = 2: We use the representation 1 = σ0. There is
one dynamical normalized Dirac mass on the boundary that
is proportional to the matrix σ2. A domain wall in imaginary
time such as m2 ∞ sgn(τ ) σ2 prevents the dynamical generation
of a spectral gap on the boundary.

Case ν = 4: We use the representation 1 = σ0 ⊗ ρ0. A
(maximum) set of pairwise anticommuting boundary dynam-
ical Dirac mass matrices follows from the set

{σ2 ⊗ ρ0,σ1 ⊗ ρ2,σ3 ⊗ ρ2}. (3.10)

This set spans the space of normalized boundary dynamical
Dirac masses that is homeomorphic to S2. Even though
π0+1(S2) = 0, it is possible to add a topological term that
is nonlocal, yet only modifies the equations of motion of the
(0+1)-dimensional QNLSM on the boundary by local terms
as a consequence of the fact that π0+1+1(S2) = Z. Such a term

TABLE II. Reduction from Z to Z8 for the topologically equiva-
lent classes of the one-dimensional SPT phases in the symmetry class
BDI that arises from interactions. We denote by Vν the space of ν × ν

normalized Dirac mass matrices in zero-dimensional Hamiltonians
belonging to the symmetry class D. The limit ν → ∞ of these spaces
is the classifying space R2. The second column shows the stable
D-th homotopy groups of the classifying space R2. The third column
gives the number ν of copies of boundary (Dirac) fermions for which
a topological obstruction is permissible. The fourth column gives
the type of topological obstruction that prevents the gapping of the
boundary (Dirac) fermions.

D πD(R2) ν Topological obstruction

0 Z2 2 Domain wall
1 0
2 Z 4 WZ term
3 0
4 0
5 0
6 Z 8 None
7 Z2

is a (0+1)-dimensional example of a Wess-Zumino (WZ) term.
In the presence of this WZ term, the boundary theory remains
gapless. It is nothing but a bosonic representation of the gapless
S = 1/2 degrees of freedom at the end of a quantum spin-1
antiferromagnetic spin chain in the Haldane phase [22].

Case ν = 8: We use the representation 1 = σ0 ⊗ ρ0 ⊗ λ0.
One set of pairwise anticommuting boundary dynamical Dirac
mass matrices follows from the set

{σ2 ⊗ ρ0 ⊗ λ0,σ3 ⊗ ρ2 ⊗ λ0,σ3 ⊗ ρ3 ⊗ λ2,σ1 ⊗ ρ0 ⊗ λ2}.
(3.11)

This set spans a manifold homeomorphic to S3 (we may find
a set of pairwise anticommuting masses spanning S6). No
topological term is admissible over this target manifold that
delivers local equations of motion. The QNLSM over this
target space endows dynamically the boundary Hamiltonian
with a spectral gap.

We conclude that the effects of interactions on the one-
dimensional SPT phases in the symmetry class BDI are to
reduce the topological classification Z in the noninteracting
limit down to Z8 under the assumption that a Hamiltonian
from the symmetry class BDI is interpreted as a mean-field
description of a superconductor. The logic used to reach
this conclusion is summarized by Table II once the line
corresponding to ν = 2 has been identified. It is given by
the smallest D that accommodates a nontrivial entry for the
corresponding homotopy group. The line for ν = 4 is then
identified with the next smallest D with πD(R2) �= 0, and so
on.

2. The symmetry class CII when d = 1

Consider the one-dimensional bulk single-particle Dirac
Hamiltonian (with Dirac matrices of dimension r = 4 ≡ rmin),

H(0)(x) := −i∂x X30 + m(x) X20. (3.12a)
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This single-particle Hamiltonian belongs to the symmetry
class CII, for

T H(0)(x) T −1 = +H(0)(x), (3.12b)

C H(0)(x) C−1 = −H(0)(x), (3.12c)

where

T := iX12 K, C := iX02 K. (3.12d)

The Dirac mass matrix X20 is here the only one allowed
for dimension four Dirac matrices in the symmetry class CII.
If translation symmetry is broken by the Dirac mass term
supporting the domain wall

m(x) = m∞ sgn(x), m∞ ∈ R, (3.13a)

at x = 0, then the zero mode

e−iX30 X20

∫ x

0 dx ′ m(x ′) χ = e−|m∞ x| χ, (3.13b)

where

X10 χ = sgn(m∞) χ, (3.13c)

is the only normalizable state bound to this domain wall. This
boundary state is a zero mode. It is an eigenstate of the single-
particle boundary Hamiltonian

H(0)
bd = 0. (3.13d)

Suppose that we consider ν = 1,2, . . . , identical copies of
the single-particle Hamiltonian (3.3) by defining

H(0)
ν (x) := H(0)(x) ⊗ 1, (3.14a)

and

T := iX12 ⊗ 1K, C := iX02 ⊗ 1K, (3.14b)

where 1 is a ν × ν unit matrix. Observe that T and C commute
with X10 ⊗ 1 and with each other. The domain wall (3.13a)
must then support ν linearly independent boundary zero
modes. They are annihilated by the boundary Hamiltonian

H(0)
bd ν = H(0)

bd ⊗ 1 = 0. (3.15)

The topological sectors for noninteracting Hamiltonians are
thus labeled by the integer ν taking values in Z in the limit
ν → ∞.

A generic local quartic interaction that respects the defining
CII symmetries with the potential to gap out the boundary zero
modes reduces to a dynamical Dirac mass (that depends on
imaginary time τ in addition to space x) that belongs to the
symmetry class C, upon performing a Hubbard-Stratonovich
transformation. Hence, we must consider the dynamical bulk
single-particle Hamiltonian

H(dyn)
ν (τ,x) := [−i∂x X30 + m(x) X20] ⊗ 1 + V(τ,x),

(3.16a)

where the dynamical Dirac mass V(τ,x) is defined by the
condition that it anticommutes with H(0)(x) ⊗ 1, when inde-
pendent of x, and obeys the transformation laws dictated by

TABLE III. Reduction from Z to Z2 for the topologically equiva-
lent classes of the one-dimensional SPT phases in the symmetry class
CII that arises from interactions. We denote by Vν the space of ν × ν

normalized Dirac mass matrices in zero-dimensional Hamiltonians
belonging to the symmetry class C. The limit ν → ∞ of these spaces
is the classifying spaces R6. The second column shows the stable
D-th homotopy groups of the classifying space R6. The third column
gives the number ν of copies of boundary (Dirac) fermions for which
a topological obstruction is permissible. The fourth column gives
the type of topological obstruction that prevents the gapping of the
boundary (Dirac) fermions.

D πD(R6) ν Topological obstruction

0 0
1 0
2 Z 1 WZ term
3 Z2 2 None
4 Z2

5 0
6 Z
7 0

the symmetry class C, i.e., it must obey

C V(τ,x) C−1 = −V(τ,x). (3.16b)

On the boundary, the operations for reversal of time and
charge conjugation are now represented by

Tbd := σ2 ⊗ 1K, Cbd := σ2 ⊗ 1K. (3.17a)

Hence, we must consider the dynamical single-particle bound-
ary Hamiltonian

H(dyn)
bd ν (τ ) := γ ′(τ ), (3.17b)

where

Cbd γ ′(τ ) C−1
bd = −γ ′(τ ). (3.17c)

The space of normalized Dirac mass matrices obtained by
demanding that γ ′(τ ) squares to the unit 2ν × 2ν matrix for
all imaginary times is the space

Vν = Sp(ν)/U (ν) (3.18)

for the symmetry class C in zero-dimensional space. The
limit ν → ∞ of these spaces is the classifying space R6.
In order to gap out dynamically the boundary zero modes
without breaking the defining symmetries of the symme-
try class CII, we need to construct a (0+1)-dimensional
QNLSM for the (boundary) dynamical Dirac masses from
the zero-dimensional symmetry class C without topological
obstructions. We construct explicitly the spaces for the relevant
normalized boundary dynamical Dirac masses of dimension
ν = 2n with n = 0,1 in the following. The relevant homotopy
groups are given in Table III.

Case ν = 1: The three Dirac mass matrices σ1, σ2, and σ3,
are allowed on the boundary. They all anticommute pairwise.
A WZ term is permissible as π0+1+1(S2) = Z. In the presence
of this WZ term, the boundary theory remains gapless.

Case ν = 2: The minimum number of anticommuting
mass matrices is larger than three. Hence, the zeroth, first,
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and second homotopy groups over the boundary normalized
dynamical Dirac masses all vanish. No topological term is
possible. The (0+1)-dimensional QNLSM over this target
space endows dynamically the boundary Hamiltonian with
a spectral gap.

We conclude that the effects of interactions on the one-
dimensional SPT phases in the symmetry class CII are to
reduce the topological classification Z in the noninteracting
limit down to Z2 under the assumption that a Hamiltonian
from the symmetry class CII is interpreted as a mean-field
description of a superconductor. The logic used to reach
this conclusion is summarized by Table III once the line
corresponding to ν = 1 has been identified. It is given by
the smallest D that accommodates a nontrivial entry for the
corresponding homotopy group.

3. The chiral symmetry classes as one-dimensional insulators

So far we have interpreted the symmetry classes BDI and
CII as examples of topological superconductors by focusing on
the fact that their second-quantized Hamiltonian respects a uni-
tary charge-conjugation symmetry, a PHS (see Appendix A).
As the symmetry classes BDI and CII also preserve TRS,
the composition of reversal of time with charge conjugation
delivers a nonunitary symmetry of their second-quantized
Hamiltonian, namely a CHS (see Appendix A). The third chiral
symmetry class AIII is defined by demanding that it preserves
CHS, no more and no less. Hence, any representative gapped
Hamiltonian from the chiral symmetry class AIII can always
be interpreted as a topological insulator with fermion number
conservation.

The CHS can be implemented at the single-particle level by
a unitary sublattice spectral symmetry for (complex) electrons
hopping between two sublattices. From this point of view,
the three chiral symmetry classes AIII, BDI, and CII, when
interpreted as metals or as insulators, can be treated on
equal footing. The fermion number is conserved in a metal
or in an insulator, unlike in the mean-field treatment of a
superconductor. This is the case when the symmetry class
BDI is interpreted as an effective theory for polyacetylene,
in which case the Dirac gap is induced by coupling the
electrons to phonons, i.e., it realizes a Peierls or bond-
density wave instability [3]. In this interpretation of the chiral
classes, it is necessary to introduce an additional particle-hole
grading in order to include through dynamical Dirac masses
the effects of superconducting fluctuations induced by any
quartic interaction. Failure to do so can produce a distinct
reduction pattern of the noninteracting topological equivalence
classes arising from interactions, for it can matter whether the
boundary dynamical masses belong to the classifying space
associated with the symmetry classes D or to the symmetry
class A.

a. Symmetry class AIII. Consider the one-dimensional bulk
single-particle Dirac Hamiltonian in the symmetry class AIII,

H(0)(x) := −i∂xτ3 + m(x)τ2. (3.19a)

It anticommutes with the unitary operator

�5 := τ1. (3.19b)

It supports the zero mode (3.4) at the boundary where it
identically vanishes,

H(0)
bd (x) = 0. (3.19c)

Upon tensoring Hamiltonians (3.19a) and (3.19c) together
with the Dirac �5 matrix by the ν × ν unit matrix 1, there
follows ν = 1,2,3, . . . , boundary zero modes.

The dynamical single-particle Hamiltonian that encodes
those nonsuperconducting fluctuations arising from a local
quartic interactions after a Hubbard-Stratonovich transforma-
tion takes the form (3.7a) with

V(τ,x) := τ1 ⊗ γ ′(τ,x) (3.20)

and γ ′(τ,x) a ν × ν Hermitian matrix.
On the boundary, we must consider the dynamical single-

particle boundary Hamiltonian

H(dyn)
bd ν (τ ) = γ ′(τ ). (3.21)

The ν × ν Hermitian matrix γ ′(τ ) belongs to the zero-
dimensional symmetry class A. Consequently, it is assigned
the classifying space C0 in the limit ν → ∞ with the zeroth-
homotopy group π0(C0) = Z. When ν = 1, γ ′ is a real number,
and the domain wall γ ′(τ ) ∝ sgn(τ ) binds a zero mode at τ = 0
[i.e., a normalizable zero mode of the operator ∂τ + H(dyn)

bd ν (τ )].
When ν = 2, we can write γ ′(τ ) as a linear combination of
the matrices σμ with the real-valued functions mμ(τ ) as coeffi-
cients for μ = 0,1,2,3, respectively. Any one of the three Pauli
matrices (σ1,σ2,σ3) anticommutes with the other two Pauli
matrices. Hence, the space of normalized boundary dynamical
Dirac masses that anticommute pairwise is homeomorphic to
S2 with the homotopy group π0+1+1(S2) = Z when ν = 2.
A (0+1)-dimensional QNLSM for the (boundary) dynamical
Dirac masses is augmented by a WZ term.

We conclude that the effects of interactions on the one-
dimensional SPT phases in the symmetry class AIII are to
reduce the topological classification Z in the noninteracting
limit down to Z4 under the assumption that only fermion-
number-conserving dynamical Dirac masses are included in
the single-particle Hamiltonian. The logic used to reach
this conclusion is summarized by Table IV once the line
corresponding to ν = 1 has been identified. It is given by
the smallest D that accommodates a nontrivial entry for the
corresponding homotopy group.

To include the effects of superconducting fluctuations in
the single-particle Hamiltonian after a Hubbard-Stratonovich
transformation, we need to consider the direct sum

H(0)
BdG(x) := [H(0)(x) ⊗ 1] ⊕ [−H(0) ∗(x) ⊗ 1]

≡H(0)(x) ⊗ 1 ⊗ ρ0. (3.22a)

This Bogoliubov-de-Gennes (BdG) single-particle Hamilto-
nian anticommutes with the operation for charge conjugation

C := τ0 ⊗ 1 ⊗ ρ1 K, (3.22b)

in addition to anticommuting with τ1 ⊗ 1 ⊗ ρ0. Hence,
it belongs to the symmetry class BDI. The dynamical
single-particle Hamiltonian that accounts for superconducting
fluctuations (dynamical Dirac masses from the symmetry
class D) takes the form

V(τ,x) := τ1 ⊗ γ ′(τ,x), (3.23a)
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TABLE IV. Reduction from Z to Z4 for the topologically
equivalent classes of the one-dimensional SPT phases in symmetry
classes AIII or BDI that arises from the fermion-number-conserving
interacting channels. We denote by Vν the space of ν × ν normalized
Dirac mass matrices in zero-dimensional Hamiltonians belonging
to the symmetry class A. The limit ν → ∞ of these spaces is the
classifying spaces C0. The second column shows the stable D-th
homotopy groups of the classifying space C0. The third column gives
the number ν of copies of boundary (Dirac) fermions for which
a topological obstruction is permissible. The fourth column gives
the type of topological obstruction that prevents the gapping of the
boundary (Dirac) fermions.

