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In this work, we present an analytical theory of strongly correlated Wigner crystals (WCs) in the lowest
Landau level (LLL) by constructing an approximate, but accurate effective two-body interaction for composite
fermions (CFs) participating in the WCs. This requires integrating out the degrees of freedom of all surrounding
CFs, which we accomplish analytically by approximating their wave functions by delta functions. This method
produces energies of various strongly correlated WCs that are in excellent agreement with those obtained from
the Monte Carlo simulation of the full CF crystal wave functions. We compute the compressibility of the strongly
correlated WCs in the LLL and predict discontinuous changes at the phase boundaries separating different crystal
phases.
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Wigner predicted more than 80 years ago [1] that, when
the interaction energy is dominant over the kinetic energy,
electrons form a crystal, which is called a Wigner crystal
(WC) after its originator. One possible way of suppressing
the kinetic energy relative to the interaction energy is via
the application of a strong magnetic field to two-dimensional
electron systems [2], which generates a fascinating series
of various emergent quantum phases. The most celebrated
examples are the fractional quantum Hall states [3], where
new emergent quasiparticles called composite fermions (CFs)
form the quantum Hall liquid states [4,5]. The quantum Hall
liquid states are more effective in minimizing the interaction
energy than WCs for a range of filling factors that is not too
low. Nevertheless, WCs are expected to occur at sufficiently
low filling factors. Indeed, insulating states observed at filling
factor ν < 1/5 are interpreted as pinned WCs [6–20]. More
recently, indications of the existence of a WC in the lowest
Landau level (LLL) have been seen through commensura-
bility magnetoresistance oscillations in bilayer Hall systems
composed of a CF sea in one layer and a WC in the other [21].

Numerous theoretical studies have investigated the nature
of WCs in the LLL [22–37]. Initially, Maki and Zotos [22]
considered an uncorrelated Hartree-Fock WC of electrons,
which was improved upon by Lam and Girvin [23] by
incorporating correlations. In view of the success of the CF
theory, Yi and Fertig [27] proposed a strongly correlated WC
composed of CFs, which was subsequently shown by Chang
et al. [33] to provide an accurate description at low filling
factors (ν � 1/5). Despite these extensive theoretical works,
the calculation of a precise phase diagram of quantum Hall
liquids versus CF crystals (CFCs) remained stalled for many
years due to difficulties in obtaining the energy of CFCs in
the thermodynamic limit accurately. This issue was resolved
in a recent work [38] inspired by the Thomson problem [39].
Here, the CFC wave functions are constructed in the spherical
geometry by placing the WC wave packet centers at the
locations that minimize the Coulomb energy of N charged
point particles on the surface of a sphere. Locally, these

*kpark@kias.re.kr

minimum energy positions resemble the hexagonal lattice,
which is the minimum energy symmetry for a classical 2D
electron crystal [40]. This allows a precise investigation of the
CFC wave functions up to a fairly large system size (N ∼ 100)
[38].

The Monte Carlo (MC) simulation of the CFC wave func-
tions is computationally quite expensive and rather difficult
to implement. Furthermore, it turns out that even though the
energy obtained from this method enables a determination
of the phase diagram, it is not sufficiently accurate to allow
an evaluation of quantities such as compressibility, which is
related to the second derivative of the energy. We develop in
this work an analytical theory of the CFCs by constructing
an accurate effective two-body interaction, which is based
on the two-body wave function of CFs participating in the
CFCs. This requires integrating out the degrees of freedom
of all surrounding CFs, which we accomplish analytically by
approximating their wave functions as delta functions. We
call this approach the “renormalized two-body formalism,” to
be contrasted with the “isolated two-body formalism” where
the effects of all surrounding CFs are neglected. The CFC
energies obtained from the renormalized two-body formalism
are in excellent agreement with those obtained from the
MC simulation of the full CFC wave functions. With these
analytical results, we obtain the compressibility and predict
that its measurements, such as those carried out in GaAs
heterostructures or in graphene [41–46], can detect the phase
diagram of the CFCs.

