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Using quantum Monte Carlo, we study the nonequilibrium transport of magnetization in large open strongly
correlated quantum spin- 1

2 systems driven by purely dissipative processes that conserve the uniform or staggered
magnetization, disregarding unitary Hamiltonian dynamics. We prepare both a low-temperature Heisenberg
ferromagnet and an antiferromagnet in two parts of the system that are initially isolated from each other. We
then bring the two subsystems in contact and study their real-time dissipative dynamics for different geometries.
The flow of the uniform or staggered magnetization from one part of the system to the other is described by a
diffusion equation that can be derived analytically.
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Simulating the real-time evolution of large strongly cor-
related quantum systems is notoriously difficult due to the
dimension of the Hilbert space, which grows exponentially
with the system size. In this case, Monte Carlo methods
are usually not applicable because importance sampling is
prevented by severe sign or complex phase problems [1].
Whereas in Euclidean time some severe sign problems have
been solved using the meron-cluster algorithm [2,3] or the
fermion bag method [4–6], until recently real-time simulations
of quantum systems have been limited to small volumes
that are accessible to exact diagonalization or to gapped
one-dimensional (1D) systems to which the time-dependent
density-matrix renormalization group [7,8] can be applied.
Even then, due to the growth of entanglement, only moderate
time intervals can be investigated [9–15]. Dynamical phenom-
ena in nonequilibrium quantum systems have been studied
in Refs. [16–27]. Recently, we have developed a new Monte
Carlo method that allows us to simulate the real-time evolution
of large strongly coupled quantum systems in any dimension
for an arbitrary amount of time for specific dynamics driven by
purely dissipative processes that are described by a Lindblad
equation [28,29]. In particular, the unitary time evolution
driven by a Hamiltonian, which would give rise to a severe
complex phase problem, has been replaced by a dissipative
process. Still severe sign problems arise even for the purely
dissipative dynamics, but they have been solved analytically by
identifying exact cancellations in the corresponding real-time
path integral. Purely dissipative processes play an important
role in quantum information processing, for example, in order
to prepare specific states for quantum computation [30–34] or
entanglement generation [35]. The control of quantum systems
by measurements has been investigated in Refs. [36,37].
Ultracold atoms in optical lattices or trapped ions provide
platforms in which such dynamics can be engineered in
quantum simulation experiments [38–41].

In this Rapid Communication, our primary goal is not
yet to make contact with concrete cold atom experiments.
Instead, we demonstrate that our ability to classically simulate
the real-time dynamics of engineered dissipative processes in
large open quantum spin systems puts us in a unique position
to study transport phenomena far away from equilibrium.
Such processes thus provide a bridge between classical and

quantum simulations of real-time quantum dynamics. Here
we investigate a low-temperature Heisenberg ferromagnet and
an antiferromagnet which are initially isolated from each other
in two separate parts of the volume. The two parts, which act
as large reservoirs of uniform or staggered magnetization, are
then put in contact and evolve in time according to a dissipative
process which either conserves the uniform magnetization or
conserves the staggered magnetization. The corresponding
conserved quantity then flows from its reservoir into the
other half of the system through an opening whose size
we vary. The nonequilibrium diffusive processes are driven
by the gradient of the corresponding conserved quantity.
They come to an end only when the staggered or uniform
magnetization is homogeneously distributed throughout the
entire system. Remarkably, certain aspects of the dynamics
are described by a classical diffusion equation which can be
derived analytically from the underlying dissipative quantum
dynamics. Significantly extending previous work [28,29], the
current setting allows us to study the diffusion process of the
conserved quantity in real space.

We consider systems of quantum spins 1
2 on a square

lattice, which are dissipatively coupled to their environment.
The dynamics is characterized by a set of Lindblad operators
Lok

that obey (1 − εγ )1 + ∑
k,ok

L
†
ok

Lok
= 1, where ε is a

small time step [42–44]. The Lindblad operators induce
quantum jumps, and γ determines their probability per unit
time. We will analytically derive the relation between the
parameter γ and the diffusion coefficient of the classical
diffusion equation. The time evolution of the density matrix is
then determined by the Lindblad equation,

∂tρ = 1

ε

∑
k,ok

(
Lok

ρL†
ok

− 1

2
L†

ok
Lok

ρ − 1

2
ρL†

ok
Lok

)
. (1)

We will consider two different dissipative processes whose
jump operators Lok

= √
εγPok

are determined by operators
Pok

that project on the eigenstates of an observable O

with eigenvalue ok . For the first process (process 1), which
conserves the uniform magnetization vector, the observable is
the total spin O(1) = (�Sx + �Sy)2 of a pair of spins �Sx and �Sy

located on neighboring lattice sites x and y. The projection
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operators corresponding to total spin 1 or 0 are then given by

P1 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1

2
1
2 0

0 1
2
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2 0

0 0 0 1

⎞
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0 0 0 0
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2 − 1
2 0

0 − 1
2

1
2 0

0 0 0 0

⎞
⎟⎟⎟⎠.