D πD(C0) ν Topological obstruction

0 Z 1 Domain wall
1 0
2 Z 2 WZ term
3 0
4 Z 4 None
5 0
6 Z
7 0

where the 2ν × 2ν Hermitian matrix γ ′(τ,x) must obey

γ ′(τ,x) = −(τ0 ⊗ 1 ⊗ ρ1) γ ′ ∗(τ,x) (τ0 ⊗ 1 ⊗ ρ1). (3.23b)

The stability analysis of the boundary zero modes is similar
to the one performed below Eq. (3.9) except that one must
replace ν in Eq. (3.9) by νBdG = 2ν and that we have a different
representation of the PHS. When ν = 1,

γ ′(τ ) = M(τ ) ρ3, M(τ ) ∈ R, (3.24)

supports a domain wall in imaginary time on the boundary.
When ν = 2, we use the representation 1 = σ0 and introduce
the notation Xμμ′ ≡ σμ ⊗ ρμ′ with μ,μ′ = 0,1,2,3. Now,

γ ′(τ ) =
∑

{(μ,μ′)}
Mμμ′(τ ) Xμμ′ , Mμμ′(τ ) ∈ R, (3.25)

where the sum on the right-hand side is to be performed over
the six matrices X21,X22,X03,X13,X20,X33. This set of six
matrices decomposes into two triplets of pairwise anticom-
muting matrices. The first triplet is given by X21,X22,X03.
The second triplet is given by X13,X20,X33. Each triplet
defines a two-sphere S2. Hence, each triplet has the potential
to accommodate a WZ term. However, we must make sure
that the integrity of any one S2 entering the decomposition
S2 ∪ S2 of the normalized dynamical masses on the boundary
is compatible with maintaining the global U (1) symmetry
associated with the conservation of the fermion number.

To address the fate of the fermion-number conservation,
observe that Hamiltonian (3.19a) is invariant under the global
U (1) transformation

H(0) �→ U(α)H(0) U−1(α), U(α) := e+iα τ0 , (3.26)

with 0 � α < 2π independent of x. This symmetry is to
be preserved when treating superconducting fluctuations. In
the BdG representation (3.22a), this symmetry becomes the

symmetry under the global U (1) transformation

H(0)
BdG �→ UBdG(α)H(0)

BdG U−1
BdG(α), (3.27a)

where

UBdG(α) := e+iα τ0⊗1⊗ρ3 . (3.27b)

When ν = 1, the boundary dynamical mass (3.24) is invariant
under multiplication from the left with exp(+iα ρ3) and
multiplication from the right with exp(−iα ρ3). When ν = 2,
if we normalize the boundary dynamical mass (3.25) by
demanding that

1 = M2
21 + M2

22 + M2
03, (3.28a)

1 = M2
13 + M2

20 + M2
33, (3.28b)

we may then identify these boundary dynamical masses as the
union of two two-spheres S2. The global U (1) transformation
defined by multiplication from the left with exp(+iα X03) and
multiplication from the right with exp(−iα X03) leaves the
two-sphere (3.28a) invariant as a set, for it is represented
by a rotation about the north pole X03 that rotates the
equator spanned by X21 and X22 with the angle 2α. The
same transformation leaves the two-sphere (3.28b) invariant
pointwise. Hence, each S2 in S2 ∪ S2 is compatible with
the conservation of the global fermion number. Because
π0+1+1(S2) = Z, a WZ topological term in the QNLSM for
the boundary is permissible.

We may then safely conclude that the effects of interactions
on the one-dimensional SPT phases in the symmetry class
AIII are also to reduce the topological classification Z in
the noninteracting limit down to Z4 under the assumption
that superconducting fluctuation channels are included in the
stability analysis. The Z4 classification for one-dimensional
SPT phases in the symmetry class AIII agrees with the
one derived using group cohomology in Ref. [61] (with
AIII interpreted in Ref. [61] as a time-reversal-symmetric
superconductor with the full spin-1/2 rotation symmetry
broken down to a U (1) subgroup).

b. Symmetry class BDI. Dirac Hamiltonians in the sym-
metry class BDI are obtained from those in the symmetry
class AIII by imposing the constraint of TRS, Eqs. (3.3b)
and (3.3d) (note that rmin = 2 for both AIII and BDI classes
in d = 1). Since the TRS is not relevant for dynamical
Dirac masses in the single-particle Dirac Hamiltonian after
a Hubbard-Stratonovich transformation, the stability analysis
of gapless boundary states in the symmetry class BDI in d = 1
follows from that of the symmetry class AIII. Consequently,
the effects of interactions in the symmetry class BDI, when
interpreted as realizing complex fermions as opposed to
Majorana fermions, is to reduce the topological classification
Z in the noninteracting limit down to Z4 under the assumption
that only fermion-number preserving dynamical Dirac masses
taken from the symmetry class A are included in the stability
analysis. Furthermore, if dynamical superconducting fluctua-
tions are allowed by introducing an additional particle-hole
grading and dynamical Dirac masses from the symmetry
class D, then the same reduction pattern Z → Z4 follows.
The topological classification Z8 of the symmetry class BDI
when interpreted as describing Majorana fermions is thus finer
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than the classification Z4 of the symmetry class BDI when
interpreted as describing complex fermions.

c. Symmetry class CII. We interpret the single-particle
Hamiltonian (3.12a) as describing an insulator, not a super-
conductor. This is to say that the defining symmetries are TRS
(3.12b) and the CHS,

�5 H(0)(x) �−1
5 = −H(0)(x), �5 := X10. (3.29)

If we are after the dynamical effects of interactions that
preserve the (complex) fermion number, we may use Eq. (3.16)
with the only caveat that the dynamical mass matrix is now
required to belong to the symmetry class A instead of the
symmetry class C. The boundary dynamical Hamiltonian is
then the same as for the symmetry classes AIII and BDI,
i.e., Eq. (3.21), except for its rank being twice as large as
compared to the symmetry classes AIII and BDI, for an
additional grading (that of the spin-1/2 degrees of freedom)
has been accounted for. This larger rank implies that the WZ
term is already permissible at ν = 1, i.e., the reduction pattern
for the noninteracting topological classification is Z → Z2.
It remains to verify that the same reduction pattern is also
obtained if superconducting fluctuations are included, as was
the case for the symmetry classes AIII and BDI. To this end,
we must tensor (3.12a) with ρ0, in which case the charge
conjugation symmetry is realized by τ0 ⊗ σ0 ⊗ ρ1 K. We can
borrow the stability analysis with respect to superconducting
interacting channels from the symmetry class D that we
performed for the symmetry classes AIII and BDI, again with
the caveat that the rank of the boundary dynamical Hamiltonian
is twice as large as it was. This larger rank implies again that the
WZ term is already permissible for ν = 1, i.e., the reduction
pattern for the noninteracting topological classification is again
Z → Z2. Thus we obtain the same topological classification
Z2 of the symmetry class CII in d = 1 both when interpreted
as describing Majorana fermions (superconductors) and when
interpreted as describing complex fermions (insulators).

B. The case of two-dimensional space

The notion that the chiral edge modes in the IQHE
are immune to local interactions is rather intuitive. Neither
backscattering nor umklapp scattering is permissible. An
operational and quantitative validation for this intuition goes
back to Niu and Thouless in Ref. [9], who proposed to
average the Kubo Hall conductivity over all twisted boundary
conditions of the many-body ground state as a signature of
both the IQHE and FQHE. A mathematically rigorous proof
of this can be found in Refs. [62,63]. This readily extends to the
symmetry class D and C as they realize quantized thermal Hall
effects. The robustness of chiral edge modes in the symmetry
classes D, C, and A to quartic contact interactions will be
derived using the method shown in Sec. II.

Let x = (x1,x2) denote a point in two-dimensional space.
The single-particle Dirac Hamiltonian with the smallest rank
rmin = 2 that admits a Dirac mass can be chosen to be
represented by

H(0)
A (x) := [−i∂1 + A1(x)]σ3 + [−i∂2 + A2(x)]σ1

+ A0(x) σ0 + m(x) σ2. (3.30)

It belongs to the symmetry class A for arbitrarily chosen vector
potentials A(x), scalar potential A0(x), and mass m(x). When
the gauge fields are vanishing,

H(0)
D (x) := − i∂1 σ3 − i∂2 σ1 + m(x) σ2

= − [H(0)(x)]∗ (3.31)

belongs to the symmetry class D. Finally, the single-particle
Hamiltonian with the smallest rank rmin = 4 that belongs to
the symmetry class C can be chosen to be represented by

H(0)
C (x) := −i∂1 X30 +

3∑
j=1

A1j (x) X3j

− i∂2 X10 +
3∑

j=1

A2j (x) X1j

+
3∑

j=1

A0j (x) X0j + m(x) X20

= −X02[H(0)(x)]∗X02. (3.32)

In two spatial dimensions the symmetry classes A,
D, and C realize noninteracting topological insula-
tors and superconductors with the Grassmannian mani-
folds C0 ≡ limN→∞ ∪N

n=0 U (N )/[U (n) × U (N − n)], R0 ≡
limN→∞ ∪N

n=0 O(N )/[O(n)×)(N − n)], and R4 ≡ limN→∞
∪N

n=0 Sp(N )/[Sp(n)×)(N − n)] as classifying spaces, respec-
tively. They share the same zeroth-order homotopy group Z.
This group also serves as defining the topological attributes of
noninteracting topological insulators and superconductors in
the symmetry classes A, D, and C.

1. The symmetry class D when d = 2

Let 1 denote a ν × ν unit matrix with ν = 1,2, . . . . Con-
sider the two-dimensional bulk single-particle Dirac Hamilto-
nian

H(0)(x) := −i∂1 σ3 ⊗ 1 − i∂2 σ1 ⊗ 1 + m(x) σ2 ⊗ 1 (3.33)

of rank 2ν. There is no Hermitian (2ν) × (2ν) matrix that
anticommutes with H(0)

A (x). If so, the set {β} in Eq. (2.3)
is empty. In other words, no dynamical mass is available to
induce a dynamical instability of the ν boundary zero modes.

2. The symmetry class C when d = 2

The same reasoning applies to the bulk single-particle
Hamiltonian

H(0)(x) := [−i∂1 X30 − i∂2 X10 + m(x) X20] ⊗ 1 (3.34a)

of rank 4ν that realizes a topological superconductor in the
symmetry class C,

H(0)(x) = −(X02 ⊗ 1)[H(0)(x)]∗(X02 ⊗ 1). (3.34b)

No dynamical mass is available to induce a dynamical
instability of the ν boundary zero modes.
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3. The symmetry class A when d = 2

If the single-particle Dirac Hamiltonian (3.33) is interpreted
as describing an insulator with fermion-number conservation,
then no dynamical mass that preserves the fermion number and
anticommutes with σ2 ⊗ 1 is permissible. The same remains
true if we account for superconducting fluctuations for the
BdG extension of (3.33) that is given by Eq. (3.34a), whereby
charge conjugation is defined by [and not by Eq. (3.34b)]

C := X01 ⊗ 1K (3.35)

fails to anticommute with any (4ν) × (4ν) Hermitian matrix
allowed by the PHS generated by the operation of charge
conjugation (3.35).

C. The case of three-dimensional space

The reduction Z → Z16 for the three-dimensional interact-
ing topological superconductors belonging to the symmetry
class DIII has been understood in the following ways after
a conjecture by Kitaev from Ref. [18]. One approach is
to enumerate the distinct topological orders at the two-
dimensional surface of the three-dimensional bulk that cannot
be realized with any bulk two-dimensional Hamiltonian
[19–21]. In this approach, the breakdown of Z takes place
when vortices (pointlike defects of a symmetry-broken phase)
at the surface proliferate (deconfine) to stabilize a gapped and
fully symmetric surface phase. Another approach advocated
by You and Xu consists in relating fermionic short-ranged
entangled ground states to bosonic short-ranged entangled
ground states [22]. They also applied their approach to
systems with inversion symmetry. The reductionsZ → Z4 and
Z → Z8 for the symmetry classes CI and AIII was obtained
in Ref. [21]. Finally, Kapustin has proposed classifying
symmetry-protected topological phases for interacting bosons
or fermions by considering low-energy effective actions that
are invariant under cobordism (a certain type of equivalence
relation between manifolds) [64–66].

We apply the method of Sec. II to the symmetry classes DIII,
CI, and AIII in the presence of quartic contact interactions. We
recover the reductions Z → Z16, Z → Z4, and Z → Z8 for
the symmetry class DIII, CI, and AIII, respectively. We also
verify that the topological classification Z2 of the symmetry
class AII is stable to quartic contact interactions.

We shall denote with x ≡ (x,y,z) ≡ (x1,x2,x3) a point in
three-dimensional space.

1. The symmetry class DIII when d = 3

Let Xμμ′ ≡ τμ ⊗ ρμ′ with μ,μ′ = 0,1,2,3. Consider the
three-dimensional bulk single-particle Dirac Hamiltonian
(with Dirac matrices of dimension r = 4 ≡ rmin),

H(0)(x) := −i∂1 X31 − i∂2 X02 − i∂3 X11 + m(x) X03.

(3.36a)

This single-particle Hamiltonian belongs to the three-
dimensional symmetry class DIII, for

T H(0)(x) T −1 = +H(0)(x), (3.36b)

C H(0)(x) C−1 = −H(0)(x), (3.36c)

where

T := iX20 K, C := X01 K. (3.36d)

The multiplicative factor i in the definition of T is needed
for T to commute with C.

