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Linear response theory for electron-hole pair kinetics: Exciton formation
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A linear response theory for electron-hole pair density is developed, which constitutes a theoretical method,
and a definition of exciton density in a first-principles context is derived by considering both the electron-hole
attractive interaction and the screening effect. This allows the exciton time evolution to be examined. This
formulation is applied to a jellium model in order to prove the existence of a transient exciton, and to observe
crossover from a transient to a stable exciton in response to decreased electron density. The exciton formation
mechanism is also revealed.
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I. INTRODUCTION

The exciton is one of the most important elementary
excitations in condensed matter. Intense peaks below the
single-particle absorption edge of the optical absorption
spectra of molecules, semiconductors, and insulators indicate
the presence of these particles [1,2]. This is particularly
true for systems with high dielectric constants, in which the
effective-mass approximation may be valid [3].

It is believed that exciton observation in metals is quite
difficult, because free carriers immediately screen the holes
created by photon absorption. Recently, however, Cui et al.
have reported that excitons exist in metals in the form of
transient excitons, based on findings obtained through the
application of multiphoton photoemission spectroscopy to a
silver surface [4]. The transient excitonic state that does not
correspond to anything in the single-particle band structure
develops into an image potential state within 100 fs, which
is quite short compared to the exciton lifetime in typical
insulators. The findings of this experiment pose the question
of how to define the existence of an exciton within a short
time scale, and move the field in the direction of developing
an understanding of excitons in both space and time.

The screening effect is significant as regards exciton
existence. After the creation of the photohole, the Coulomb po-
tential between the electrons and holes is gradually weakened
over time [5]. Since screening is incomplete in an insulator, the
Coulomb potential approaches an approximate ratio of the bare
Coulomb potential and the dielectric constant, which causes
long-lived excitons to appear. On the other hand, the screening
in a metal is complete. The Coulomb potential approaches
the well-known Tomas-Fermi potential, which generates no
bound states in general [6]. However, Schöne and Ekardt have
theoretically suggested the possibility of transient excitons
occurring in bulk metals until screening completion, although
this is a very short time scale [7,8]. A similar conclusion has
been reached by Gumhalter et al., via a systematic calculation
for metal surfaces [9]. In both studies, the transient excitons
are described by an effective-mass equation under a time-
dependent potential for the electron, which is calculated using
a linear response theory. In this approach, two bands relevant
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to the exciton formation must be chosen a priori, which may
introduce an arbitrariness to the definition. The Bethe-Salpeter
equation (BSE) is, in principle, an exact scheme describing the
excitonic properties of electronic systems beyond the effective-
mass approximation [10]. However, the present method of
solving the BSE can be applied to a system under a stationary
interaction potential only. Thus, to understand the kinetics of
the exciton, it is highly desirable to develop a theory that passes
beyond both the effective-mass approximation and the use of a
stationary interaction potential in the BSE. Note that, although
Attaccalite et al. have derived an equation of motion for the
nonequilibrium Green’s function that may be regarded as a
time-dependent BSE [11], the application of this theory has
been limited to the calculation of the optical absorption spectra
in finite systems and wide-gap semiconductors.

In this paper, a theory that allows the kinetics of the exciton
to be described is developed. This approach is based on a linear
response theory for the electron-hole (EH) pair density, which
allows direct computation of the time-dependent EH pair
density fluctuations under an external perturbation. A natural
definition of the exciton is derived by considering the EH
attractive interaction and the screening effect. Application to a
jellium model proves the existence of the transient exciton and
reveals a property of the time evolution of exciton formation.

II. FORMULATION

We consider an EH pair density operator defined as

n2(x,x ′) = ψ†(x ′)ψ(x)ψ†(x)ψ(x ′), (1)

where x and x ′ represent the position (x and x′) and spin (σ and
σ ′) of the electron and hole, respectively. The expectation value
of this operator with respect to the ground state is equivalent
to the EH pair density in the system

〈N,0|n2(x,x ′)|N,0〉 =
∑

S

|〈N,S|ψ†(x)ψ(x ′)|N,0〉|2,

(2)

where |N,S〉 is an arbitrary excited state in the N -electron
system. A carefully selected perturbation excites the excitons,
and their decay can be studied within the framework of a
linear response theory. In general, the interaction Hamiltonian
between a system of charged particles and the electromagnetic
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field is the sum of the scalar and vector potential components,
such that

H ′(t) = H ′
s(t) + H ′

v(t). (3)

Then, the linear response is expressed by

δ〈n2(x,x ′; t)〉 = i

�

∫
dt ′〈N,0|[H ′(t ′),n2(x,x ′; t)]|N,0〉.

(4)

Here, δ〈n2(x,x ′; t)〉 describes the induced EH pair density at
time t (an electron and hole at x and x ′, respectively) caused
by an external perturbation at t ′. As a simple example, we
consider a scalar potential

H ′(t) = −
∫

dxeϕext(x; t)n1(x; t), (5)

where e is the charge, ϕext(x; t) is the time-dependent and
spin-independent scalar potential, and n1(x; t) is the elec-
tron density operator in the Heisenberg picture, n1(x; t) =
eiHt/�ψ†(x)ψ(x)e−iH t/� (H is the unperturbed Hamiltonian).
If the retarded correlation function is defined by

DR
2 (x,x ′,x ′′; t − t ′)

= −iθ (t − t ′)〈N,0|[n2(x; x ′; t),n1(x ′′; t ′)]|N,0〉, (6)

Eq. (4) may be rewritten as

δ〈n2(x; x ′; t)〉 = − e

�

∫
dx ′′

∫ ∞

−∞
dt ′

×ϕext(x′′; t ′)DR
2 (x,x ′,x ′′; t − t ′). (7)

The computation of δ〈n2(x,x ′; t)〉 enables us to derive the
lifetimes of the excitons in the system in question under a
certain excitation. Here, we consider a homogeneous system
whose Hamiltonian is written as (see Ref. [12])