(2)
As we have shown in Refs. [28,29], the conservation of the total
spin in this dissipative process implies that the low-momentum
modes of the magnetization equilibrate very slowly. The
second dissipative process (process 2), which conserves the
three-component of the staggered magnetization, is character-
ized by the observable O(2) = S+

x S+
y + S−

x S−
y with the three

projection operators,
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In this case, as we showed in Ref. [29], the high-momentum
modes of the magnetization [namely, those with momenta near
the conserved (π,π ) mode representing the staggered magneti-
zation] equilibrate very slowly. Both dissipative processes ulti-
mately converge to a trivial infinite-temperature density matrix
that is proportional to the unit matrix, at least within the sector
defined by the value of the corresponding conserved quantity.

As discussed in detail in Refs. [28,29], the Lindblad
equation can be represented by a path integral consisting of a
Euclidean time contour that defines an initial density matrix in
thermal equilibrium and a real-time Schwinger-Keldysh con-
tour [45,46] that leads from an initial time t0 to a final time tf
and back. Remarkably, the probability to reach a specific final
state |f 〉 can be computed very efficiently with a loop-cluster
algorithm, similar to the one used in Euclidean time [47–49].
The cluster rules have been discussed in detail in Ref. [29].

We consider a spin- 1
2 Heisenberg model with Hamiltonian

H = J
∑

〈xy〉 �Sx · �Sy . In order to prepare an initial density
matrix we consider an L × 2L lattice that is divided into
two subsystems of size L × L each with individual periodic
boundary conditions. One system is antiferromagnetic (with
J >0), and the other is ferromagnetic and has the opposite
exchange coupling. Both subsystems are initialized at the same
temperature. The initial density matrix is then subjected to one
of the two dissipative real-time processes. During the real-time
process the two subsystems are put in contact through two
openings of size L′ � L on opposite sides of both systems.
This is achieved by changing the original boundary conditions
with period L on two sets of L′ links. These links connect
the two subsystems so that the total system now has boundary
conditions with period 2L in a strip of transverse size L′ and
the original pair of boundary conditions with period L on
the remaining strip of transverse size L − L′. The transverse
direction of size L always has ordinary periodic boundary
conditions. Using the loop-cluster algorithm we calculate the
expectation value of the three-component for each spin S3

x at

the time tf when the three-components of all spins are finally
being measured. The data are separately analyzed for each total
value of the conserved uniform or staggered magnetization. By
using an improved estimator similar to the one constructed in
Refs. [50,51], we increase the statistics by a factor that grows
exponentially with the number of loop clusters. This improves
the accuracy of the numerical data very substantially and leads
to the results depicted in Fig. 1 (uniform magnetization) and
Fig. 2 (staggered magnetization). As we have discussed in de-
tail in Refs. [28,29], the dissipative processes give rise to differ-
ent time scales. Whereas process 1 quickly destroys the initial
antiferromagnetic order over a time scale of 1/γ , the conserved
uniform magnetization undergoes a much slower diffusion pro-
cess. In particular, in process 1 the magnetization modes with
low momentum p equilibrate only over time scales 1/(γ a2p2),
where a is the lattice spacing. Similarly, in process 2,
which conserves the staggered magnetization, the modes with
momenta near (π,π ) are severely slowed down. The dissipative
dynamics can be characterized as a heating process that affects
different modes at different time scales. Although the underly-
ing diffusive processes are quantum mechanical, the resulting
expectation values of the conserved uniform or staggered
magnetization are described by a classical diffusion equation,

∂tρx(t) = γ

2

∑
i

[ρx+aî(t) − 2ρx(t) + ρx−aî(t)]. (4)

Here ρx(t) is the expectation value of the conserved quantity
at the lattice site x at time t , and î is the unit vector in the i

direction. Interestingly, the classical diffusion equation can
be derived analytically from the underlying quantum spin
dynamics, and the diffusion coefficient is determined by the
parameter γ that drives the Lindblad process of Eq. (1). The
lattice diffusion Eq. (4) results from the continuity equation,

∂tρx(t) + 1

a

∑
i

[jx,i(t) − jx−aî,i(t)] = 0 (5)

combined with the lattice gradient equation,

jx,i(t) = −aγ

2
[ρx+aî(t) − ρx(t)]. (6)

Here jx,i(t) is the conserved (uniform or staggered)
magnetization current density that flows from the lattice
site x to the neighboring lattice site x + aî at time t . The
continuity Eq. (5) and the gradient Eq. (6) can be derived from
the underlying real-time path integral that was discussed in
detail in Refs. [28,29]. The corresponding spin configurations
together with the resulting values for ρx(t) and jx,i(t) are
illustrated in Fig. 3 for the two dissipative processes.