The Dirac mass matrix X03 is here the only one allowed for
dimension four Dirac matrices under the constraints (3.36b)
and (3.36c). Consequently, the domain wall

m(x) ≡ m(y) := m∞ sgn(y), m∞ ∈ R, (3.37a)

at y = 0, binds the zero mode

e−iX02 X03

∫ y

0 dy ′ m(y ′) χ = e−|m∞y| χ, (3.37b)

where

X01 χ = −sgn (m∞) χ (3.37c)

with χ independent of x and z. The kinetics of the gapless
boundary states is governed by the Dirac Hamiltonian

H(0)
bd (x,z) = −i∂xτ3 − i∂zτ1, (3.38)

where we have chosen m∞ < 0.
On the boundary, the operations for reversal of time and

charge conjugation are now represented by

Tbd ν := iτ2 ⊗ 1K, Cbd ν := τ0 ⊗ 1K, (3.39a)

where 1 is the ν × ν unit matrix. We seek the single-particle
Hamiltonian on the boundary that encodes the fluctuations
arising from the Hubbard-Stratonovich decoupling of quartic
interactions through a generic dynamical mass that respects
the PHS on the boundary. It is given by

H(dyn)
bd ν (τ,x,z) := −i∂xτ3 ⊗ 1 − i∂zτ1 ⊗ 1 + τ2 ⊗ M(τ,x,z)

(3.39b)

with the ν × ν real-valued and symmetric matrix

M(τ,x,z) = M∗(τ,x,z) = MT(τ,x,z). (3.39c)

The space of normalized Dirac mass matrices of the form
(3.39c) is topologically equivalent to the space

Vν :=
ν⋃

k=1

O(ν)/[O(k) × O(ν − k)] (3.40)

for the symmetry class D in two-dimensional space. The limit
ν → ∞ of these spaces is the classifying space R0. In order
to gap out dynamically the boundary zero modes without
breaking the defining symmetries of the symmetry class DIII,
we need to construct a (2+1)-dimensional QNLSM for the
(boundary) dynamical Dirac masses from the two-dimensional
symmetry class D without topological obstructions. We
construct explicitly the spaces for the relevant normalized
boundary dynamical Dirac mass matrices of dimension ν = 2n

with n = 0,1,2,3,4 in the following. The relevant homotopy
groups are given in Table V.

Case ν = 1: There is one boundary dynamical Dirac
mass matrix γ ′(τ,x,z) on the boundary that is proportional to
τ2. A domain wall in imaginary time such as m2 ∞ sign(τ ) τ2
prevents the dynamical generation of a spectral gap on the
boundary.
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TABLE V. Reduction from Z to Z16 for the topologically equiv-
alent classes of the three-dimensional SPT phases in the symmetry
class DIII that arises from interactions. We denote by Vν the space
of ν × ν normalized Dirac mass matrices in boundary (d = 2) Dirac
Hamiltonians belonging to the symmetry class D. The limit ν → ∞
of these spaces is the classifying space R0. The second column shows
the stable D-th homotopy groups of the classifying space R0. The third
column gives the number ν of copies of boundary (Dirac) fermions
for which a topological obstruction is permissible. The fourth column
gives the type of topological obstruction that prevents the gapping of
the boundary (Dirac) fermions.

D πD(R0) ν Topological obstruction

0 Z 1 Domain wall
1 Z2 2 Vortex line
2 Z2 4 Monopole
3 0
4 Z 8 WZ term
5 0
6 0
7 0
8 Z 16 None

Case ν = 2: We use the representation 1 = σ0. The
2×2 real-valued and symmetric matrix M(τ,x,z) is a linear
combination with real-valued coefficients of the pair of
anticommuting matrices σx and σz. If M(τ,x,z) is normalized
by demanding that it squares to σ0, then the set spanned
by M(τ,x,z) is homeomorphic to the one-sphere S1. As
π1(S1) = Z, it follows that M(τ,x,z) supports vortex lines
that bind zero modes in (2+1)-dimensional space and time
and thus prevent the gapping of the boundary states [67].

Case ν = 4: We use the representation 1 = σ0 ⊗ σ ′
0. The

4 × 4 real-valued and symmetric matrix M(τ,x,z) is a linear
combination with real coefficients of X

σμσ ′
μ′

≡ σμ ⊗ σ ′
μ′ with

μ,μ′ = 0,1,2,3 such that either none or two of μ and μ′ equal
the number 2. Of these the three matrices X13, X33, and X01
anticommute pairwise. If M(τ,x,z) is a linear combinations
with real-valued coefficients of these three matrices and if M

is normalized by demanding that it squares to X00, then the
set spanned by M(τ,x,z) is homeomorphic to the two-sphere
S2. As π2(S2) = Z, M(τ,x,z) supports pointlike defects of the
monopole type that bind zero modes in (2+1)-dimensional
space and time and thus prevent the gapping of the boundary
states [68].

Case ν = 8: We use the representation 1 = σ0 ⊗ σ ′
0 ⊗

σ ′′
0 . The 8 × 8 real-valued and symmetric matrix M(τ,x,z)

is a linear combination with real-valued coefficients of the
matrices Xμμ′μ′′ ≡ σμ ⊗ σ ′

μ′ ⊗ σ ′′
μ′′ where either none or two of

μ,μ′,μ′′ = 0,1,2,3 equal the number 2. Of these, one finds the
five pairwise anticommuting matrices X333, X133, X013, X001,
and X212. If M(τ,x,z) is a linear combination with real-valued
coefficients of these five matrices and if M is normalized
by demanding that it squares to X000, then the set spanned by
M(τ,x,z) is homeomorphic to the four-sphere S4. As π4(S4) =
Z, it is possible to add a topological term to the QNLSM on
the boundary that is of the WZ type. This term is conjectured
to prevent the gapping of the boundary states.

Case ν = 16: We use the representation 1 = σ0 ⊗ σ ′
0 ⊗

σ ′′
0 ⊗ σ ′′′

0 . The 16×16 real-valued and symmetric matrix
M(τ,x,z) is a linear combination with real-valued coef-
ficients of the matrices Xμμ′μ′′μ′′′ = σμ ⊗ σ ′

μ′ ⊗ σ ′′
μ′′ ⊗ σ ′′′

μ′′′

where none, two, or four of μ,μ′,μ′′,μ′′′ = 0,1,2,3 equal the
number 2. Of these, one finds the nine pairwise anticommuting
matrices X2222, X0122, X0322, X2012, X2032, X1202, X3202, X0001,
and X0003. If M(τ,x,z) is a linear combination with real-
valued coefficients of these nine matrices and if M(τ,x,z) is
normalized by demanding that it squares to X0000, then the set
spanned by M(τ,x,z) is homeomorphic to the eight-sphere S8.
It is then impossible to add a topological term to the QNLSM
on the boundary. The boundary zero modes can be gapped out.

We conclude that the effects of interactions on the three-
dimensional SPT phases in the symmetry class DIII are to
reduce the topological classification Z in the noninteracting
limit down to Z16. The logic used to reach this conclusion
is summarized by Table V once the line corresponding to
ν = 1 has been identified. It is given by the smallest D

that accommodates a nontrivial entry for the corresponding
homotopy group. The line for ν = 2 is then identified with the
next smallest D with πD(R2) �= 0 and so on.

2. The symmetry class CI when d = 3

Let Xμνλ ≡ τμ ⊗ ρν ⊗ σλ with μ,ν,λ = 0,1,2,3. Consider
the three-dimensional bulk single-particle Dirac Hamiltonian
(with Dirac matrices of dimension r = 8 ≡ rmin),

H(0)(x) := −i∂1X310 − i∂2 X020 − i∂3 X110 + m(x) X030.

(3.41a)

This single-particle Hamiltonian belongs to the three-
dimensional symmetry class CI, for

T H(0)(x) T −1 = +H(0)(x), (3.41b)

C H(0)(x) C−1 = −H(0)(x), (3.41c)

where

T := X202 K, C := iX012 K. (3.41d)

The multiplicative factor i in the definition of C is needed for
T to commute with C.

The single-particle Hamiltonian (3.41a) is the direct prod-
uct of the single-particle Hamiltonian (3.36a) with the unit
2×2 matrix σ0. If we interpret the degrees of freedom encoded
by σ0 and the Pauli matrices σ as carrying spin-1/2 degrees
of freedom, we may then interpret Eqs. (3.41) as defining a
spin-singlet superconductor that preserves TRS.

The Dirac mass matrix X030 is here the only one allowed for
dimension eight Dirac matrices under the constraints (3.41b)
and (3.41c). Consequently, the domain wall

m(x) ≡ m(y) := m∞ sgn(y), m∞ ∈ R, (3.42a)

at y = 0, binds the zero mode

e−iX020 X030

∫ y

0 dy ′ m(y ′) χ = e−|m∞ y|χ, (3.42b)

where

X010 χ = −sgn(m∞) χ (3.42c)
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with χ independent of x and z. The kinetics of the gapless
boundary states is governed by the Dirac Hamiltonian

H(0)
bd (x,z) = −i∂xτ3 ⊗ σ0 − i∂zτ1 ⊗ σ0, (3.43)

where we have chosen m∞ < 0.
On the boundary, the operations for reversal of time and

charge conjugation are now represented by

Tbd ν := τ2 ⊗ σ2 ⊗ 1K, Cbd ν := i τ0 ⊗ σ2 ⊗ 1K, (3.44a)

where 1 is the ν × ν unit matrix. We seek the single-particle
Hamiltonian on the boundary that encodes the fluctuations
arising from the Hubbard-Stratonovich decoupling of quartic
interactions through a generic dynamical mass that respects
the PHS on the boundary. It is given by

H(dyn)
bd ν (τ,x,z) := − i∂xτ3 ⊗ σ0 ⊗ 1 − i∂zτ1 ⊗ σ0 ⊗ 1

+ τ2 ⊗ M(τ,x,z), (3.44b)

with the 2ν × 2ν Hermitian matrix

M(τ,x,z) = +(σ2 ⊗ 1) M∗(τ,x,z) (σ2 ⊗ 1). (3.44c)

The space of normalized Dirac mass matrices satisfying the
condition (3.44c) is topologically equivalent to the space

Vν :=
ν⋃

k=1

Sp(ν)/[Sp(k) × Sp(ν − k)] (3.45)

for the symmetry class C in two-dimensional space. The limit
ν → ∞ of these spaces is the classifying space R4. In order
to gap out dynamically the boundary zero modes without
breaking the defining symmetries of the symmetry class CI,
we need to construct a (2+1)-dimensional QNLSM for the
(boundary) dynamical Dirac masses from the two-dimensional
symmetry class C without topological obstructions. We
construct explicitly the spaces for the relevant normalized
boundary dynamical Dirac mass matrices of dimension ν = 2n

with n = 0,1,2 in the following. The relevant homotopy
groups are given in Table VI.

Case ν = 1: There is one 2×2 Hermitian matrix
M(τ,x,z) on the boundary that is proportional to σ0. A domain
wall in imaginary time such as m2 ∞ sign(τ ) τ2 ⊗ σ0 prevents
the dynamical generation of a spectral gap on the boundary.

Case ν = 2: We use the representation 1 = σ ′
0. The

Hermitian 4×4 matrix M(τ,x,z) is a linear combination with
real-valued coefficients of the matrices Xμμ′ ≡ σμ ⊗ σ ′

μ′ with
μ,μ′ = 0,1,2,3 such that X20 X∗

μμ′ X20 = +Xμμ′ . Of these,
one finds the five matrices X12, X22, X32, X01, and X03 that
anticommute pairwise. If M(τ,x,z) is a linear combinations
with real-valued coefficients of these five matrices and if
M(τ,x,z) is normalized by demanding that it squares to X00,
then the set spanned by M(τ,x,z) is homeomorphic to S4. As
π2+1+1(S4) = Z, it is then possible to add a topological term
to the (2+1)-dimensional QNLSM on the boundary that is of
the WZ type. This term is conjectured to prevent the gapping
of the boundary states.

Case ν = 4: We use the representation 1 = σ ′
0 ⊗ σ ′′

0 . The
Hermitian 8 × 8 matrix M(τ,x,z) is a linear combination with
real-valued coefficients of the matrices Xμμ′μ′′ ≡ σμ ⊗ σ ′

μ′ ⊗
σ ′′

μ′′ with μ,μ′,μ′′ = 0,1,2,3 such that X200 X∗
μμ′μ′′ X200 =

+Xμμ′μ′′ . Of these, one finds the six matrices X120, X220, X320,

TABLE VI. Reduction from Z to Z4 for the topologically
equivalent classes of the three-dimensional SPT phases in the
symmetry class CI that arises from interactions. We denote by Vν the
space of ν × ν normalized Dirac mass matrices in boundary (d = 2)
Dirac Hamiltonians belonging to the symmetry class C. The limit
ν → ∞ of these spaces is the classifying space R4. The second
column shows the stable D-th homotopy groups of the classifying
space R4. The third column gives the number ν of copies of boundary
(Dirac) fermions for which a topological obstruction is permissible.
The fourth column gives the type of topological obstruction that
prevents the gapping of the boundary (Dirac) fermions.

D πD(R4) ν Topological obstruction

0 Z 1 Domain wall
1 0
2 0
3 0
4 Z 2 WZ term
5 Z2 4 None
6 Z2

7 0

X010, X031, and X033 that anticommute pairwise. If M(τ,x,z)
is a linear combinations with real-valued coefficients of these
six matrices and if M(τ,x,z) is normalized by demanding
that it squares to X000, then the set spanned by M(τ,x,z) is
homeomorphic to S5. It is then impossible to add a topological
term to the (2+1)-dimensional QNLSM on the boundary. The
boundary zero modes can be gapped out.

We conclude that the effects of interactions on the three-
dimensional SPT phases in the symmetry class CI are to
reduce the topological classification Z in the noninteracting
limit down to Z4. The logic used to reach this conclusion
is summarized by Table VI once the line corresponding to
ν = 1 has been identified. It is given by the smallest D

that accommodates a nontrivial entry for the corresponding
homotopy group.

3. The symmetry class AIII when d = 3

By omitting the contributions arising from the gauge poten-
tials, the single-particle Hamiltonian (3.36a) does not specify
uniquely the symmetry class. For example, the single-particle
Hamiltonian (3.36a) can also be interpreted as an insulator
belonging to the symmetry class AIII, for it anticommutes
with the composition

�5 := −iT C = X21 (3.46)

of the operations T and C for time reversal and charge
conjugation, respectively, defined in Eq. (3.36d).