H = H0 + H1

=
∫

dxψ†(x)

(
− �

2

2m
∇2

)
ψ(x)

+1

2

∫
dx

∫
dx ′ψ†(x)ψ†(x ′)V (x − x′)ψ(x ′)ψ(x),

(8)

where H0 is the noninteracting Hamiltonian describing the
kinetic energy of the electron systems and H1 is the pertur-
bation Hamiltonian describing the interaction energy between
the electrons at position x and x′ via V (x − x′). In this system,
DR

2 (x,x ′,x ′′; t − t ′) is a function of x − x′′ and x′ − x′′, and
the Fourier transformation is defined as

D̃R
2 (q,q ′,σ ′′; ω)

=
∫

d(x − x′′)
∫

d(x′ − x′′)

×e−iq·(x−x′′)e−iq ′·(x′−x′′)
∫

d(t − t ′)eiω(t−t ′)

×DR
2 (x,x ′,x ′′; t − t ′), (9)

where q = (q,σ ) denotes the wave vector and spin. The time
dependence of the EH pair density in the momentum space is

expressed as

δ〈ñ2(q,q ′; t)〉 =
∑
σ ′′

∫
dω

2π
e−iωt (−e)

�
ϕ̃ext(q + q ′; ω)

×D̃R
2 (q,q ′,σ ′′; ω). (10)

Equation (10) can also be extended to treat the reciprocal-
lattice vector, which enables us to study periodic systems.
To evaluate D̃R

2 (q,q ′,σ ′′; ω), we first consider a time-ordered
correlation function:

DT
2 (x,x ′,x ′′; t − t ′)

= −i〈N,0|T[n2(x,x ′; t)n1(x ′′; t ′)]|N,0〉. (11)

The perturbation expansion method can be used, because of
the presence of the time-ordering operator T in Eq. (11).
The Fourier transformations of the time-ordered correlation
function of DT

2 for space and time are given as, respectively,

D̃T
2 (q,q ′,σ ′′; ω) =

∫
d(x − x′′)

∫
d(x′ − x′′)

×e−iq·(x−x′′)e−iq ′ ·(x′−x′′)DT
2 (x,x ′,x ′′; ω)

(12)

and

DT
2 (x,x ′,x ′′; ω) =

∫
d(t − t ′)eiω(t−t ′)DT

2 (x,x ′,x ′′; t − t ′).

(13)

Using the relations in a frequency (ω) representation
DT

2 (x,x ′,x ′′; ω) = DR
2 (x,x ′,x ′′; ω) for ω > 0 and

DR
2 (x,x ′,x ′′; −ω) = DR∗

2 (x,x ′,x ′′; ω), one can obtain
DR

2 (x,x ′,x ′′; ω) for all values of ω (Ref. [13]). Finally,
D̃R

2 (q,q ′,σ ′′; ω) can be obtained after Fourier transforming
the space dependence, as given by Eq. (12).

III. EXCITON DESCRIPTION

To study the exciton existence, we must consider the com-
peting effect between the electron-hole attractive interaction
and the screening, because the former determines the two-
particle trend, while the latter gives rise to the single-particle
behavior.

We study the attractive interaction using the perturbation
expansion of DT

2 (x,x ′,x ′′; t − t ′) given by Eq. (11). The
evaluation of DT

2 (x,x ′,x ′′; ω) is performed by using the
noninteracting Green’s function:

G(0)(x,x ′; ω)

= δσσ ′G(0)
σ (x,x′; ω)

= δσσ ′

⎛
⎝ occ∑

α

φασ (x)φ∗
ασ (x′)

ω − ωα − iδ
+

emp∑
β

φβσ (x)φ∗
βσ (x′)

ω − ωβ + iδ

⎞
⎠,

(14)

where φασ (x) denotes the single-particle eigenfunction with
quantum number α and spin σ for the noninteracting Hamil-
tonian. The product of ωα and the Planck constant � is the
energy of the single-particle state α. “occ” and “emp” denote
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FIG. 1. Contribution to DT
2 (x,x ′,x ′′; t − t ′). (a) and (b) are zeroth

order, while (c) and (d) show the first-order contribution. The cross
and the dotted line indicate the external perturbation, and the wavy
line indicates the Coulomb interaction.

the occupied states α and empty states β, respectively. The
fact that the noninteracting Hamiltonian does not change the
spin of the electron and hole is assumed. In the homogeneous
system described by Eq. (8), the single-particle eigenfunction
for H0 is expressed by the plane waves:

φασ (x) = 1√
�

eikα ·xs(σ ), (15)

where kα is the wave vector, s(σ ) is the spin function, and �

is the volume of the system. Then, the summation in Eq. (14)
is replaced by the following integral:

occ∑
α

=
∫

dkα

�

(2π )3
θH (kF − |kα|), (16)

emp∑
β

=
∫

dkβ

�

(2π )3
θH (|kβ | − kF ), (17)

where θH (k) is the Heaviside step function and kF is the
Fermi wave number. Figure 1 shows the Feynman diagram
appropriate for describing exciton creation. No attractive
interaction is included in the zeroth-order diagrams [Figs. 1(a)
and 1(b)], while attractive interaction is included in the
first-order diagrams [Figs. 1(c) and 1(d)]; this enhances the
EH pair density as a result of the exciton creation. Details of
this calculation are given in the Appendix.