We begin by constructing the wave function for the CFC
carrying 2p vortices, or in short 2pCFC, as follows:

�
2pCFC
ν =

∏
j<k

(zj − zk)2p�MZ
ν∗ , (1)

where zj = xj + iyj is the coordinates of the j th elec-
tron. ν and ν∗ denote the filling factors of electron and
CFCs, respectively. The function �MZ

ν∗ = Det[φRi
(rj )] is

the Maki-Zotos (MZ) wave function for the uncorrelated
WC, comprising the LLL coherent-state wave function
φR(r) = 1√

2π
exp [−(r − R)2/4 − i(xY − yX)/2] centered at

R = (X,Y ) [22].
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Without the Jastrow factor correlation, the energy of the
uncorrelated MZ WC, i.e., 0CFC, can be computed from the
effective two-body interaction [22]:

V MZ(Rij )

e2/εlB
= 〈ψ 0CFC||r1 − r2|−1|ψ 0CFC〉

=
√

π

4
sech

(
R2

ij /8
)
I0

(
R2

ij /8
)
, (2)

where Rij = |Rij | = |Ri − Rj | is the distance between two
crystal lattice centers. The uncorrelated two-body wave func-
tion is given by ψ

0CFC(r1,r2) = C0A[φRi
(r1)φRj

(r2)] with C0

being the normalization constant and A being the antisym-
metrization operator. I0 is the modified Bessel function of the
first kind. The energy per particle of the uncorrelated MZ WC,
EMZ, is computed by performing the Madelung-type lattice
summation of the MZ effective two-body interaction energy
between all pairs of electrons in the hexagonal lattice:

EMZ

e2/εlB
= 1

2N

∑
i �=j

(
V MZ(Rij )

e2/εlB
− 1

Rij

)
− α

√
ν, (3)

where the terms 1
2N

∑
i �=j

1
Rij

+ α
√

ν with α = 0.782 133 are
subtracted to take into account the neutralizing effect of the
uniform positive-charge background [40].

For strongly correlated WCs, we need to take care of
the Jastrow factor. As a first try, we begin by focusing on
two isolated CFs and ignoring all other surrounding CFs, in
which situation the two-body CF wave function is obtained
as ψ

2pCFC
isol (r1,r2) = C2p(z1 − z2)2pA[φRi

(r1)φRj
(r2)]. The

normalization constant is C2p = [1F1(2p + 1; 1; R2
ij /4) −

1F1(2p + 1; 1; −R2
ij /4)]−1/2/[π22p+1√2	(2p + 1)e−R2

ij /8]

where 1F1(a; b; z) = ∑∞
n=0

a(n)

b(n)n!z
n is the Kummer’s

hypergeometric function with a(n) = a(a + 1) · · · (a + n − 1).
We refer to this approach as the isolated two-body formalism.
Figure 1(a) shows a schematic diagram for the isolated
two-body formalism, which is accompanied by the probability
density of the two-body CF wave function defined by
ρisol(r) = ∫

d2r′|ψ 2pCFC
isol (r,r′)|2 in Fig. 1(c).

It is important to note that the actual distance between
composite fermions dij is not exactly equal to the nominal
distance Rij , because the Jastrow factor incorporates an
additional repulsion into the two-body wave function, pushing
the wave packets slightly farther apart. To take this effect into
account, we define dij to be the median distance between
two maxima in the two-body probability density. Specifically,
dij is related with Rij so that ∂