The direct product of the single-particle Hamiltonian
(3.36a) with the ν × ν unit matrix 1 supports ν zero modes
bound to the boundary y = 0, for they are annihilated by the
boundary Hamiltonian

H(0)
bd ν(x,z) := −i∂x τ3 ⊗ 1 − i∂z τ1 ⊗ 1 (3.47a)

that anticommutes with

�
(bd)
5 := τ2 ⊗ 1. (3.47b)
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The fate of these zero modes in the presence of fermion-
fermion interactions is investigated in two steps. First, we
include the effects of interactions by perturbing the boundary
Hamiltonian with all boundary dynamical Dirac masses from
the symmetry class A. Second, we introduce a BdG (Nambu)
grading to account for the interactions-driven superconduct-
ing fluctuations by perturbing the boundary Hamiltonian
H(0)

bd ν(x,z) ⊗ ρ0 with all boundary dynamical Dirac masses
that anticommute with τ0 ⊗ 1 ⊗ ρ1 K, i.e., with all boundary
dynamical Dirac masses from the symmetry class D. In the
first step, the boundary dynamical single-particle Hamiltonian
is

H(dyn)
bd ν (τ,x,z) := (−i∂x τ3 − i∂z τ1) ⊗ 1 + τ2 ⊗ M(τ,x,z),

(3.48a)

with the ν × ν Hermitian matrix

M(τ,x,z) = M†(τ,x,z). (3.48b)

In the second step, the boundary dynamical single-particle
Hamiltonian is

H(dyn)
bd ν (τ,x,z) := (−i∂x τ3 − i∂z τ1) ⊗ (ρ0 ⊗ 1)

+ τ2 ⊗ M(τ,x,z), (3.49a)

with the 2ν × 2ν Hermitian matrix

M(τ,x,z) = +(ρ1 ⊗ 1) M∗(τ,x,z) (ρ1 ⊗ 1). (3.49b)

The space of boundary dynamical Dirac mass matrices of
the form (3.48b) that square to the unit matrix is homeomorphic
to the classifying space C0 for the symmetry class A in
two-dimensional space and in the limit ν → ∞. In order
to gap out dynamically the boundary zero modes without
breaking the defining symmetries of the symmetry class
AIII, we need to construct a (2+1)-dimensional QNLSM
for the (boundary) dynamical Dirac masses from the two-
dimensional symmetry class A without topological obstruc-
tions. When ν = 1, a domain wall such as M(τ,x,z) =
M∞ sgn(τ ) prevents the gapping of the boundary zero modes.
When ν = 2, we choose the representation 1 = σ0. The set
spanned by M(τ,x,z) = ∑3

j=1 mj (τ,x,z) σj with the real-
valued functions mj (τ,x,z) obeying the normalization condi-

tion
∑3

j=1 m2
j (τ,x,z) = 1 supports a monopole that binds zero

modes in (2+1)-dimensional space and time, as π2(S2) = Z.
When ν = 4, we choose the representation 1 = X00 where
Xμμ′ := σμ ⊗ σ ′

μ′ for μ,μ′ = 0,1,2,3. We may then write

M(τ,x,z) = ∑3
μ,μ′=0 mμμ′(τ,x,z) Xμμ′ . Any Xμμ′ other than

the unit matrix X00 belongs to a multiplet of five pairwise
anticommuting matrices of the form Xνν ′ �= X00. Hence,
we may always construct a set of normalized M(τ,x,z)
homeomorphic to S4. Since π2+1+1(S4) = Z, it is possible
to augment the corresponding boundary QNLSM in (2+1)-
dimensional space and time by a WZ term that modifies the
equations of motion in a local way. This term is conjectured
to prevent the gapping of the boundary states. When ν = 2n

with n � 3, we choose the representation 1 = X00··· where

TABLE VII. Reduction from Z to Z8 for the topologically equiv-
alent classes of the three-dimensional SPT phases in the symmetry
classes AIII that arises from the fermion-number-conserving interact-
ing channels. We denote by Vν the space of ν × ν normalized Dirac
mass matrices in boundary (d = 2) Dirac Hamiltonians belonging
to the symmetry class A. The limit ν → ∞ of these spaces is the
classifying spaces C0. The second column shows the stable D-th
homotopy groups of the classifying space C0. The third column gives
the number ν of copies of boundary (Dirac) fermions for which
a topological obstruction is permissible. The fourth column gives
the type of topological obstruction that prevents the gapping of the
boundary (Dirac) fermions.

D πD(C0) ν Topological obstruction

0 Z 1 Domain wall
1 0
2 Z 2 Monopole
3 0
4 Z 4 WZ term
5 0
6 Z 8 None
7 0

Xμμ′··· := σμ ⊗ σ ′
μ′ ⊗ · · · for μ,μ′, · · · = 0,1,2,3. Any Xμμ′···

other than the unit matrix X00··· belongs to a multiplet of no
less than seven pairwise anticommuting matrices. It is for this
reason that the boundary states are then necessarily gapped,
for it is not permissible to add a topological term to the
action of the boundary QNLSM for a sphere of dimension
larger than 4. We conclude that the effects of interactions
in the three-dimensional SPT phases in the symmetry class
AIII is to reduce the topological classification Z in the
noninteracting limit down toZ8 under the assumption that only
fermion-number-conserving interacting channels are included
in the stability analysis. The logic used to reach this conclusion
is summarized by Table VII once the line corresponding
to ν = 1 has been identified. It is given by the smallest D

that accommodates a nontrivial entry for the corresponding
homotopy group.

The space of boundary dynamical matrices that satisfy the
condition (3.49b) and square to the unit matrix is homeomor-
phic to the classifying space R2 for the symmetry class D in
two-dimensional space and in the limit ν → ∞. Because the
dimension of the boundary dynamical matrix (3.49b) is twice
that of the boundary dynamical matrix (3.48b), one might
have guessed that the gapping of the boundary zero modes
takes place for a value of ν smaller than eight. This is not
so, however, because of two constraints. The first constraint is
that of PHS. The second constraint restricts the target space
for the boundary QNLSM that is built out of the boundary
dynamical Dirac masses. The target space of the QNLSM
must be invariant as a set under the action of a global gauge
U (1) transformation that is generated by τ0 ⊗ ρ3 ⊗ 1. This
global U (1) symmetry implements conservation of the fermion
number. Indeed, one verifies the following facts. When ν = 1,
the boundary dynamical matrix M(τ,x,z) is a linear combi-
nation of ρ1 and ρ2 with real-valued functions as coefficients.
Hence, the space of normalized boundary dynamical Dirac
mass matrices is homeomorphic to S1 and invariant as a set
under any global gauge U (1) transformation when ν = 1.
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Because of π1(S1) = Z, vortex lines bind zero modes in (2+1)-
dimensional space and time. When ν = 2, we represent the unit
4×4 matrix by ρ0 ⊗ σ0 and we expand any 4×4 Hermitian
matrix as a linear combination with real-valued functions
as coefficients of the 16 matrices Xμμ′ = ρμ ⊗ σμ′ with
μ,μ′ = 0,1,2,3. The boundary dynamical matrix M(τ,x,z) is
a linear combination with real-valued functions as coefficients
of the 10 matrices X00, X01, X03, X10, X11, X13, X20, X21,
X23, X32 that satisfy the constraint Xμμ′ = +X10 X∗

μμ′ X10.
Other than the unit matrix X00, any one of these 9 matrices
belongs to a triplet of pairwise anticommuting matrices.
However, not all such triplets are closed under the global U (1)
transformation defined by multiplication from the left and right
(conjugation) with X30. However, there exists a triplet that is
closed under conjugation by X30. For example, each element
from the triplet of pairwise anticommuting matrices X01, X03,
X32 is invariant under conjugation with X30. Moreover, no
other matrix, satisfying the condition Xμμ′ = +X10 X∗

μμ′ X10,
anticommutes with this triplet. Hence, this triplet spans a
set of normalized boundary dynamical Dirac masses that is
homeomorphic to S2, each point of which is invariant under the
global U (1) transformation associated with the conservation
of the fermion number. Because of π2(S2) = Z, monopoles
bind zero modes in (2+1)-dimensional space and time that
prevent the gapping of the boundary states when ν = 2. When
ν = 4, we represent the unit 8×8 matrix by ρ0 ⊗ σ0 ⊗ σ ′

0 and
we expand any 8×8 matrix as a linear combination with real-
valued coefficients of the 64 matrices Xμμ′μ′′ = ρμ ⊗ σμ′ ⊗
σ ′

μ′′ with μ,μ′,μ′′ = 0,1,2,3. The boundary dynamical matrix
M(τ,x,z) is a linear combination with real-valued functions
as coefficients of those matrices Xμμ′μ′′ = +X100 X∗

μμ′μ′′ X100.
Other than the unit matrix X000, any one of those matrices
belong to a quintuplet of pairwise anticommuting matrices.
Among these, each element from the quintuplet X001, X003,
X312, X022, X332 is invariant under conjugation by X300.
Moreover, no other matrix, satisfying the condition Xμμ′μ′′ =
+X100 X∗

μμ′μ′′ X100 anticommutes with this quintuplet. Hence,
this quintuplet spans a set of normalized boundary dynamical
Dirac masses that is homeomorphic to S4, each point of which
is invariant under the global U (1) transformation associated
with the conservation of the fermion number. Because of
π2+1+1(S4) = Z, it is possible to augment the corresponding
boundary QNLSM in (2+1)-dimensional space and time by
a WZ term that modifies the equations of motion in a local
way. This term is conjectured to prevent the gapping of the
boundary states. When ν = 2n−1 with n � 4, any permissi-
ble matrix Xμμ′μ′′′ ··· = +X100··· X

∗
μμ′μ′′′ ··· X100··· belongs to a

N (ν)-tuplet of pairwise anticommuting permissible matrices
with N (ν) > 5 [69]. However, not all such N (ν)-tuplets
are closed under the global U (1) transformation defined by
conjugation with X300···. The N (ν)-tuplet that contains the pair
of anticommuting matrices X00···01 = +X10···00 X∗

00···01 X10···00
and X00···03 = +X10···00 X∗

00···03 X10···00 has the particularity
that each of its elements is invariant under conjugation with
X300··· and cannot be augmented by one more anticommuting
Xμμ′μ′′′ ··· = +X100··· X

∗
μμ′μ′′′ ··· X100···. Hence, this N (ν)-tuplet

spans a set of normalized boundary dynamical Dirac masses
that is homeomorphic to SN(ν)−1, each point of which is
invariant under the global U (1) transformation associated with
the conservation of the fermion number. Since N (ν) > 5 for

ν = 2n−1 with n � 4, it follows that all homotopy groups of
order less than four for the space of the normalized boundary
dynamical Dirac masses that are invariant under the global
U (1) transformation are vanishing. The boundary states are
then necessarily gapped.

We conclude that the effects of interactions on the three-
dimensional SPT phases in the symmetry class AIII are to
reduce the topological classification Z in the noninteracting
limit down to Z8.

4. The symmetry class AII when d = 3

We close the discussion of the stability to fermion-fermion
interactions of strong noninteracting topological insulators
or superconductors in three-dimensional space by illustrating
why the Z2 noninteracting classification is stable.

To this end, consider the single-particle bulk Dirac Hamil-
tonian

H(0)(x) := −i∂x X21 − i∂y X11 − i∂z X02 + m(x) X03,

(3.50a)

where Xμν := σμ ⊗ τμ′ for μ,μ′ = 0,1,2,3. Because

H(0)(x) = +T H(0)(x) T −1, T := iX20 K, (3.50b)

we interpret this Hamiltonian as realizing a noninteracting
topological insulator in the three-dimensional symmetry class
AII. The domain wall in the mass

m(x,y,z) = m∞ sgn(z) (3.51a)

binds a zero mode to the boundary z = 0 that is annihilated by
the boundary single-particle Hamiltonian

H(0)
bd (x,y) = −i∂x σ2 − i∂y σ1 = Tbd H

(0)
bd (x,y) T −1

bd ,

(3.51b)

where

Tbd := iσ2 K. (3.51c)

The boundary dynamical Dirac Hamiltonian

H(dyn)
bd (τ,x,y) = −i∂x σ2 − i∂y σ1 + M(τ,x,y) σ3 (3.52)

belongs to the symmetry class A, as the Dirac mass Mσ3
breaks TRS unless M(−τ,x,y) = −M(τ,x,y). The space of
normalized boundary dynamical Dirac mass matrices {±σ3} is
homeomorphic to the space of normalized Dirac mass matrices
for the two-dimensional system in the symmetry class A

Vν=1 =
1⋃

k=0

U (ν)/[U (k) × U (ν − k)]. (3.53)

The domain wall in imaginary time M(τ,x,y) = M∞ sgn(τ )
prevents the gapping of the boundary zero modes.

We conclude that the noninteracting topological classifica-
tion Z2 of three-dimensional insulators in the symmetry class
AII is robust to the effects of interactions under the assumption
that only fermion-number-conserving interacting channels are
included in the stability analysis. The logic used to reach
this conclusion is summarized by Table VIII once the line
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TABLE VIII. Stability to fermion-fermion interactions of the
noninteracting topological classification Z2 for three-dimensional
strong topological insulators belonging to the symmetry classes AII.
We denote by Vν the space of ν × ν normalized Dirac mass matrices
in boundary (d = 2) Dirac Hamiltonians belonging to the symmetry
class A. The limit ν → ∞ of these spaces is the classifying space
C0. The second column shows the stable D-th homotopy groups
of the classifying space C0. The third column gives the number
ν of copies of boundary (Dirac) fermions for which a topological
obstruction is permissible. The fourth column gives the type of
topological obstruction that prevents the gapping of the boundary
(Dirac) fermions.

D πD(C0) ν Topological obstruction

0 Z 1 Domain wall
1 0

corresponding to ν = 1 has been identified. It is given by the
smallest D that accommodates a nontrivial entry for the cor-
responding homotopy group. Moreover, one verifies by intro-
ducing a BdG (Nambu) grading that this robustness extends to
interaction-driven dynamical superconducting fluctuations.

D. Higher dimensions

By working out explicitly the effects of fermion-fermion
interactions on the boundary states supported by single-
particle Dirac Hamiltonians representing strong topological
insulators and superconductors when the dimensionality of
space ranges from d = 1 to d = 8, the following rules can be
deduced [70].