Schöne and Ekardt [7] studied the screening effect in a
jellium model by computing the linear response of the total
potential to the sudden creation of a potential induced by a
positive charge, with

ϕext(x; t) = e

|x|θ (t), (18)

where θ (t) is a step function. Within an adiabatic approxima-
tion, such a potential can create bound states at t = 0. The
total potential for the single-particle state varies dynamically

because of the screening effect and is expressed by the sum of
the external and induced potentials:

ϕ̃tot(q; t)

= ϕ̃ext(q; t) + ϕ̃ind(q; t),

= 4πe

|q|2
{

1+ 8e2

�|q|2
∫ ∞

0

dω

ω
ImD̃R

1 (q; ω)(1 − cos ωt)

}
θ (t),

(19)

where D̃R
1 (q; ω) is the retarded density-density correlation

function [7,12]. Solving the effective-mass equation with the
use of Eq. (19) yields bound states with time-dependent energy.
For large time values, the total potential approaches the Tomas-
Fermi potential, ∼ (q2

TF + |q|2)−1 (qTF is the Tomas-Fermi
wave vector), resulting in an absence of bound states. The use
of ϕ̃tot(q; ω) in Eq. (19) as an external potential together with
Eq. (10) enables us to simultaneously study both the attractive
interaction effect and the screening effect on the dynamics of
the EH pair. We obtain

δ〈ñ2(q,q ′; t)〉 = − 2e2

�|q + q ′|2 (I0 + I1)θ (t), (20)

where

I0 = 4
∫ ∞

0

dω′

ω′ ImD̃R
2 (q,q ′,σ ′′; ω′)(1 − cos ω′t), (21)

I1 = 8e2

�|q + q ′|2
∫ ∞

0

dω0

ω0
ImD̃R

1 (q + q ′; ω0)

×
[
I0 − 4

∫ ∞

0

dω′

ω′ ImD̃R
2 (q,q ′,σ ′′; ω′)C(ω0,ω

′)
]
.

(22)

Here, C(ω0,ω
′) = ω′2(cos ω0t − cos ω′t)/(ω′2 − ω2

0), I0 rep-
resents the EH pair creation, and I1 describes the EH pair
annihilation due to the screening. Note that Eq. (20) is regarded
as a generalization of the work of Canright [14], in which the
transient screening response of the electron gas to a suddenly
created point charge, δ〈n1(x; t)〉, is calculated. Given that
the stability of the exciton is determined by the previously
mentioned competing effect, we define the exciton density as

ñexc(q,q ′; t) =
∑
σ,σ ′

ñexc(q,q ′; t), (23)

ñexc(q,q ′; t) = δ〈ñ2(q,q ′; t)〉 − δ
〈
ñ

(0)
2 (q,q ′; t)

〉
, (24)

where

δ
〈
ñ

(0)
2 (q,q ′; t)

〉 = − 2e2

�|q + q ′|2 I
(0)
0 θ (t), (25)

with I
(0)
0 being the zeroth-order contribution of Eq. (21). Both

the attractive interaction between the electron and hole and the
screening effect are included in δ〈ñ2(q,q ′; t)〉, while no such
effects are included in δ〈ñ(0)

2 (q,q ′; t)〉. Positive and negative
values of ñexc(q,q ′; t) indicate the existence or absence of
the exciton, respectively. If ñexc(q,q ′; t) has a positive value
within a very short time scale, such an exciton can be deemed
a transient exciton.
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FIG. 2. (Color online) t dependence of δ〈n2(q,q ′; t)〉 and
δ〈n(0)

2 (q,q ′; t)〉 (see the text for the definition) for rs = 5. The
parameters are |q| = |q ′| = kF /2 and |q + q ′| = kF .

IV. APPLICATION TO A JELLIUM MODEL

One of the main results in this study is a derivation for
the exciton density, as shown in Eqs. (23)–(25). As a trivial
example, the application to the exciton in a jellium model
without the screening effect is shown because the lifetime of
such an exciton is infinite (see Sec. IV A). In Sec. IV B, the
transient nature of the exciton is revealed by considering the
screening effect. In Sec. IV C, the effect of the higher-order
perturbation expansion terms is discussed.

A. Without screening effect

Figure 2 shows t dependence of δ〈n2(q,q ′; t)〉 = ∑
σ,σ ′

δ〈n2(q,q ′; t)〉 and δ〈n(0)
2 (q,q ′; t)〉 = ∑

σ,σ ′ δ〈n(0)
2 (q,q ′; t)〉,

where the former is the EH pair density with the attractive
interaction only while the latter is the EH pair density without
both the EH attractive interaction and the screening effect. By
definition, the difference between them is the exciton density
[see Eq. (24)]. The density parameter is set to rs = 5. The
exciton density gradually increases after 1 fs and reaches a
positive constant at t → ∞. Similar behavior is observed for
all rs . These results show the validity of the definition for the
exciton density given in Eqs. (23)–(25).

B. With screening effect

The fundamental properties of the transient exciton are
investigated by changing the density parameter rs and the total
momentums |q + q ′|, in Secs. IVB1 and IVB2, respectively,
and the real-space analysis is performed in Sec. IVB3. Finally,
in Sec. IVB4, the existence of the transient exciton in the
jellium model is discussed.

1. rs dependence

Figure 3 shows the exciton density in a jellium model
calculated using Eq. (23) for rs = 5,10,13, and 15. We set
|q| = |q ′| = |q + q ′|/2 = kF /2, i.e., the total momentum of
the exciton is kF , while the relative momentum is zero. The
screening effect in D̃R

1 (q; ω′) is treated within the random-

-4

-2

0

2

4

ñ e
xc

(q
,q

';t
)

1086420
t [fs]

 rs= 5        rs=10
 rs=13       rs=15

FIG. 3. (Color online) t dependence of ñexc(q,q ′; t) for various
rs . The parameters are |q| = |q ′| = kF /2 and |q + q ′| = kF . Positive
values indicate the existence of the exciton.

phase approximation [12], together with the local-field correc-
tion (LFC). The analytic expression for the dielectric screening
function given in Ref. [15] is used for the LFC [16]. We
compute the integral involving D̃R

2 (q,q ′,σ ′′; ω′) using the
standard Monte Carlo approach. When t is less than 1 fs,
ñexc(q,q ′; t) decreases for all rs . When t is larger than 1 fs,
ñexc(q,q ′; t) begins to increase for large rs . In the case of
rs = 13, ñexc(q,q ′; t) is positive only when t = 2–4 fs, which
can be interpreted as indicating a transient exciton. In the
case of rs = 15, on the other hand, ñexc(q,q ′; t) is positive
when t > 1.8 fs, which is interpreted as evidence of a stable
exciton [17]. This clearly shows a crossover from a transient
to a stable exciton, which is due to the weak screening effect
that occurs in low-density electron gas systems.