∂r |ψ
2pCFC
isol (r1,r2)|2 = 0 at

r = r1 − r2 = (dij ,0) with Rij = (Rij ,0), which, after some
algebra, becomes d2

ij − Rijdij coth (Rijdij /4) − 8p = 0. Note
that dij is slightly larger than Rij with their difference growing
as 2p increases. Given this information, the effective two-body
interaction between CFs in the isolated two-body formalism is
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FIG. 1. (Color online) Schematic diagram showing (a) the iso-
lated and (b) the renormalized two-body formalism, accompanied by
the probability density of the two-body CF wave function in each
formalism, (c) ρisol(r) = ∫

d2r′|ψ 2pCFC
isol (r,r′)|2, and (d) ρrenorm(r) =∫

d2r′|ψ 2pCFC
renorm (r,r′)|2, respectively. Here, we set 2p = 2 and the

nominal distance between crystal centers to be 6lB. Note that
probability densities are plotted in the natural logarithmic scale.

computed as follows:

V
2pCFC

isol (dij )

e2/εlB

=〈
ψ

2pCFC
isol

∣∣|r1−r2|−1
∣∣ψ 2pCFC

isol

〉

=B2p

1F1
(
2p+1/2; 1; R2

ij

/
4
)−1F1

(
2p+1/2; 1; −R2

ij

/
4
)

L2p

(−R2
ij

/
4
)
eR2

ij /4−L2p

(
R2

ij

/
4
)
e−R2

ij /4
,

(4)

where B2p = 	(2p + 1/2)/[2	(2p + 1)] and Ln(x) is the
Laguerre polynomial. For the hexagonal lattice, dij is set
equal to the distance between various crystal lattice centers via
dij =

√
i2a2 + j 2b2 with a = (4π/

√
3ν)1/2 and b = √

3a.
In the isolated two-body formalism, the energy per particle

of 2pCFC, E
2pCFC
isol , is evaluated similarly to Eq. (3) by replacing

V MZ with V
2pCFC

isol . Figure 2(a) shows E
2pCFC
isol − EMZ as a

function of filling factor, which is compared with the MC
simulation results obtained from the full CF wave function in
the spherical geometry. As one can see, E

2pCFC
isol − EMZ shows

reasonably good agreement with the MC simulation results,
especially at low filling factors. There are, however, some
sizable quantitative discrepancies in general.
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FIG. 2. (Color online) Energy per particle of various CFC states,
E

2pCFC, in reference to that of the MZ WC, EMZ, as a function of
filling factor, ν, obtained in (a) the isolated and (b) the renormalized
two-body formalism. Symbols and dashed lines are obtained from
the MC simulation of the full CFC wave functions. Note that each
2pCFC is the lowest energy state (at least, among various CFC states)
within the range of 1/(2p + 3) < ν � 1/(2p + 1) for 2p � 2. The
MZ WC, or 0CFC is not energetically favorable at any filling factor
ranges.

To improve upon the isolated two-body formalism, it is
necessary to include Jastrow-factor correlation effects arising
from all surrounding CFs in some fashion. To this end, we
test an approximation called the surrounding delta-function
approximation, where the wave functions of all surrounding
CFs are approximated as delta functions. See Fig. 1(b) for
a schematic diagram. This approximation should be exact
in the limit of large separation between crystalline CFs.
Within the surrounding delta-function approximation, one can
integrate out the degrees of freedom of all surrounding CFs
and then derive the analytical two-body CF wave function. For
convenience, we call this approach the renormalized two-body
formalism.

In the renormalized two-body formalism, the two-
body CF wave function is written as ψ

2pCFC
renorm(r1,r2) ∝

ψ
2pCFC
isol (r1,r2)

∏
k �=i,j (z1 − Zk)2p

∏
l �=i,j (z2 − Zl)2p, where Zk

denotes the coordinates of the kth crystal lattice center. After
dividing a constant factor

∏
k �=i,j (Zi − Zk)2p

∏
l �=i,j (Zj −

Zl)2p, the above equation can be rewritten as

ψ
2pCFC
renorm(r1,r2) =C̃2p(z1 − z2)2p

× A
[
	

2p

ij (r1,r2)φ̃Ri
(r1)φ̃Rj

(r2)
]
, (5)

where C̃2p is the normalization constant, 	
2p

ij (r1,r2) =
(Zi − Zj )4p/[(z1 − Zj )2p(z2 − Zi)2p], and φ̃Ri

(r) =
φRi

(r)
∏

k �=i
(z−Zk )2p

(Zi−Zk )2p ≡ φRi
(r)[FRi

(r)]p, which is the
renormalized version of the coherent-state wave function
centered at Ri .