Rule 1: The Z2 topological classification of strong topo-
logical insulators and superconductors is robust to interactions
in all dimensions.

Rule 2: The Z topological classification of strong topo-
logical insulators and superconductors is robust to interactions
in all even dimensions.

Rule 3: TheZ topological classification of strong topolog-
ical insulators and superconductors is unstable to interactions
in all odd dimensions.

We prove Rules 1 and 2 in Secs. III D 1 and III D 2,
respectively. Finally, we work out explicitly the reduction
pattern of the noninteracting Z topological classification for
any odd dimension in Sec. III D 3.

1. The case of Z2 classification

The proof of Rule 1 follows the same logic as in the
example of the three-dimensional symmetry class AII in
Sec. III C 4. When d = 1, there are two symmetry classes
with π0(V ) = Z2, the symmetry classes D and DIII (see
Table I). No dynamical Dirac mass is allowed in class D, since
there is no protecting symmetry to break. For the symmetry
class DIII, the normalized boundary dynamical Dirac masses
are taken from Dirac masses in the symmetry class D and
belong to the classifying space R2, according to Table I.
According to Table XVI in Appendix B, π0(R2) = Z2. Hence,
the two noninteracting Z2 topological classification are stable
in one dimension. To treat the case of d � 2, let V denote
any one of the eight real classifying spaces V and observe

that, according to Table XVI, at least one of the homotopy
groups πD(V ) with D = 0,1,2,3 is nontrivial. We specialize
to any one of the two symmetry classes in d dimensions with
the classifying space (the space of normalized bulk Dirac
masses) V such that π0(V ) = Z2. By assumption d + 1 � 3.
Let Vbd denote the space of the boundary dynamical Dirac
masses. If this space is empty, then the Z2 classification is
stable. If this space is not empty, then we know that at least
one of πD(Vbd) with D = 0,1, . . . ,d + 1 is nonvanishing. In
turn, this implies that at least one of the homotopy groups
from Eq. (2.10) is nontrivial. As the sphere SN(1)−1 entering
Eq. (2.10) is the target space for the QNLSM in (d − 1) + 1
space and time dimensions obtained from integrating the ν = 1
boundary Dirac fermions subjected to dynamical masses, the
QNLSM accommodates a topological term that prevents the
gapping of the ν = 1 boundary zero mode. Hence, the two
noninteracting Z2 topological classification are stable in any
spatial dimension.

2. The case of even dimensions

Because of Rule 1, we only need to consider the symmetry
classes in even dimensions which have Z topological clas-
sification for gapped noninteracting fermions. According to
Table I and the Bott periodicity of two (eight) for the complex
(real) symmetry classes, these are the symmetry classes (i) A
for d = 0 mod 2, (ii) AI and AII for d = 4,8 mod 8, and (iii)
D and C for d = 2,6 mod 8.

Proof for case (i): We start with the complex symmetry class
A in even dimensions. We proceed in two steps. First we rule
out dynamical superconducting fluctuations. We then show
that the inclusion of dynamical superconducting fluctuations
is harmless.

Without dynamical superconducting fluctuations, the clas-
sifying space for the normalized dynamical Dirac masses is
that for the complex symmetry class A. Because there is no
symmetry that is violated by such dynamical Dirac masses,
dynamical Dirac masses are forbidden altogether.

With dynamical superconducting fluctuations, normalized
dynamical Dirac masses form the space of Dirac masses in the
symmetry class D. The original single-particle Hamiltonian
H(0)

ν that annihilates ν zero modes is extended to a BdG
(Nambu) single-particle Hamiltonian H(0)

BdG ν that commutes
with ρ3 and anticommutes with ρ1K. Here ρ0 is the unit 2×2
matrix and ρ are the Pauli matrices acting on the auxiliary
particle-hole degrees of freedom. Boundary dynamical Dirac
masses may then exist. However, they must anticommute
with ρ3, since no boundary Dirac mass that commutes with
ρ3 is allowed after restricting H(0)

BdG ν to the boundary. Upon
integrating the boundary Dirac fermions, a QNLSM in
(d − 1) + 1 space and time dimensions ensues. The target
space of this QNLSM has to be closed under the action of a
global U (1) gauge transformation. This is to say that a generic
boundary dynamical Dirac mass must be of the form

γ ′ = [cos(θ )ρ1 + sin(θ )ρ2] ⊗ M, (3.54a)

with the (rmin ν/2) × (rmin ν/2) matrix M satisfying

M = M† = −M∗. (3.54b)
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We recall that rmin is the minimal rank of the BdG Hamilto-
nian. The action on γ ′ of a global U (1) gauge transformation
parametrized by the global phase α is simply the shift θ �→
θ + α. If so, the target space of the QNLSM is homeomorphic
to S1 × VBdG ν whereby S1 is parametrized by θ and VBdG ν

is parametrized by M squaring to the unit matrix. For such
a target space, we can always assign a topological term to
account for the vortices supported by the parameter θ for the
S1 factor, as π1(S1) = Z. These vortices bind ν zero modes.

We conclude that the noninteracting topological
classification Z for the symmetry class A in even dimensions
survives strong interactions on the boundary provided
the fermion-number conservation is neither explicitly nor
spontaneously broken.

Proof for case (ii): First, we show the statement for: (a)
cases with dynamical Dirac masses that preserve the fermion-
number U (1) symmetry. We then proceed to: (b) cases with
U (1)-breaking dynamical Dirac masses.

(a) We consider the massive Dirac Hamiltonian

H(0)(x) =
d∑

j=1

(−i∂j ) γj + m(x) γ0, m(x) ∈ R, (3.55)

obeying the TRS represented by T for classes AI and AII
in d = 4n for n = 1,2, . . . . Here the Dirac matrices are of
dimension r � rmin. They obey the Clifford algebra {γμ,γμ′ } =
2 δμμ′ with μ,μ′ = 0, . . . ,d. The Dirac matrices entering
H(0)(x) and the operator T that represents reversal of time
can be used to define the following pair of Clifford algebras
[24,71].

For the symmetry class AI, reversal of time is represented
by an element of the Clifford algebra T that squares to the
unit matrix. It and iT , together with the gamma matrices
γ1, . . . , γd satisfying the conditions γ1 = −T γ1 T −1, . . . ,
γd = −T γd T −1, are generators of the Clifford algebra. On
the other hand, the Dirac mass matrix iγ0 is chosen as the
generator that squares to minus the unit matrix, for γ0 =
+T γ0 T −1. We arrive at the Clifford algebra

Cl1,2+d := {Jγ0; T ,JT ,γ1, . . . ,γd} (3.56)

for the symmetry class AI, where J is the generator that
represents the imaginary unit “i” and satisfies the relations
J 2 = −1 and {T ,J } = 0 [72].

For the symmetry class AII, reversal of time is represented
by an element of the Clifford algebra T that squares to
minus the unit matrix. It and iT enter on equal footing
with iγ0 as the generators that square to minus the unit
matrix, for γ0 = +T γ0 T −1. On the other hand, γ matrices
γ1, . . . , γd , satisfying the conditions γ1 = −T γ1 T −1, . . . ,
γd = −T γd T −1, are the generators that square to the unit
matrix in the Clifford algebra. We arrive at the Clifford algebra

Cl3,d := {Jγ0,T ,JT ; γ1, . . . ,γd} (3.57)

for the symmetry class AII.
In both symmetry classes the choice of γ0 is unique, up to

a sign, as a consequence of the fact that the zeroth homotopy
groups of the classifying spaces for the symmetry classes AI
and AII is Z in 4n dimensions. In other words, no other
Dirac mass matrix that is invariant under reversal of time
anticommutes with γ0 [71]. This leaves open the possibility

that the Clifford algebras (3.56) and (3.57) for d = 4n could
admit the addition of a generator γ ′

0 that anticommutes with
H(0) and is odd under reversal of time, γ ′

0 = −T γ ′
0 T −1. If so,

the choice of γ1 to γd in the Clifford algebras (3.56) and (3.57)
would not be unique in an uncountable (in a continuous) way.
The existence of γ ′

0 is thus tied to the task of parametrizing
in a continuous way the representation of the generator
(e.g., γd ) present in Clp,q+1 but absent in Clp,q applied to
the cases (p,q) = (1,4n + 1) and (p,q) = (3,4n − 1) for the
4n-dimensional symmetry classes AI and AII, respectively
[73]. Both tasks are denoted by the extension problem of
Clifford algebras

Clp,q → Clp,q+1, (3.58)

with the classifying spaces

Rq−p =
{
R4n, (p,q) = (1,4n + 1),
R4n−4, (p,q) = (3,4n − 1), (3.59)

as solutions for the set of representations of possible γ ′
0 in

the symmetry classes AI and AII, respectively. Hereto, it is the
zeroth homotopy group of the classifying space Rp−q that seals
the fate of the existence of γ ′

0. As π0(R4n) = π0(R4n−4) = Z,
it follows that γ ′

0 does not exist, i.e., no dynamical Dirac mass
that breaks the TRS symmetry but preserves the global U (1)
gauge symmetry is permissible for the symmetry classes AI
and AII when d = 4n.

(b) After having established the absence of U (1)-preserving
dynamical Dirac masses, the stability analysis in the presence
of dynamical superconducting fluctuations for the symmetry
classes AI and AII is the same as that for the symmetry class A.
The boundary dynamical Dirac mass takes the form (3.54). The
target space of the QNLSM is homeomorphic to S1 × VBdG ν

since it has to be closed under the action of a global U (1)
gauge transformation. Vortices that bind boundary zero modes
originate from the S1 manifold.

Proof for case (iii): The symmetry classes D and C for
d = 2,6 (mod 8) do not support dynamical Dirac masses
along the boundary, because the PHS is kept as a fundamental
symmetry. Their noninteracting topological classification Z
survives strong interactions on the boundary provided the PHS
is neither explicitly nor spontaneously broken.

3. The case of odd dimensions

The topological classification Z of noninteracting strong
topological insulators and superconductors in odd dimensions
of space is reduced to the coarser classification Zνmax

with νmax
an integer:

Z → Zνmax
. (3.60a)

The label “max” stands here for maximum. The task at hand
is thus to compute the integer νmax. Computing νmax proceeds
with the following algorithm (see Tables IX–XII).

Step 1: Choose any one of the 10 AZ symmetry classes
from Table I.

Step 2: Choose any odd dimension d for which the
zeroth homotopy group of the classifying space of the chosen
symmetry class Vd is the set of integers [π0(Vd ) = Z]. This
step restricts the symmetry classes to the complex symmetry
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TABLE IX. Application of the Bott periodicity obeyed by the homotopy groups πD(V ) for D = 0,1, . . . , of a given classifying space V ′
d−1

of dynamical boundary Dirac masses to deduce the reduction pattern Z → Zνmax
for the symmetry class BDI in dimensions (a) d = 1 for which

V ′
d−1 = R2 and νmax = 8, (b) d = 5 for which V ′

d−1 = R6 and νmax = 16, and (c) d = 9 for which V ′
d−1 = R2 and νmax = 128. The column ν

fixes the rank r := rmin ν of the Dirac Hamiltonian in the symmetry class BDI. The fourth column gives the target manifold of the QNLSM
with the action SQNLSM that encodes the fermion-fermion interactions on the (d − 1)-dimensional boundary. The fifth column indicates if a
topological action Stop can be added to SQNLSM.

(a) Symmetry class BDI in d = 1 (b) Symmetry class BDI in d = 5 (c) Symmetry class BDI in d = 9

D πD(R2) ν SQNLSM Stop D πD(R6) ν SQNLSM Stop D πD(R2) ν SQNLSM Stop

0 Z2 2 S0 � 0 0 0 Z2 2 S0 �
1 0 1 0 1 0
2 Z 4 S2 � 2 Z 1 S2 � 2 Z 4 S2 �
3 0 3 Z2 2 S3 � 3 0
4 0 4 Z2 4 S4 � 4 0
5 0 5 0 5 0
6 Z 8 S6 – 6 Z 8 S6 � 6 Z 8 S6 �
7 Z2 16 S7 – 7 0 7 Z2 16 S7 �

8 0 8 Z2 32 S8 �
9 0 9 0
10 Z 16 S10 – 10 Z 64 S10 �

11 0
12 0
13 0
14 Z 128 S14 –

class AIII and the real symmetry classes BDI, DIII, CII, and
CI.

Step 3: Identify the parent symmetry class and its
classifying space V ′

d that follows if CHS is broken for the
complex symmetry class AIII or if TRS is broken for the

real symmetry classes. This step restricts the parent symmetry
classes to the complex symmetry class A if the symmetry
class AIII is interpreted as realizing an insulator, the real
symmetry class D if the symmetry classes BDI and DIII
are interpreted as superconductors, and the real symmetry

TABLE X. Application of the Bott periodicity obeyed by the homotopy groups πD(V ) for D = 0,1, . . . , of a given classifying space V ′
d−1

of dynamical boundary Dirac masses to deduce the reduction pattern Z → Zνmax
for the symmetry class DIII in dimensions (a) d = 3 for which

V ′
d−1 = R0 and νmax = 16, (b) d = 7 for which V ′

d−1 = R4 and νmax = 32, and (c) d = 11 for which V ′
d−1 = R0 and νmax = 256. The column

ν fixes the rank r := rmin ν of the Dirac Hamiltonian in the symmetry class DIII. The fourth column gives the target manifold of the QNLSM
with the action SQNLSM that encodes the fermion-fermion interactions on the (d − 1)-dimensional boundary. The fifth column indicates if a
topological action Stop can be added to SQNLSM.