2. q dependence

Figure 4 shows the t dependence of ñexc(q,q ′; t) in the case
of rs = 7 for various |q + q ′|. In the initial stage (t ∼ 10 fs),
large |q + q ′|/kF = 0.5–0.7 contributes to exciton formation
while, in the final stage (t > 20 fs), small |q + q ′|/kF = 0.3–
0.5 also contributes to the formation. This leads to an increase
with time in both the average radius and the spatial period of

2.0

1.5

1.0

0.5

0.0

ñ e
xc

(q
,q

';t
)

100806040200
t [fs]

 |q+q'|=0.3kF

 |q+q'|=0.4kF

 |q+q'|=0.5kF

 |q+q'|=0.6kF

 |q+q'|=0.7kF

FIG. 4. (Color online) t dependence of ñexc(q,q ′; t) for various
|q + q ′|. The density parameter is set to rs = 7.
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FIG. 5. (Color online) |q + q ′| dependence of ñexc(q,q ′; t) for
t = 10,25,50, and 75 fs.

the exciton density oscillation in real space, which is a novel
property involving the exciton formation. The Fourier analysis
of the density in space is given below.

3. Real-space analysis

Figure 5 shows a snapshot of |q + q ′| dependence of
ñexc(q,q ′; t) at t = 10,25,50, and 75 fs. At t = 10 fs,
ñexc(q,q ′; t) is positive when 0.42kF � |q + q ′| � 0.71kF and
takes the maximum at |q + q ′| � 0.5kF . As t increases, the
value of ñexc(q,q ′; t) having small |q + q ′| increases: for
example, at t = 75 fs, the peak of ñexc(q,q ′; t) redshifts
and the width of ñexc(q,q ′; t) increases (0.25kF � |q + q ′| �
0.69kF ). To study a real-space distribution of excitons, we use
the Fourier transformation given by

nexc(x,x′; t) =
∫

dq
(2π )3

∫
dq ′

(2π )3

×eiq·(x−x′′)eiq ′ ·(x′−x′′)ñexc(q,q ′; t).

(26)

Let Q and Q′ be the total momentum and relative momentum
of an exciton, respectively, i.e.,

Q = q + q ′, Q′ = q − q ′

2
. (27)

Then, the exciton density can be represented by

nexc(x,x′; t)

=
∫

d Q′

(2π )3
ei Q′ ·(x−x′)

×
[∫

d Q
(2π )3

ei Q·Rñexc

(
Q
2

+ Q′,
Q
2

− Q′; t
)]

≡
∫

d Q′

(2π )3
ei Q′ ·(x−x′)Ñexc(R; Q′; t), (28)

where R = (x + x′ − 2x′′)/2 is the position of the center
of mass and Ñexc(R; Q′; t) is the exciton density in mixed
coordinates R and Q′. In this work, we study Ñexc(R; Q′ =
0; t) only. The case of Q′ = 0 will be studied elsewhere [18].
In a jellium model, the exciton density depends on R = |R|

5

4

3

2

1

0

-1

N
ex

c(
R

,Q
'=

0;
t)

/(
k F

)3 
 [ 

x1
0-3

]

302520151050
kFR

 t=10 fs
 t=25 fs
 t=75 fs

FIG. 6. (Color online) Real-space distribution of Ñexc(R; Q′ =
0; t) for t = 10,25, and 75 fs. The spatial period of the exciton density
oscillation increases with time.

and is written as

Ñexc(R; Q′ = 0; t) =
∫

d Q
(2π )3

ei Q·Rñexc

(
Q
2

,
Q
2

; t

)

= 1

2π2R

∫ ∞

0
dQQ sin(QR)ñexc(Q; t).

(29)

Figure 6 shows the distribution of Ñexc(R; Q′ = 0; t) given by
Eq. (29) for t = 10,25, and 75 fs. At t = 10 fs, the exciton
exists at the region kF R � 5.6, 11.4 � kF R � 17.1, and
23.1 � kF R � 30, although the magnitude of Ñexc(R; Q′ =
0; t) decreases drastically as kF R increases. As t increases, the
magnitude of Ñexc(R; Q′ = 0; t) near R � 0 increases and the
exciton exists at the region kF R � 7 and 14.3 � kF R � 27.5.
This means that both the average radius of the exciton and the
spatial period of the density oscillation in Ñexc(R; Q′ = 0; t)
increase with time. This is due to an increase in the value of
ñexc(q,q ′; t) with small |q + q ′|, as shown in Fig. 5. We expect
that the character of the exciton time evolution in a realistic
material is qualitatively the same as that in a jellium model.

4. Transient exciton regime

As shown in Fig. 4 (for the case of rs = 7), the stable
exciton exists even at t → ∞: the exciton with |q + q ′| =
0.7kF is the transient exciton, whereas those with |q + q ′| =
0.3kF to 0.6kF are the stable exciton. By considering the
parameter range |q + q ′| = 0.1kF –1.0kF , the specific rs in
which the transient exciton exists only has been investigated.
Figure 7 shows t dependence of ñexc(q,q ′; t) for |q + q ′|/kF =
0.3,0.35, and 0.4. The density parameter was set to rs = 4.5.
The transient exciton is clearly observed (positive ñexc only
when t = 5–25 fs), i.e., the exciton density vanishes at t → ∞.
On the other hand, no exciton modes were observed for other
|q + q ′|s because ñexc with such |q + q ′|s is negative. Thus,
for the specific density rs = 4.5, the sudden creation of a
positive charge into a jellium model creates the transient
exciton only. Through the thorough investigation, with the
density parameter rs below 4.0 and above 5.0, no exciton
modes or stable exciton modes were observed, respectively.
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FIG. 7. (Color online) t dependence of ñexc(q,q ′; t) for various
|q + q ′|. The density parameter is set to rs = 4.5.