We have also investigated the time dependence of the
total uniform magnetization in the first subsystem (initially
ferromagnetic) as a function of the opening size L′ in
dissipative process 1 (cf. Fig. 4). The final state, for which
the magnetization is homogeneously distributed throughout
the entire system, is reached exponentially at long times. The
relaxation rate then depends linearly on the opening size L′
over a wide range of values of L′.

For the largest possible size of openings L′ = L, the
diffusion equation reduces to a 1D problem which can even be
solved analytically. The resulting profile of the magnetization
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FIG. 1. (Color online) Real-time evolution of the uniform mag-
netization on a 32 × 64 lattice with an opening of size L′ = 4a for a
total uniform magnetization value of Mu = 1

2 (L/a)2 = 512 at initial
temperature βJ = 80. Typical configurations (left) and expectation
values of the uniform magnetization (right) at time t = 0 (top), 50/γ

(middle), and 500/γ (bottom).

FIG. 2. (Color online) Real-time evolution of the staggered mag-
netization on a 32 × 64 lattice with an opening of size L′ = 4a for a
total staggered magnetization value of Ms = 3

8 (L/a)2 = 384 at initial
temperature βJ = 80. Typical configurations (left) and expectation
values of the staggered magnetization (right) at time t = 0 (top), 50/γ

(middle), and 500/γ (bottom).
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FIG. 3. Configurations of two neighboring spins evolving in
time, together with the resulting values for ρx(t) and jx,i(t) for the
dissipative processes 1 and 2, that conserve the uniform and staggered
magnetization, respectively. The current is driven by the gradient of
the corresponding density.

density, illustrated in Fig. 5, is given by

ρx(t) = ρ0

2

2L/a−1∑
n=1(n odd)

a sin
[

πn
2L

(2x + a)
]

L sin
(

πna
2L

)

× exp

[
− 2γ sin2

(
πna

2L

)
t

]
+ ρ0

2
. (7)

Certain features of the dissipative processes discussed here
resemble classical physics. For example, if finally all spins
are projected along the three-axis at the end of the real-time
evolution, the spin configurations on the two branches of
the Keldysh contour become identical [28,29], and their
evolution reduces to a Kawasaki dynamics [52] (cf. Fig. 3),

FIG. 4. (Color online) Real-time evolution of the total uniform
magnetization in the first subsystem M for different values of L′

[L = 32a, total uniform magnetization of Mu = 1
2 (L/a)2 = 512].

Inset: Late-time relaxation rate as a function of L′.

FIG. 5. (Color online) The 1D profile of the uniform magnetiza-
tion density (L′ = L = 32a) evolves from a step function at the initial
time to a uniform distribution at late times.

which can be captured by a classical diffusion equation. Other
aspects of the same dynamics, including the time evolution
of entanglement, do not have this feature, thus underscoring
the quantum nature of the corresponding real-time processes.
In particular, whereas the expectation value of the conserved
quantity obeys a classical diffusion equation, its probability
distribution can only be calculated quantum mechanically.
We emphasize that the presented method is not restricted
to probing only diagonal elements of the density matrix.
Most notably, two-point correlation functions reflecting
off-diagonal entries of the density matrix could also be
measured very efficiently via improved estimators [53].

It would be most interesting to investigate the
nondissipative pure Hamiltonian dynamics of large closed
quantum systems. Due to very severe complex phase problems
this is most likely impossible on a classical computer. On
the other hand, quantum simulators, for example, using
ultracold atoms in optical lattices, are ideally suited for such
investigations. It is conceivable to experimentally design a
dissipative environment which acts as a projector on singlet
and triplet states (process 1) with current technology [54],
whereas the realization of process 2 is probably more
involved. On the other hand, as we have shown, engineered
purely dissipative processes are accessible to very efficient
real-time simulation of large open quantum systems using
classical computers. Such real-time processes thus provide
a bridge between classical and quantum simulation. It will
be most interesting to explore other processes, including
a weakly coupled Hamiltonian or non-Hermitian Lindblad
operators, in order to explore the territory connecting classical
and quantum simulations of quantum dynamics in real time.
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M-003-004-MY3, from the Schweizerische Nationalfonds
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the European Research Council under the European Union’s
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