(a) Symmetry class DIII in d = 3 (b) Symmetry class DIII in d = 7 (c) Symmetry class DIII in d = 11

D πD(R0) ν SQNLSM Stop D πD(R4) ν SQNLSM Stop D πD(R0) ν SQNLSM Stop

0 Z 1 S0 � 0 Z 1 S0 � 0 Z 1 S0 �
1 Z2 2 S1 � 1 0 1 Z2 2 S1 �
2 Z2 4 S2 � 2 0 2 Z2 4 S2 �
3 0 3 0 3 0
4 Z 8 S4 � 4 Z 2 S4 � 4 Z 8 S4 �
5 0 5 Z2 4 S5 � 5 0
6 0 6 Z2 8 S6 � 6 0
7 0 7 0 7 0

8 Z 16 S8 – 8 Z 16 S8 � 8 Z 16 S8 �
9 0 9 Z2 32 S9 �
10 0 10 Z2 64 S10 �
11 0 11 0
12 Z 32 S12 – 12 Z 128 S12 �

13 0
14 0
15 0
16 Z 256 S16 –
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TABLE XI. Application of the Bott periodicity obeyed by the homotopy groups πD(V ) for D = 0,1, . . . , of a given classifying space V ′
d−1

of dynamical boundary Dirac masses to deduce the reduction pattern Z → Zνmax
for the symmetry class CII in dimensions (a) d = 1 for which

V ′
d−1 = R6 and νmax = 2, (b) d = 5 for which V ′

d−1 = R2 and νmax = 16, and (c) d = 9 for which V ′
d−1 = R6 and νmax = 32. The column ν fixes

the rank r := rmin ν of the Dirac Hamiltonian in the symmetry class CII. The fourth column gives the target manifold of the QNLSM with the
action SQNLSM that encodes the fermion-fermion interactions on the (d − 1)-dimensional boundary. The fifth column indicates if a topological
action Stop can be added to SQNLSM.

(a) Symmetry class CII in d = 1 (b) Symmetry class CII in d = 5 (c) Symmetry class CII in d = 9

D πD(R6) ν SQNLSM Stop D πD(R2) ν SQNLSM Stop D πD(R6) ν SQNLSM Stop

0 0 0 Z2 2 S0 � 0 0
1 0 1 0 1 0
2 Z 1 S2 � 2 Z 4 S2 � 2 Z 1 S2 �
3 Z2 2 S3 – 3 0 3 Z2 2 S3 �
4 Z2 4 S4 – 4 0 4 Z2 4 S4 �
5 0 5 0 5 0
6 Z 8 S6 – 6 Z 8 S6 � 6 Z 8 S6 �
7 0 7 Z2 16 S7 – 7 0

8 0
9 0
10 Z 16 S10 �
11 Z2 32 S11 –

class C if the symmetry classes CII and CI are interpreted
as superconductors.

Step 4: Assign the minimal value

νmin :=
{

1, π0(V ′
d ) = 0,

2, π0(V ′
d ) �= 0,

(3.60b)

if the zeroth homotopy group of V ′
d is trivial or nontrivial,

respectively.

Step 5: Identify the classifying space V ′
d−1 that determines

the dynamical Dirac mass matrices induced by the fermion-
fermion interactions on the boundary.

Step 6: Construct a table with lines labeled by the integer
D = 0,1,2, . . . . The first column gives the order D of the
homotopy group πD(V ′

d−1) given in the second column. The
third column is the number ν of boundary zero modes in
the selected symmetry class. Enter the value νmin in the third
column for the smallest value of D for which πD(V ′

d−1) is

TABLE XII. Application of the Bott periodicity obeyed by the homotopy groups πD(V ) for D = 0,1, . . . , of a given classifying space V ′
d−1

of dynamical boundary Dirac masses to deduce the reduction pattern Z → Zνmax
for the symmetry class CI in dimensions (a) d = 3 for which

V ′
d−1 = R4 and νmax = 4, (b) d = 7 for which V ′

d−1 = R0 and νmax = 32, and (c) d = 11 for which V ′
d−1 = R4 and νmax = 64. The column

ν fixes the rank r := rmin ν of the Dirac Hamiltonian in the symmetry class CI. The fourth column gives the target manifold of the QNLSM
with the action SQNLSM that encodes the fermion-fermion interactions on the (d − 1)-dimensional boundary. The fifth column indicates if a
topological action Stop can be added to SQNLSM.

(a) Symmetry class CI in d = 3 (b) Symmetry class CI in d = 7 (c) Symmetry class CI in d = 11

D πD(R4) ν SQNLSM Stop D πD(R0) ν SQNLSM Stop D πD(R4) ν SQNLSM Stop

0 Z 1 S0 � 0 Z 1 S0 � 0 Z 1 S0 �
1 0 1 Z2 2 S1 � 1 0
2 0 2 Z2 4 S2 � 2 0
3 0 3 0 3 0
4 Z 2 S4 � 4 Z 8 S4 � 4 Z 2 S4 �
5 Z2 4 S5 – 5 0 5 Z2 4 S5 �
6 Z2 8 S6 – 6 0 6 Z2 8 S6 �
7 0 7 0 7 0

8 Z 16 S8 � 8 Z 16 S8 �
9 Z2 32 S9 – 9 0

10 0
11 0
12 Z 32 S12 �
13 Z2 64 S13 –
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nontrivial. The value of ν is then doubled for each successive
line with πD(V ′

d−1) nontrivial. The fourth column denotes the
target space of the QNLSM with the action SQNLSM defined by
integrating out all the boundary Dirac fermions when coupled
to (D + 1) real-valued bosonic fields, each one of which cou-
ples to a Dirac mass matrix from a (D + 1)-tuplet of pairwise
anticommuting Dirac mass matrices allowed on the boundary
by the parent symmetry class. The fifth column indicates when
a topological term Stop can be added to the action SQNLSM
[74].

Step 7: Let nWZ be the number of lines with πD(V ′
d−1)

nontrivial when D takes the values D = 0,1, . . . ,d + 1. It then

follows that

νmax = νmin × 2nWZ . (3.60c)

For the complex symmetry class AIII in dimension d =
2n + 1 with n = 0,1,2, . . . , the reduction pattern induced by
the fermion-fermion interactions is

Z → Z2n+2 . (3.61)

By making use of the eightfold Bott periodicity, one verifies
that the reduction patterns are

d = 8n + 1 d = 8n + 3 d = 8n + 5 d = 8n + 7
BDI Z → Z24n+3 − Z → Z24n+4 −
DIII − Z → Z24n+4 − Z → Z24n+5

CII Z → Z24n+1 − Z → Z24n+4 −
CI − Z → Z24n+2 − Z → Z24n+5

(3.62)

if we interpret the symmetry classes BDI, DIII, CII, and CI as superconductors or

d = 8n + 1 d = 8n + 3 d = 8n + 5 d = 8n + 7
BDI Z → Z24n+2 − Z → Z24n+3 −
CII Z → Z24n+1 − Z → Z24n+4 −

(3.63)

if we interpret the symmetry classes BDI and CII as insulators.
We have thus found two different patterns for the reduction
of the topological classification of the symmetry class BDI
depending on these two interpretations, as we have observed
for d = 1 in Sec. III A 3.

IV. REDUCTION FOR TCS AND TCI

The addition of discrete symmetries (such as spatial ones)
to the PHS, TRS, and CHS enriches the classification of
noninteracting fermions. A general method to account for
additional symmetries that square to the unity has been pro-
posed in Ref. [24]. Hereto, local fermion-fermion interactions
can reduce the noninteracting topological classification over
Z, as was first observed in Refs. [16,17,75,76] by way of
explicit examples. We are interested in the robustness to local
fermion-fermion interactions of noninteracting topological
phases with reflection symmetry. We treat two-dimensional
topological superconductors in the symmetry class DIII with
an additional reflection symmetry (the Yao-Ryu model from
Ref. [16]) and three-dimensional topological insulators in the
symmetry class AII with an additional reflection symmetry
(a topological crystalline insulator is realized in SnTe, as was
shown in Ref. [77]). We show that the reductionZ → Z8 holds
in both cases by applying the approach detailed in Sec. II.

The notation Xμμ′μ′′··· := τμ ⊗ τ ′
μ′ ⊗ τ ′′

μ′′ ⊗ · · · for
μ,μ′,μ′′, . . . = 0,1,2,3 where τ0, τ ′

0, τ ′′
0 , . . . are unit 2×2

matrices and the other τμ, τ ′
μ′ , τ ′′

μ′′ , . . . are the corresponding
Pauli matrices.

A. Two-dimensional superconductors with time-reversal
and reflection symmetries (DIII + R)

Let x ≡ (x,y) ≡ (x1,x2) denote a point in two-dimensional
space. Let Xμμ′ := σμ ⊗ τμ′ with μ,μ′ = 0,1,2,3 denote a

basis for the vector space of all Hermitian 4×4 matrices.
Following Yao and Ryu [16], consider the two-dimensional
bulk single-particle Dirac Hamiltonian

H(0)(x,y) := −i∂xX31 − i∂yX02 + m(x,y)X03. (4.1a)

This single-particle Dirac Hamiltonian belongs to the symme-
try class DIII, for

T H(0)(x,y) T −1 = +H(0)(x,y), (4.1b)

C H(0)(x,y) C−1 = −H(0)(x,y), (4.1c)

where

T := iX20 K, C := X01 K. (4.1d)

In addition, the Dirac Hamiltonian is invariant under reflection
in the x direction,

Rx H(0)(−x,y) (Rx)−1 = +H(0)(x,y), (4.1e)

where

Rx = iX20. (4.1f)

The operators T , C, and Rx commute pairwise and square to
T 2 = −1, C2 = +1, and R2

x = −1.
The Dirac mass matrix X03 is here the only one allowed for

dimension r = rmin = 4 Dirac matrices under the symmetry
constraints (4.1b), (4.1c), and (4.1e). The domain wall

m(x,y) = m∞ sgn(y) (4.2a)

at y = 0 binds the zero mode

e−iX02 X03

∫ y

0 dy m(x,y ′) χ = e−|m∞y| χ, (4.2b)
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where

X01 χ = −sgn(m∞) χ (4.2c)

with χ independent of x and z, that is annihilated by the
boundary Hamiltonian

H(0)
bd (x) := −i∂xσ3, (4.2d)

where we have chosen m∞ < 0. On the boundary y = 0, the
symmetries (4.1e) are realized by

Tbd := iσ2 K, Cbd := K, Rx bd := iσ2. (4.2e)

The boundary single-particle Hamiltonian (4.2d) and the
operators (4.2e) are denoted by H(0)

bd ν(x), Tbd ν , Cbd ν , and
Rx bd ν , respectively, when tensored with the ν × ν unit matrix
1. The single-particle HamiltonianH(0)

bd ν(x) supports ν linearly
independent zero modes. Their stability to interactions that
preserve the symmetries is probed by studying the dynamical
single-particle boundary Hamiltonian

H(dyn)
bd ν (τ,x) := −i∂xσ3 ⊗ 1 + γ ′(τ,x), (4.3a)

where the boundary dynamical Dirac mass matrix γ ′(x)
satisfies the particle-hole symmetry

Cbd νγ
′C−1

bd ν = −γ ′ (4.3b)

and takes the form

γ ′(x) = σ2 ⊗ M1(τ,x) + σ1 ⊗ M2(τ,x) (4.3c)

with the ν × ν Hermitian matrices

M1(τ,x) = +M∗
1 (τ,x), M2(τ,x) = −M∗

2 (τ,x), (4.3d)

i.e., M1(τ,x) is a real-valued symmetric matrix while M2(τ,x)
is an imaginary-valued antisymmetric matrix. This is to say,
the normalized boundary dynamical Dirac mass matrix γ ′(x)
belongs to the space

Vν := O(ν), R1 = lim
ν→∞ O(ν), (4.3e)

for the Dirac matrices in the boundary (d = 1) Dirac Hamil-
tonians belonging to the symmetry class D [78]. Integrating
the boundary Dirac fermions delivers a QNLSM in (1+1)-
dimensional space and time. In order to gap out dynamically
the boundary zero modes without breaking the time-reversal,
particle-hole, and reflection symmetries, this QNLSM must
be free of topological obstructions. We construct explicitly
the spaces for the relevant normalized boundary dynamical
Dirac mass matrices of dimension ν = 2n with n = 0,1,2,3
in the following. The relevant homotopy groups are given in
Table XIII.

Case ν = 1: There is a topological obstruction of the
domain wall type as the target space is

S0 = {±σy} (4.4a)

and π0(S0) �= 0.
Case ν = 2: There is a topological obstruction of the

vortex type as the target space is

S1 = {
c1X21 + c2X23

∣∣c2
1 + c2

2 = 1,ci ∈ R
}

(4.4b)

and π1(S1) = Z.

TABLE XIII. Reduction from Z to Z8 due to interactions for the
topologically equivalent classes of the two-dimensional topological
superconductors protected by time-reversal and reflection symmetries
(DIII + R). We denote by Vν the space of ν × ν normalized Dirac
mass matrices in boundary (d = 1) Dirac Hamiltonians belonging
to the symmetry class D. The limit ν → ∞ of these spaces is the
classifying space R1. The second column shows the stable D-th
homotopy groups of the classifying space R1. The third column gives
the number ν of copies of boundary (Dirac) fermions for which
a topological obstruction is permissible. The fourth column gives
the type of topological obstruction that prevents the gapping of the
boundary (Dirac) fermions.

D πD(R1) ν Topological obstruction

0 Z2 1 Domain wall
1 Z2 2 Vortex
2 0
3 Z 4 WZ term
4 0
5 0
6 0
7 Z 8 None

Case ν = 4: There is a topological obstruction of the WZ
type as the target space is

S3 =
{

c1X210 + c2X230+c3X102+c4X222

∣∣∣∣∣
4∑

i=1

c2
i =1,ci ∈ R

}
(4.4c)

and π3(S3) = Z.
Case ν = 8: There is no topological obstruction as one

can find more than four pairwise anticommuting matrices such
as the set

{X2100,X2310,X2331,X2333,X1120}. (4.4d)

We conclude that the effects of interactions on the two-
dimensional topological superconductors in the symmetry
class DIII with additional reflection symmetry are to reduce the
topological classification Z in the noninteracting limit down
to Z8.

B. Three-dimensional insulators with time-reversal
and reflection symmetries (AII + R)

We consider again the bulk, boundary, and dynamical
boundary Hamiltonian defined in Sec. III C 4, i.e., Eqs. (3.50)–
(3.53). We observe that the single-particle Hamiltonian (3.50a)
has the symmetry

Rx H(0)(−x,y,z) (Rx)−1 = +H(0)(x,y,z), (4.5a)

where

Rx := iX10, R2
x = −1, [T ,Rx] = 0, (4.5b)

in addition to the TRS (3.50b). The presence of the additional
reflection symmetry allows one to define a mirror Chern
number (n+ ∈ Z) for the sector with the eigenvalue Rx = +i

on the two-dimensional mirror plane (kx = 0) in the three-
dimensional Brillouin zone [77]. (The mirror Chern number
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TABLE XIV. Reduction from Z to Z8 due to interactions for the
topologically equivalent classes of the three-dimensional topological
insulators with time-reversal and reflection symmetries (AII + R).
We denote by Vν the space of ν × ν normalized Dirac mass matrices
in boundary (d = 2) Dirac Hamiltonians belonging to the symmetry
class A. The limit ν → ∞ of these spaces is the classifying space
C0. The second column shows the stable D-th homotopy groups
of the classifying space C0. The third column gives the number
ν of copies of boundary (Dirac) fermions for which a topological
obstruction is permissible. The fourth column gives the type of
topological obstruction that prevents the gapping of the boundary
(Dirac) fermions.