This is physically reasonable because in such a system having a
high or low electron density the screening becomes complete or
incomplete enough to generate no excitons or stable excitons,
respectively. This is also reasonable because most real metals
have rs = 2–5.

The transient exciton has been observed at the silver surface
by Cui et al. [4]. The present calculation suggests that the
transient exciton can exist in a small range around rs = 4.5.
Based on this result, it could be predicted that the stable exciton
should be observed if the electron density is decreased at the
silver surface. The chemical adsorption at the surface (such as
oxygen adsorption) may be useful to examine the crossover
from the transient to stable exciton.

It should be noted that on the femtosecond time scale the
existence of the transient exciton is limited by the uncertainty
relation between time and energy, i.e., tE � �/2: for
example, when t ∼ 1 fs, we obtain E ∼ 0.33 eV. With
such a large uncertainty, determining the energy of the transient
exciton would be meaningless.

C. Higher-order perturbation expansion

In the DT
2 (x,x ′,x ′′; t − t ′) computation, one may find

(2m + 3)! possible diagrams in the mth order (m is a non-
negative integer) by applying Wick’s theorem [12]. The present
calculation considers up to the first-order contribution of
DT

2 (x,x ′,x ′′; t − t ′) [shown in Figs. 1(c) and 1(d)], which are
the most fundamental components as regards examination of
exciton creation. Note that the inclusion of higher-order terms
(such as Fig. 8) may enhance the magnitude of ñexc(q,q ′; t).
The inclusion of infinite terms leads to nonperturbative
treatment, which is desirable for the complete description of
the exciton. However, it is quite difficult to perform such a
calculation at the present formulation. A new approach for the
nonperturbative treatment has to be developed.

V. SUMMARY

The purpose of this paper was to develop a theory to
describe the dynamics of excitons with time evolutions that
cannot be studied using the effective-mass equation and the
standard BSE with stationary interaction potential. The linear
response of the EH pair density to an external perturbation

x x′

x″

x1 x1′

x2 x2′

x x′

x″

x1 x1′

x2 x2′

x3′
x3

FIG. 8. The second- and third-order contribution to
DT

2 (x,x ′,x ′′; t − t ′).

was examined. By considering the electron-hole attractive
interaction and the screening effect, a definition of exciton
density in a first-principles context was derived. Further,
the application of the proposed theory to a jellium model
confirmed the existence of transient excitons and unveiled the
mechanism of exciton formation. Investigating the associated
band structure, spin, phonon, and quantum size effects will
provide an enhanced understanding of the dynamics of
excitons in condensed-matter systems.
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APPENDIX A: ZEROTH-ORDER CONTRIBUTION

First, we calculate the zeroth-order contributions in
D̃T

2 (q,q ′,σ ′′; ω) via the Fourier transformations. By using
the interaction picture [ψI (x; t) = eiH0t/�ψ(x)e−iH0t/�] (the
subscript I is omitted for simplicity) and Wick’s theorem, the
time-ordered product

〈N,0|T[ψ†(x ′; t)ψ(x; t)ψ†(x; t)ψ(x ′; t)ψ†(x ′′; t ′)ψ(x ′′; t ′)]

× |N,0〉 (A1)

can be decomposed into six terms:

+ [ψ†(x ′; t)ψ(x; t)]c[ψ†(x; t)ψ(x ′; t)]c[ψ†(x ′′; t ′)ψ(x ′′; t ′)]c,

− [ψ†(x ′; t)ψ(x; t)]c[ψ†(x; t)ψ(x ′′; t ′)]c[ψ†(x ′′; t ′)ψ(x ′; t)]c,

− [ψ†(x ′; t)ψ(x ′; t)]c[ψ†(x; t)ψ(x; t)]c[ψ†(x ′′; t ′)ψ(x ′′; t ′)]c,

+ [ψ†(x ′; t)ψ(x ′; t)]c[ψ†(x; t)ψ(x ′′; t ′)]c[ψ†(x ′′; t ′)ψ(x; t)]c,

+ [ψ†(x ′; t)ψ(x ′′; t ′)]c[ψ†(x; t)ψ(x; t)]c[ψ†(x ′′; t ′)ψ(x ′; t)]c,

− [ψ†(x ′; t)ψ(x ′′; t ′)]c[ψ†(x; t)ψ(x ′; t)]c[ψ†(x ′′; t ′)ψ(x; t)]c,

(A2)

where [· · · ]c denotes the contraction (see Ref. [12]), which
is expressed by the noninteracting Green’s function via the
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relations

[ψ†(x ′; t)ψ(x ′′; t ′)]c = −iG(0)(x ′′,x ′; t ′ − t), (A3)

[ψ†(x; t)ψ(x ′; t)]c = −iG(0)(x ′,x; t − t+). (A4)

The Fourier transformation in time of Eq. (A2) mul-
tiplied by (−i) yields the zeroth-order contributions
D

T(0)
2 (x,x ′,x ′′; ω). The first and third terms in Eq. (A2)

give ImD
T(0)
2 (x,x ′,x ′′; ω) ∝ δ(ω), which does not con-

tribute δ〈ñ2(q,q ′; t)〉 because (1 − cos ωt)/ω → 0 [see
Eqs. (21) and (22)]. Thus, the zeroth-order contribution
D

T(0)
2 (x,x ′,x ′′; ω) is expressed by the sum of four terms:

D
T(0)
2 (x,x ′,x ′′; ω) =

4∑
i=1

D
T(0−i)
2 (x,x ′,x ′′; ω), (A5)

where

D
T(0−1)
2 (x,x ′,x ′′; ω) = δσσ ′δσ ′′σ δσ ′σ ′′(−1)