D πD(C0) ν Topological obstruction

0 Z 1 Domain wall
1 0
2 Z 2 Monopole
3 0
4 Z 4 WZ term
5 0
6 Z 8 None
7 0

for the eigensector Rx = −i is −n+.) Thus, the ν linearly
independent zero modes that follow from tensoring the single-
particle Hamiltonian (3.50a) with the ν × ν unit matrix 1
along the domain wall (3.51a) are stable to strong one-body
perturbations on the boundary that preserve the reflection
symmetry (4.5). (If we forget the reflection symmetry and
keep only the TRS, as we did in Sec. III C 4, it is only the
parity of ν that is stable to strong one-body perturbations on
the boundary.) If we only consider dynamical masses that
preserve the fermion-number U (1) symmetry, the space of
normalized boundary dynamical Dirac mass matrices after
tensoring the boundary dynamical Dirac Hamiltonian (3.53)
with 1 is homeomorphic to the space of normalized Dirac
masses for the two-dimensional system in the symmetry class
A,

Vν =
ν⋃

k=0

U (ν)/[U (k) × U (ν − k)]. (4.6)

The limit ν → ∞ of these spaces is the classifying space C0.
Integrating the boundary Dirac fermions delivers a QNLSM

in (2+1)-dimensional space and time. In order to gap out
dynamically the boundary zero modes without breaking
the symmetries, this QNLSM must be free of topological
obstructions. We construct explicitly the spaces for the
relevant normalized boundary dynamical Dirac mass matrices
[M(τ,x,y) in Eq. (3.52)] of dimension ν = 2n with n =
0,1,2,3 in the following. The relevant homotopy groups are
given in Table XIV.

Case ν = 1: There is a topological obstruction of the
domain wall type as the target space is

S0 = {±1} (4.7a)

and π0(S0) �= 0.

Case ν = 2: There is a topological obstruction of the
monopole type as the target space is

S2 = {
c1X1 + c2X2 + c3X3|c2

1 + c2
2 + c2

3 = 1
}

(4.7b)

and π2(S2) = Z.
Case ν = 4: There is a topological obstruction of the WZ

type as the target space is

S4 =
⎧⎨⎩c1X13 + c2X23 + c3X33 + c4X01

+ c5X02

∣∣∣∣∣∣
5∑

i=1

c2
i = 1,ci ∈ R

⎫⎬⎭ (4.7c)

and π4(S4) = Z.
Case ν = 8: There is no topological obstruction as one can

find more than five pairwise anticommuting matrices such as
the set

{X133,X233,X333,X013,X023,X001,X002}. (4.7d)

We conclude that the effects of interactions on the three-
dimensional topological insulators in the symmetry class AII
with an additional symmetry are to reduce the topological
classification Z in the noninteracting limit down to Z8.

This Z8 classification is unchanged if all boundary dynam-
ical masses that break the fermion-number U (1) symmetry
are accounted for. The corresponding target spaces for the
boundary dynamical masses and their topological obstructions
are derived as was done in the stability analysis made for the
symmetry class AIII in d = 3 in Sec. III C 3. Namely, we
extend the single-particle Hamiltonian [Eq. (3.52)] to a BdG
Hamiltonian

H(dyn)
bd = (−i∂x σ2 ⊗ ρ3 − i∂y σ1 ⊗ ρ0) ⊗ 1 + γ ′(τ,x,y),

(4.8)

where ρ0 and ρμ are unit 2×2 and Pauli matrices, respectively,
acting on the particle-hole (Nambu) space and the particle-
hole symmetry is given by C = ρ1 K. In this case, the
target spaces of the QNLSM made of normalized boundary
dynamical Dirac mass matrices γ ′ of dimension ν = 2n with
n = 0,1,2,3 are modified as listed in the following with the
notation Xμμ′μ′′μ′′′... = σμ ⊗ ρμ′ ⊗ τμ′′ ⊗ τμ′′′ . . .. The relevant
homotopy groups are given in Table XV. We note that these
target spaces are closed under the global U (1) transformation
generated by ρ3.

Case ν = 1: There is a topological obstruction of the vortex
type as the target space is

S1 = {
c1X21 + c2X22

∣∣c2
1 + c2

2 = 1
}

(4.9a)

and π1(S1) = Z.
Case ν = 2: There is a topological obstruction of the

monopole type as the target space is

S2 = {
c1X210 + c2X220 + c3X302

∣∣c2
1 + c2

2 + c2
3 = 1

}
(4.9b)

and π2(S2) = Z.
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TABLE XV. Reduction from Z to Z8 due to interactions for the
topologically equivalent classes of the three-dimensional topological
insulators with time-reversal and reflection symmetries (AII + R)
when the superconducting fluctuations are accounted for. We denote
by Vν the space of ν × ν normalized Dirac mass matrices in boundary
(d = 2) Dirac Hamiltonians belonging to the symmetry class D. The
limit ν → ∞ of these spaces is the classifying space R0. The second
column shows the stable D-th homotopy groups of the classifying
space R0. The third column gives the number ν of copies of boundary
(Dirac) fermions for which a topological obstruction is permissible.
The fourth column gives the type of topological obstruction that
prevents the gapping of the boundary (Dirac) fermions.

D πD(R0) ν Topological obstruction

0 Z
1 Z2 1 Vortex
2 Z2 2 Monopole
3 0
4 Z 4 WZ term
5 0
6 0
7 0
8 Z 8 None

Case ν = 4: There is a topological obstruction of the WZ
type as the target space is

S4 =
⎧⎨⎩c1X2100 + c2X2200 + c3X3020 + c4X3012

+ c5X3032

∣∣∣∣∣∣
5∑

i=1

c2
i = 1,ci ∈ R

⎫⎬⎭ (4.9c)

and π4(S4) = Z.
Case ν = 8: There is no topological obstruction as one can

find more than five pairwise anticommuting matrices such as
the set

{X21000,X22000,X30200,X30120,X30312,X30332}. (4.9d)

Therefore, the topological classification Z8 for three-
dimensional TCIs in the symmetry class AII with an additional
reflection symmetry is unchanged when the superconducting
fluctuations are accounted for. This Z8 classification is
consistent with the results obtained recently in Refs. [79,80].
We note that the classifying space R0 for the dynamical masses
is the same as that in the case of three-dimensional TSs in
the symmetry class DIII. There is an important difference,
however. Namely, the line corresponding to ν = 1 is moved
to D = 1 in Table XV from D = 0 in Table V. This change
originates from the fact that the minimum matrix dimension
of the BdG Hamiltonian H(dyn)

bd for three-dimensional TCIs
in the symmetry class AII+R is four, while that for three-
dimensional TSs in the symmetry class DIII is two. Hence,
the breakdown of the topological classification Z for three-
dimensional TCIs in the symmetry class AII+R takes place at
ν = 8, which is the half of ν = 16 for three-dimensional TSs
in the symmetry class DIII.

C. Massless Dirac fermions on the surfaces of SnTe

The crystal SnTe is a three-dimensional topological crys-
talline insulator protected by time-reversal and reflection
symmetries (AII + R). SnTe supports four Dirac cones on the
[001] surface and six Dirac cones on the [111] surface. If strong
interaction effects are present, we expect that the ν = 4 phase
described by a QNLSM with a WZ term should be realized
on the [001] surface. At the [111] surface, we expect that the
ν = 6 = 4 + 2 phase be realized, whereby the effective field
theory is that of a QNLSM with a WZ term for 4 out of the six
surface Dirac cones and that of a QNLSM with a topological
term arising from a gas of monopoles of the remaining two
surface Dirac cones.
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APPENDIX A: DEFINING SYMMETRIES OF
STRONG TOPOLOGICAL INSULATORS

(SUPERCONDUCTORS)

Define the many-body quadratic form

Ĥ =
∫

dd x
∫

dd y
∑
ij

ψ̂
†
i (t,x)Hij (x, y) ψ̂j (t, y), (A1a)

where

Hij (x, y) = H∗
ji( y,x), (A1b)

and

{ψ̂i(t,x),ψ̂†
j (t, y)} = δij δ(x − y) (A1c)

are the only nonvanishing equal-time anticommutators.

1. Time-reversal symmetry

Let K denote complex conjugation. Define the time-reversal
transformation by the antiunitary transformation

T̂ := T̂ K (A2a)

that reverses time but leaves space unchanged by demanding
that

T̂ −1 = T̂ † (A2b)

and

T̂ ψ̂j (t, y) T̂−1 =
∑
j ′

T ∗
j ′j ψ̂j ′(−t, y). (A2c)

One verifies that

T̂ Ĥ T̂−1 = Ĥ (A3a)

if and only if∑
ij

Ti ′i H∗
ij (x, y) T −1

jj ′ = Hi ′j ′ (x, y). (A3b)
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2. Particle-hole (charge-conjugation) symmetry

Assume that ∑
i

Hii(x, y) = 0. (A4)

Define the particle-hole transformation by the unitary trans-
formation

Ĉ := Ĉ (A5a)

that reverses the sign of the fermion number

n̂i(x) − 1
2 δ(x = 0) := ψ̂

†
i (x) ψ̂i(x) − 1

2 δ(x = 0) (A5b)

measured relative to the background of the fermion density
1/2 but leaves space unchanged by demanding that

Ĉ−1 = Ĉ† (A5c)

and

Ĉ ψ̂j (t, y) Ĉ−1 =
∑
j ′

Cj ′j ψ̂
†
j ′(t, y). (A5d)

One verifies that

Ĉ Ĥ Ĉ−1 = Ĥ (A6a)

if and only if∑
ij

Ci ′i H∗
ij ( y,x) C−1

jj ′ = −Hi ′j ′( y,x). (A6b)

3. Chiral symmetry

Assume that ∑
i

Hii(x, y) = 0. (A7)

Define the chiral transformation by the antiunitary transfor-
mation

Ŝ := Ŝ K (A8a)

that reverses the sign of the fermion number

n̂i(x) − 1
2 δ(x = 0) := ψ̂

†
i (x) ψ̂i(x) − 1

2 δ(x = 0) (A8b)

measured relative to the background of the fermion density
1/2 but leaves space unchanged by demanding that

Ŝ−1 = Ŝ† (A8c)

and

Ŝ ψ̂j (t, y) Ŝ−1 =
∑
j ′

Sj ′j ψ̂
†
j ′ (t, y). (A8d)

One verifies that

Ŝ Ĥ Ŝ−1 = Ĥ (A9a)

if and only if∑
ij

Si ′i Hij ( y,x)S−1
jj ′ = −Hi ′j ′ ( y,x). (A9b)

The unitary symmetry under Ĉ is called charge conjugation
symmetry or PHS. The antiunitary symmetry under Ŝ is
called the CHS. The antiunitary symmetry under T̂ is called
TRS.

APPENDIX B: TENFOLD WAY
AND CLASSIFYING SPACES

In this Appendix, we summarize the classification of gapped
phases of noninteracting fermions in terms of the tenfold way.
We also define the classifying spaces of normalized Dirac
masses. The 10 Altland-Zirnbauer (AZ) symmetry classes
for Hermitian matrices are shown in Table I. There, two
complex and eight real symmetry classes are characterized
by the presence or the absence of time-reversal symmetry
(T ), particle-hole symmetry (C), and chiral symmetry (�).
Their presence is indicated by the sign entering the squared
operators, T 2 = ±1 or C2 = ±1, and by 1 for �. Their
absence is indicated by 0. For each symmetry class and for
any dimension d = 0,1,2, . . ., of space, the classifying space
Vd , which is the space of normalized Dirac masses, is given
in the last column by labels to symmetric spaces. We list the
10 relevant symmetric spaces and their homotopy groups in
the stable homotopy regime in Table XVI. The number N

is related to the dimension r = rminN of the Dirac matrices,
i.e., N = 1,2, . . . is the number of copies of the minimal
massive Dirac Hamiltonian of rank rmin. The stable homotopy

TABLE XVI. Complex and real classifying spaces and their stable homotopy groups. Homotopy groups πD(V ) for complex and real
classifying spaces are periodic in D with periods of 2 and 8, respectively.