(
i

occ∑
α

φασ (x)φ∗
ασ (x′)

)∫
dω′

2π
G

(0)
σ ′′ (x′′,x; ω′)G(0)

σ ′ (x′,x′′; ω + ω′),

D
T(0−2)
2 (x,x ′,x ′′; ω) = δσ ′σ ′δσ ′′σ δσσ ′′

(
i

occ∑
α

|φασ ′(x′)|2
) ∫

dω′

2π
G

(0)
σ ′′ (x′′,x; ω′)G(0)

σ (x,x′′; ω + ω′),

D
T(0−3)
2 (x,x ′,x ′′; ω) = δσσ δσ ′′σ ′δσ ′σ ′′

(
i

occ∑
α

|φασ (x)|2
) ∫

dω′

2π
G

(0)
σ ′′ (x′′,x′; ω′)G(0)

σ ′ (x′,x′′; ω + ω′),

D
T(0−4)
2 (x,x ′,x ′′; ω) = δσ ′σ δσ ′′σ ′δσσ ′′(−1)

(
i

occ∑
α

φασ ′(x′)φ∗
ασ ′(x)

) ∫
dω′

2π
G

(0)
σ ′′ (x′′,x′; ω′)G(0)

σ (x,x′′; ω + ω′).

The integration for ω′ can be evaluated by using the expression∫
dω′

2π
G

(0)
σ ′ (x′,x′′; ω′)G(0)

σ (x,x′′′; ω + ω′) = i

emp∑
c

occ∑
v

[φcσ (x)φvσ ′(x′)φ∗
vσ ′(x′′)φ∗

cσ (x′′′)
ω − (

ωkc
− ωkv

) + iδ
− φvσ (x)φcσ ′(x′)φ∗

cσ ′(x′′)φ∗
vσ (x′′′)

ω − (
ωkv

− ωkc

) − iδ

]
,

(A6)

the imaginary part of which is calculated by using the identity (ω ± iδ)−1 = Pω−1 ∓ iπδ(ω) valid for real ω. In the following,
we calculate these four terms relevant to an increase in the EH pair density.

1. First term

The contribution from D
T(0−1)
2 (x,x ′,x ′′; ω) corresponds to the that from Fig. 1(b). By using Eq. (15), D

T(0−1)
2 (x,x ′,x ′′; ω) is

written as

D
T(0−1)
2 (x,x ′,x ′′; ω) = δσσ ′δσ ′′σ δσ ′σ ′′

∫
dkα

(2π )3

∫
dkc

(2π )3

∫
dkv

(2π )3
θH (kF − |kα|)θH (|kc| − kF )θH (kF − |kv|)

×
[

ei(kα−kv )·(x−x′′)ei(kc−kα )·(x′−x′′)

ω − (
ωkc

− ωkv

) + iδ
− ei(kα−kc)·(x−x′′)ei(kv−kα)·(x′−x′′)

ω − (
ωkv

− ωkc

) − iδ

]
. (A7)

The Fourier transformation in space of D
T(0−1)
2 (x,x ′,x ′′; ω) yields

D̃
T(0−1)
2 (q,q ′,σ ′′; ω) = δσσ ′δσ ′′σ δσ ′σ ′′

∫
dkv

(2π )3
θ (kF − |kv|)

×
[

θH (|kv + q + q ′| − kF )θH (kF − |kv + q|)
ω − (

ωkv+q+q ′ − ωkv

) + iδ
− θH (|kv − q − q ′| − kF )θH (kF − |kv − q ′|)

ω − (
ωkv

− ωkv−q−q ′
) − iδ

]
,

(A8)

the imaginary part of which is given as

ImD̃
T(0−1)
2 (q,q ′,σ ′′; ω) = δσσ ′δσ ′′σ δσ ′σ ′′(−π )

∫
dkv

(2π )3
θ (kF − |kv|)

×[
θH (|kv + q + q ′| − kF )θH (kF − |kv + q|)δ(ω − ωkv+q+q ′ + ωkv

)
+θH (|kv − q − q ′| − kF )θH (kF − |kv − q ′|)δ(ω − ωkv

+ ωkv−q−q ′
)]

. (A9)
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Since ωkc
− ωkv

> 0 and ω > 0, the second term in the square bracket of this equation vanishes. Thus, we obtain

ImD̃
T(0−1)
2 (q,q ′,σ ′′; ω) = δσσ ′δσ ′′σ δσ ′σ ′′(−π )

∫
dkv

(2π )3
θH (kF − |kv|)θH (|kv + q + q ′| − kF )θH (kF − |kv + q|)

×δ

(
ω − �|kv + q + q ′|2

2m
+ �k2

v

2m

)
. (A10)

ImD̃
T(0−1)
2 (q,q ′,σ ′′; ω) has a negative sign and depends on both the magnitude of vectors, |q + q ′| and |q|, and the angle θ

between q + q ′ and q.

2. Second and third terms

Similarly to the derivation of D̃
T(0−1)
2 (q,q ′,σ ′′; ω), we obtain the imaginary part of D̃

T(0−2)
2 (q,q ′,σ ′′; ω) for ω > 0:

ImD̃
T(0−2)
2 (q,q ′,σ ′′; ω) = δσ ′σ ′δσ ′′σ δσσ ′′

mk3
F δ(q ′)
6π�

∫
dkθH (|k + q| − kF )θH (kF − |k|)δ

(
k · q + |q|2

2
− mω

�

)
. (A11)

The calculation of the integral for k is the same as that of the noninteracting polarization function (see Ref. [12]). The third term
D̃

T(0−3)
2 (q,q ′,σ ′′; ω) is obtained by transforming q ↔ q ′ for the expression in D̃

T(0−2)
2 (q,q ′,σ ′′; ω). If we assume that the total

momentum of the exciton is not zero (i.e., |q + q ′| = 0) and the electron and hole move along the same direction (i.e., q//q ′), q
and q ′ are not equal to zero. In this assumption, these terms, D̃

T(0−2)
2 (q,q ′,σ ′′; ω) and D̃

T(0−3)
2 (q,q ′,σ ′′; ω), do not contribute to

an increase in the EH pair density due to the presence of the factors δ(q ′) and δ(q).

3. Fourth term

The contribution from D
T(0−4)
2 (x,x ′,x ′′; ω) corresponds to that from Fig. 1(a). This term can be obtained by transforming

q ↔ q ′ for the expression in D̃
T(0−1)
2 (q,q ′,σ ′′; ω). Thus, the imaginary part of D̃

T(0−4)
2 (q,q ′,σ ′′; ω) for ω > 0 is given as

ImD̃
T(0−4)
2 (q,q ′,σ ′′; ω) = δσ ′σ δσ ′′σ ′δσσ ′′(−π )

∫
dkv

(2π )3
θH (kF − |kv|)θH (|kv + q + q ′| − kF )θH (kF − |kv + q ′|)

×δ

(
ω − �|kv + q + q ′|2

2m
+ �k2

v

2m

)
. (A12)

ImD̃
T(0−4)
2 (q,q ′,σ ′′; ω) has a negative sign and depends on

both the magnitude of vectors, |q + q ′| and |q ′|, and the angle
θ between q + q ′ and q ′.

4. Formulas for the integral for the zeroth-order terms

The integral that appeared in ImD̃
T(0−1)
2 (q,q ′,σ ′′; ω) and

ImD̃
T(0−4)
2 (q,q ′,σ ′′; ω) can be calculated analytically. Now we

focus on the computation of ImD̃
T(0−4)
2 (q,q ′,σ ′′; ω). The result

for ImD̃
T(0−1)
2 (q,q ′,σ ′′; ω) will be obtained by replacing q ↔

q ′ in the result for ImD̃
T(0−4)
2 (q,q ′,σ ′′; ω) shown below.

The method for calculating the noninteracting polarization
function (see Ref. [12]) is useful for performing the integral of
kv in Eq. (A12). The δ function in Eq. (A12) is modified into

δ

(
ω − �|kv + q + q ′|2

2m
+ �k2

v

2m

)

= m

�
δ

[
kv · (q + q ′) + |q + q ′|2

2
− mω

�

]
. (A13)

Since the vector kv satisfying the equation

kv · (q + q ′) + |q + q ′|2
2

− mω

�
= (kv − k0) · (q + q ′)

= 0 (A14)

represents the plane perpendicular to the vector (q + q ′), the
integral for kv represents the area of the intersection of a part
of the Fermi sphere with the plane (kv − k0) · (q + q ′) = 0,
where k0 is given by

k0 = z0
q + q ′

|q + q ′| , z0 = mω

�|q + q ′| − |q + q ′|
2

. (A15)

The part of the Fermi sphere that contributes the integral is
determined by the Heaviside step functions θH in Eq. (A12).
To perform the integral for kv , we first consider three
spheres:

S0 : x2 + y2 + z2 = k2
F ,

S1 : (x + |q ′| sin θ )2 + y2 + (z + |q ′| cos θ )2 = k2
F ,

S2 : x2 + y2 + (z + |q + q ′|)2 = k2
F .
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Next, we define the circles C0, C1, and C2 as the inter-
section of the plane z = z0 with the sphere S0, S1, and S2,
respectively:

C0 : x2 + y2 = r2
0 ,

C1 : (x + |q ′| sin θ )2 + y2 = r2
1 ,

C2 : x2 + y2 = r2
2 ,

where

r0 =
√

k2
F − z2

0,

r1 =
√

k2
F − (z0 + |q ′| cos θ )2,

r2 =
√

k2
F − (z0 + |q + q ′|)2.

If we define Iij as the area of the intersection of the sphere Si

with Sj , we obtain

I00 = π
(
k2
F − z2

0

)
,

I11 = π
[
k2
F − (z0 + |q ′| cos θ )2],

I22 = π
[
k2
F − (z0 + |q + q ′|)2)

]
,

I01 = 2(I−
01 + I+

01),

I12 = 2(I−
12 + I+

12),

where

I−
01 =

∫ x01

x−
01

√(
k2
F − z2

0

) − x2dx,

I+
01 =

∫ x+
01

x01

√
k2
F − (z0 + |q ′| cos θ )2 − (x + |q ′| sin θ )2dx,

x−
01 = −

√
k2
F − z2

0,

x+
01 = −|q ′| sin θ +

√
k2
F − (z0 + |q ′| cos θ )2,

x01 = −|q ′| + 2z0 cos θ

2 sin θ
,

and

I−
12 =

∫ x12

x−
12

√
k2
F − (z0 + |q + q ′|)2 − x2dx,

I+
12 =

∫ x+
12

x12

√
k2
F − (z0 + |q ′| cos θ )2 − (x + |q ′| sin θ )2dx,

x−
12 = −

√
k2
F − (z0 + |q + q ′|)2,

x+
12 = −|q ′| sin θ +

√
k2
F − (z0 + |q ′| cos θ )2,

x12 = |q + q ′|2 + 2z0|q + q ′| − 2|q ′|z0 cos θ − |q ′|2
2|q ′| sin θ

.

Here x01 and x12 are the solutions of simultaneous equations
C0 and C1 and equations C1 and C2, respectively. The
definite integrals of I±

01 and I±
12 are calculated analytically. By

using these expressions, the value of ImD̃
T(0−4)
2 (q,q ′,σ ′′; ω) is

expressed by

ImD̃
T(0−4)
2 (q,q ′,σ ′′; ω) = δσ ′σ δσ ′′σ ′δσσ ′′

[
− mπ

(2π )3�|q + q ′|
]

×
∑
ij

αij Iij , (A16)

where αij = −1,0,1, the value of which is determined by |q +
q ′|, |q ′|, and θ .