Label Classifying space V π0(V ) π1(V ) π2(V ) π3(V ) π4(V ) π5(V ) π6(V ) π7(V )

C0 ∪N
n=0{U (N )/[U (n) × U (N − n)]} Z 0 Z 0 Z 0 Z 0

C1 U (N ) 0 Z 0 Z 0 Z 0 Z

R0 ∪N
n=0{O(N )/[O(n) × O(N − n)]} Z Z2 Z2 0 Z 0 0 0

R1 O(N ) Z2 Z2 0 Z 0 0 0 Z
R2 O(2N )/U (N ) Z2 0 Z 0 0 0 Z Z2

R3 U (2N )/Sp(N ) 0 Z 0 0 0 Z Z2 Z2

R4 ∪N
n=0{Sp(N )/[Sp(n) × Sp(N − n)]} Z 0 0 0 Z Z2 Z2 0

R5 Sp(N ) 0 0 0 Z Z2 Z2 0 Z
R6 Sp(N )/U (N ) 0 0 Z Z2 Z2 0 Z 0
R7 U (N )/O(N ) 0 Z Z2 Z2 0 Z 0 0
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regime refers to the limit N → ∞. According to the Bott pe-
riodicity, the complex classifying spaces obey the periodicity
condition

πD(Cq) = πD+2(Cq), (q = 0,1), (B1)

and the real classifying spaces obey the periodicity condition

πD(Rq) = πD+8(Rq), (q = 0, . . . ,7). (B2)

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[3] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,

1698 (1979).
[4] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[5] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[6] A. Kitaev, AIP Conf. Proc. 1134, 22 (2009).
[7] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig,

New J. Phys. 12, 065010 (2010).
[8] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
[9] Q. Niu, D. J. Thouless, and Y.-S. Wu, Phys. Rev. B 31, 3372

(1985).
[10] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[11] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[12] M. Levin and A. Stern, Phys. Rev. Lett. 103, 196803 (2009).
[13] T. Neupert, L. Santos, S. Ryu, C. Chamon, and C. Mudry,

Phys. Rev. B 84, 165107 (2011).
[14] L. Fidkowski and A. Kitaev, Phys. Rev. B 81, 134509

(2010).
[15] L. Fidkowski and A. Kitaev, Phys. Rev. B 83, 075103 (2011).
[16] H. Yao and S. Ryu, Phys. Rev. B 88, 064507 (2013).
[17] X.-L. Qi, New J. Phys. 15, 065002 (2013).
[18] A. Kitaev, http://online.kitp.ucsb.edu/online/topomat11/kitaev

(2011).
[19] L. Fidkowski, X. Chen, and A. Vishwanath, Phys. Rev. X 3,

041016 (2013).
[20] M. A. Metlitski, L. Fidkowski, X. Chen, and A. Vishwanath,

arXiv:1406.3032 (2014).
[21] C. Wang and T. Senthil, Phys. Rev. B 89, 195124 (2014).
[22] Y.-Z. You and C. Xu, Phys. Rev. B 90, 245120 (2014).
[23] In particular, the breakdown of the noninteracting topological

classifications with the groupZ in three-dimensional SPT phases
was diagnosed in Refs. [20,21] through the proliferation of
certain types of vortices in order parameters that spontaneously
break one of the defining symmetries. In this approach, a fully
gapped surface phase is realized at certain values of ν with all
protecting symmetries restored by the proliferation of vortices.
This strategy was also applied to four-dimensional SPT phases
in Ref. [81].

[24] T. Morimoto and A. Furusaki, Phys. Rev. B 88, 125129 (2013).
[25] We shall also call the topological TIs and TSs entering the

periodic table strong TIs and strong TSs.
[26] A. Kitaev, http://www.ipam.ucla.edu/abstract/?tid=12389&

pcode=STQ2015 (2015).
[27] Any Hamiltonian made exclusively of fermion bilinears can

be written in the Nambu representation. This representation is
redundant and as such comes with a particle-hole symmetry
(PHS).

[28] The question that we address in this paper is whether or not the
topological classification of noninteracting fermions is reduced

by interactions. A complete classification of fermionic SPT
phases (combined with that for the bosonic SPT phases) is
beyond the scope of this paper.

[29] T. Senthil, Annu. Rev. Condens. Matter Phys. 6, 299 (2015).
[30] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83, 035107

(2011).
[31] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Science 338,

1604 (2012).
[32] Y.-M. Lu and A. Vishwanath, Phys. Rev. B 86, 125119 (2012).
[33] A. Vishwanath and T. Senthil, Phys. Rev. X 3, 011016 (2013).
[34] C. Wang and T. Senthil, Phys. Rev. B 87, 235122 (2013).
[35] C.-M. Jian and X.-L. Qi, Phys. Rev. X 4, 041043 (2014).
[36] J. Maciejko, X.-L. Qi, A. Karch, and S.-C. Zhang, Phys. Rev.

Lett. 105, 246809 (2010).
[37] W. Witczak-Krempa, T. P. Choy, and Y. B. Kim, Phys. Rev. B

82, 165122 (2010).
[38] B. Swingle, M. Barkeshli, J. McGreevy, and T. Senthil,

Phys. Rev. B 83, 195139 (2011).
[39] J. Maciejko, X.-L. Qi, A. Karch, and S.-C. Zhang, Phys. Rev. B

86, 235128 (2012).
[40] G. Y. Cho and J. E. Moore, Ann. Phys. (NY) 326, 1515 (2011).
[41] K. Walker and Z. Wang, Front. Phys. 7, 150 (2012).
[42] A. Kapustin and R. Thorngren, arXiv:1308.2926 (2013).
[43] M. Levin, F. J. Burnell, M. Koch-Janusz, and A. Stern,

Phys. Rev. B 84, 235145 (2011).
[44] C. W. von Keyserlingk, F. J. Burnell, and S. H. Simon,

Phys. Rev. B 87, 045107 (2013).
[45] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 87,

155114 (2013).
[46] A. Mesaros and Y. Ran, Phys. Rev. B 87, 155115 (2013).
[47] P. Ye and X.-G. Wen, Phys. Rev. B 89, 045127 (2014).
[48] L.-Y. Hung and X.-G. Wen, Phys. Rev. B 89, 075121

(2014).
[49] C. L. Kane, R. Mukhopadhyay, and T. C. Lubensky, Phys. Rev.

Lett. 88, 036401 (2002).
[50] J. C. Y. Teo and C. L. Kane, Phys. Rev. B 89, 085101

(2014).
[51] R. S. K. Mong, D. J. Clarke, J. Alicea, N. H. Lindner, P. Fendley,

C. Nayak, Y. Oreg, A. Stern, E. Berg, K. Shtengel, and M. P. A.
Fisher, Phys. Rev. X 4, 011036 (2014).

[52] T. Neupert, C. Chamon, C. Mudry, and R. Thomale, Phys. Rev.
B 90, 205101 (2014).

[53] When the crystalline symmetry operator squares to the unity,
the Abelian groups G for noninteracting TCIs are given by Z,
Z2 or some direct product of them [24,82,83].

[54] We consider interactions that do not break the protecting
symmetries of the noninteracting limit, that are strong on the
boundary, yet are not-too-strong as measured by the single-
particle gap for the bulk states of insulators.

[55] The saddle-point equation for φ is given as follows. Integrat-
ing the fermionic degrees of freedom leads to the effective

125104-25

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1103/PhysRevB.23.5632
http://dx.doi.org/10.1103/PhysRevB.23.5632
http://dx.doi.org/10.1103/PhysRevB.23.5632
http://dx.doi.org/10.1103/PhysRevB.23.5632
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.103.196803
http://dx.doi.org/10.1103/PhysRevLett.103.196803
http://dx.doi.org/10.1103/PhysRevLett.103.196803
http://dx.doi.org/10.1103/PhysRevLett.103.196803
http://dx.doi.org/10.1103/PhysRevB.84.165107
http://dx.doi.org/10.1103/PhysRevB.84.165107
http://dx.doi.org/10.1103/PhysRevB.84.165107
http://dx.doi.org/10.1103/PhysRevB.84.165107
http://dx.doi.org/10.1103/PhysRevB.81.134509
http://dx.doi.org/10.1103/PhysRevB.81.134509
http://dx.doi.org/10.1103/PhysRevB.81.134509
http://dx.doi.org/10.1103/PhysRevB.81.134509
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.88.064507
http://dx.doi.org/10.1103/PhysRevB.88.064507
http://dx.doi.org/10.1103/PhysRevB.88.064507
http://dx.doi.org/10.1103/PhysRevB.88.064507
http://dx.doi.org/10.1088/1367-2630/15/6/065002
http://dx.doi.org/10.1088/1367-2630/15/6/065002
http://dx.doi.org/10.1088/1367-2630/15/6/065002
http://dx.doi.org/10.1088/1367-2630/15/6/065002
http://online.kitp.ucsb.edu/online/topomat11/kitaev
http://dx.doi.org/10.1103/PhysRevX.3.041016
http://dx.doi.org/10.1103/PhysRevX.3.041016
http://dx.doi.org/10.1103/PhysRevX.3.041016
http://dx.doi.org/10.1103/PhysRevX.3.041016
http://arxiv.org/abs/arXiv:1406.3032
http://dx.doi.org/10.1103/PhysRevB.89.195124
http://dx.doi.org/10.1103/PhysRevB.89.195124
http://dx.doi.org/10.1103/PhysRevB.89.195124
http://dx.doi.org/10.1103/PhysRevB.89.195124
http://dx.doi.org/10.1103/PhysRevB.90.245120
http://dx.doi.org/10.1103/PhysRevB.90.245120
http://dx.doi.org/10.1103/PhysRevB.90.245120
http://dx.doi.org/10.1103/PhysRevB.90.245120
http://dx.doi.org/10.1103/PhysRevB.88.125129
http://dx.doi.org/10.1103/PhysRevB.88.125129
http://dx.doi.org/10.1103/PhysRevB.88.125129
http://dx.doi.org/10.1103/PhysRevB.88.125129
http://www.ipam.ucla.edu/abstract/?tid=12389&pcode=STQ2015
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014740
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014740
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014740
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014740
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevX.3.011016
http://dx.doi.org/10.1103/PhysRevX.3.011016
http://dx.doi.org/10.1103/PhysRevX.3.011016
http://dx.doi.org/10.1103/PhysRevX.3.011016
http://dx.doi.org/10.1103/PhysRevB.87.235122
http://dx.doi.org/10.1103/PhysRevB.87.235122
http://dx.doi.org/10.1103/PhysRevB.87.235122
http://dx.doi.org/10.1103/PhysRevB.87.235122
http://dx.doi.org/10.1103/PhysRevX.4.041043
http://dx.doi.org/10.1103/PhysRevX.4.041043
http://dx.doi.org/10.1103/PhysRevX.4.041043
http://dx.doi.org/10.1103/PhysRevX.4.041043
http://dx.doi.org/10.1103/PhysRevLett.105.246809
http://dx.doi.org/10.1103/PhysRevLett.105.246809
http://dx.doi.org/10.1103/PhysRevLett.105.246809
http://dx.doi.org/10.1103/PhysRevLett.105.246809
http://dx.doi.org/10.1103/PhysRevB.82.165122
http://dx.doi.org/10.1103/PhysRevB.82.165122
http://dx.doi.org/10.1103/PhysRevB.82.165122
http://dx.doi.org/10.1103/PhysRevB.82.165122
http://dx.doi.org/10.1103/PhysRevB.83.195139
http://dx.doi.org/10.1103/PhysRevB.83.195139
http://dx.doi.org/10.1103/PhysRevB.83.195139
http://dx.doi.org/10.1103/PhysRevB.83.195139
http://dx.doi.org/10.1103/PhysRevB.86.235128
http://dx.doi.org/10.1103/PhysRevB.86.235128
http://dx.doi.org/10.1103/PhysRevB.86.235128
http://dx.doi.org/10.1103/PhysRevB.86.235128
http://dx.doi.org/10.1016/j.aop.2010.12.011
http://dx.doi.org/10.1016/j.aop.2010.12.011
http://dx.doi.org/10.1016/j.aop.2010.12.011
http://dx.doi.org/10.1016/j.aop.2010.12.011
http://dx.doi.org/10.1007/s11467-011-0194-z
http://dx.doi.org/10.1007/s11467-011-0194-z
http://dx.doi.org/10.1007/s11467-011-0194-z
http://dx.doi.org/10.1007/s11467-011-0194-z
http://arxiv.org/abs/arXiv:1308.2926
http://dx.doi.org/10.1103/PhysRevB.84.235145
http://dx.doi.org/10.1103/PhysRevB.84.235145
http://dx.doi.org/10.1103/PhysRevB.84.235145
http://dx.doi.org/10.1103/PhysRevB.84.235145
http://dx.doi.org/10.1103/PhysRevB.87.045107
http://dx.doi.org/10.1103/PhysRevB.87.045107
http://dx.doi.org/10.1103/PhysRevB.87.045107
http://dx.doi.org/10.1103/PhysRevB.87.045107
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155115
http://dx.doi.org/10.1103/PhysRevB.87.155115
http://dx.doi.org/10.1103/PhysRevB.87.155115
http://dx.doi.org/10.1103/PhysRevB.87.155115
http://dx.doi.org/10.1103/PhysRevB.89.045127
http://dx.doi.org/10.1103/PhysRevB.89.045127
http://dx.doi.org/10.1103/PhysRevB.89.045127
http://dx.doi.org/10.1103/PhysRevB.89.045127
http://dx.doi.org/10.1103/PhysRevB.89.075121
http://dx.doi.org/10.1103/PhysRevB.89.075121
http://dx.doi.org/10.1103/PhysRevB.89.075121
http://dx.doi.org/10.1103/PhysRevB.89.075121
http://dx.doi.org/10.1103/PhysRevLett.88.036401
http://dx.doi.org/10.1103/PhysRevLett.88.036401
http://dx.doi.org/10.1103/PhysRevLett.88.036401
http://dx.doi.org/10.1103/PhysRevLett.88.036401
http://dx.doi.org/10.1103/PhysRevB.89.085101
http://dx.doi.org/10.1103/PhysRevB.89.085101
http://dx.doi.org/10.1103/PhysRevB.89.085101
http://dx.doi.org/10.1103/PhysRevB.89.085101
http://dx.doi.org/10.1103/PhysRevX.4.011036
http://dx.doi.org/10.1103/PhysRevX.4.011036
http://dx.doi.org/10.1103/PhysRevX.4.011036
http://dx.doi.org/10.1103/PhysRevX.4.011036
http://dx.doi.org/10.1103/PhysRevB.90.205101
http://dx.doi.org/10.1103/PhysRevB.90.205101
http://dx.doi.org/10.1103/PhysRevB.90.205101
http://dx.doi.org/10.1103/PhysRevB.90.205101


MORIMOTO, FURUSAKI, AND MUDRY PHYSICAL REVIEW B 92, 125104 (2015)

Lagrangian,

Seff [φ] := (−1)Tr log

⎡⎣∂τ +
d−1∑
j=1

(−i∂j ) αj +
∑
{β}

2iβ φβ

⎤⎦
+ 1

λ r

∑
{β}

Tr
(
φ2

β

)
.

The symbol Tr represents tracing over the single-particle Hilbert
space of the Dirac Hamiltonian with the Dirac matrices α and β

of dimension r . The saddle point equations δSeff [φ]/δφ|
φ=φ̄

= 0
are ∫

dω

∫
dd−1k

(
2φ̄β

ω2 + |k|2 − 4 φ̄
2

)
= 1

λ r
φ̄β .

We denote with �d−1 the area of the unit sphere Sd−1, with k the
length of the vector (ω,k), and with � the ultraviolet cutoff in
(ω,k) space. The saddle-point equations reduce to the equation

�d−1

∫ �

0
dkkd 2

k2 − 4φ̄
2 = 1

λ r
.

It has the solution

|φ̄β | = iφ0(λ r), φ0(λ r) > 0.
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