APPENDIX B: FIRST-ORDER CONTRIBUTION

In this section, we treat the electron-electron interaction
Hamiltonian H1 in Eq. (8) as a perturbation and derive the first-
order contribution to DT

2 (x,x ′,x ′′; t − t ′) shown in Figs. 1(c)
and 1(d). The contribution from Fig. 1(c) is given by

(−1)(−i)

(
− i

�

)
1

2

∫
dx1

∫
dx ′

1

∫
dt1

∫
dt ′1V (x1 − x′

1)δ(t1 − t ′1)

× [−iG(0)(x1,x
′′; t1 − t ′)][−iG(0)(x,x1; t − t1)][−iG(0)(x ′,x; t − t+)]

× [−iG(0)(x ′
1,x

′; t ′1 − t)][−iG(0)(x ′′,x ′
1; t ′ − t ′1)], (B1)

where (−1) denotes a closed loop and (−i) comes from the definition of the time-ordered correlation function. The Fourier
transformation in time of Eq. (B1) yields

(−1)(−i)6

(
− i

�

)
1

2

∫
dx1

∫
dx ′

1V (x1 − x′
1)δσ1σ ′′δσσ1δσ ′σ δσ ′

1σ
′δσ ′′σ ′

1

(
i

occ∑
α

φασ ′(x′)φ∗
ασ ′(x)

)

×
∫

dω1

2π

∫
dω2

2π
G(0)(x1,x′′; ω1)G(0)(x,x1; ω2)G(0)(x′

1,x
′; ω2 − ω)G(0)(x′′,x′

1; ω1 − ω). (B2)

The Fourier transformation in space of Eq. (B2) yields

δσ ′′σ δσ ′σ δσ ′σ ′′

(
− 1

2�

) ∫
dkαdkv

(2π )6
θ (|kv + q + q ′| − kF )θ (kF − |kv|)θ (kF − |kα|)Ṽ (kα − kv − q ′)

×
[

θ (kF − |kα − q ′|)θ (|kα + q| − kF )(
ω − ωkv+q+q ′ + ωkv

+ iδ
)(

ω − ωkα+q + ωkα−q ′ + iδ
) − θ (kF − |kα + q|)θ (|kα − q ′| − kF )(

ω − ωkv+q+q ′ + ωkv
+ iδ

)(
ω − ωkα+q + ωkα−q ′ − iδ

)
]
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+ δσ ′′σ δσ ′σ δσ ′σ ′′

(
− 1

2�

) ∫
dkαdkv

(2π )6
θ (|kv − q − q ′| − kF )θ (kF − |kv|)θ (kF − |kα|)Ṽ (kα − kv + q)

×
[
− θ (kF − |kα − q ′|)θ (|kα + q| − kF )(

ω − ωkv
+ ωkv−q−q ′ − iδ

)(
ω − ωkα+q + ωkα−q ′ + iδ

) + θ (kF − |kα + q|)θ (|kα − q ′| − kF )(
ω − ωkv

+ ωkv−q−q ′ − iδ
)(

ω − ωkα+q + ωkα−q ′ − iδ
)
]
.

(B3)

Since we consider ω > 0, the imaginary part of Eq. (B3) is

δσ ′′σ δσ ′σ δσ ′σ ′′(I1 + I2 + I3 + I4), (B4)

where

I1 =
(

− 1

2�

) ∫
dkαdkv

(2π )6
θ (|kv + q + q ′| − kF )θ (kF − |kv|)θ (kF − |kα|)Ṽ (kα − kv − q ′)

×(−π )P
(

θ (kF − |kα − q ′|)θ (|kα + q| − kF )

ω − ωkv+q+q ′ + ωkv

)
δ
(
ω − ωkα+q + ωkα−q ′

)
, (B5)

I2 =
(

− 1

2�

) ∫
dkαdkv

(2π )6
θ (|kv + q + q ′| − kF )θ (kF − |kv|)θ (kF − |kα|)Ṽ (kα − kv − q ′)

×(−π )P
(

θ (kF − |kα − q ′|)θ (|kα + q| − kF )

ω − ωkα+q + ωkα−q ′

)
δ
(
ω − ωkv+q+q ′ + ωkv

)
, (B6)

I3 =
(

− 1

2�

) ∫
dkαdkv

(2π )6
θ (|kv + q + q ′| − kF )θ (kF − |kv|)θ (kF − |kα|)Ṽ (kα − kv − q ′)

×(+π )P
(

θ (kF − |kα + q|)θ (|kα − q ′| − kF )

ω − ωkα+q + ωkα−q ′

)
δ
(
ω − ωkv+q+q ′ + ωkv

)
, (B7)

I4 =
(

− 1

2�

)∫
dkαdkv

(2π )6
θ (|kv − q − q ′| − kF )θ (kF − |kv|)θ (kF − |kα|)Ṽ (kα − kv + q)

× (+π )P
(

θ (|kα + q| − kF )θ (kF − |kα − q ′|)
ω − ωkv

+ ωkv−q−q ′

)
δ
(
ω − ωkα+q + ωkα−q ′

)
. (B8)

The integral for kα and kv is computed by using the standard
Monte Carlo approach (108 sampling points were used.). To
obtain the contribution from Fig. 1(d), the replacement q ↔ q ′

is needed in these expressions of Ij (j = 1,2,3,4). Finally, we
can calculate ImD̃R

2 (q,q ′,σ ′′; ω) that appeared in Eqs. (21)
and (22).
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in ultrafast pump-probe spectroscopies of surface bands, Phys.
Status Solidi B 247, 1907 (2010).

[10] L. J. Sham and T. M. Rice, Many-particle derivation of the
effective-mass equation for the Wannier exciton, Phys. Rev. 144,
708 (1966).
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