It is important to note that all the complicated many-
body correlations are embedded in the renormalization factor
FRi

(r). The success of this approach stems from the fact that
we are able to obtain the analytical form of FRi

(r):

FRi
(r) =θ1

[
π
a

(z − Zi)|i b
a

]
θ1

[
iπ
b

(z − Zi)|i a
b

]
i π2

ab
θ ′

1

(
0|i b

a

)
θ ′

1

(
0|i a

b

)
(z − Zi)2

× θ3
[

π
a

(z − Zi)|i b
a

]
θ3

[
iπ
b

(z − Zi)|i a
b

]
θ3

(
0|i b

a

)
θ3

(
0|i a

b

) , (6)

where θn(z|τ ) is the Jacobi theta function and b = √
3a with

a being the lattice constant (see Supplemental Material for
details [47]). Figure 1(d) shows the renormalized probability
density defined by ρrenorm(r) = ∫

d2r′|ψ 2pCFC
renorm(r,r′)|2. As one

can see, the renormalized probability density exhibits the
hexagonal symmetry of the WC which was absent in the
isolated two-body formalism.

As before, the energy per particle in the renormalized two-
body formalism, E

2pCFC
renorm, can be computed as the Madelung-

type lattice summation of the renormalized effective two-body
interaction, V

2pCFC
renorm /(e2/εlB) = 〈ψ 2pCFC

renorm||r1 − r2|−1|ψ 2pCFC
renorm〉.

Note that, in general, V
2pCFC

renorm depends on the vector Rij , not
just on the distance Rij . Conveniently, however, V

2pCFC
renorm can

be well approximated as a function of only Rij if Rij �
[4π (2p + 1)/

√
3]1/2. Also, due to the additional repulsion

from all surrounding CFs, the actual distance dij becomes
quite close to the nominal distance Rij in most situations so
that Rij can be simply regarded as dij .

Figure 2(b) shows E
2pCFC
renorm − EMZ as a function of filling

factor. As one can see, the results from the renormalized
two-body formalism are in excellent agreement with those
from the MC simulation of the full CFC wave functions.
It is interesting to observe that the renormalized two-body
formalism can even capture the initial upturn of the energy near
ν = 1/(2p + 1) for each corresponding 2pCFC. The most sig-
nificant discrepancy is that the MC results exhibit sharp drops
immediately following such upturns. It is important to note,
however, that, regardless of being isolated or renormalized,
the two-body formalism for each 2pCFC is supposed to lose
its validity near ν = 1/(2p + 1) since, here, wave packets are
highly overlapping and thus higher-body corrections become
important. Given the simplification in the two-body formalism,
we consider the agreement to be excellent.

Bolstered by the quantitative accuracy of the renormalized
two-body formalism, we now compute the shear modulus of
CFC states, Ct , as a function of filling factor. To this end,
we utilize the following relation [38]: Ct = 1

2ν2 ∂2

∂ν2 E
2pCFC. It

is important to note that this relation is derived under the
assumption that only the two-body interaction is relevant,
and is therefore consistent with our two-body formalism.
Figure 3 shows Ct of various CFC states as a function of
filling factor obtained by using E

2pCFC
isol and E

2pCFC
renorm. While Ct

obtained from the isolated two-body formalism is not to be
trusted, it shows the relative importance of correlations from all
surrounding CFs, which enhance Ct significantly. In particular,
Ct in the renormalized two-body formalism shows a series
of huge enhancements followed by discontinuous drops near
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FIG. 3. (Color online) Shear modulus, Ct , of various CFC states
as a function of filling factor, ν, obtained in (a) the isolated and
(b) the renormalized two-body formalism. For convenience, Ct is
expressed as its relative ratio with respect to that for the classical
WC, Ct

classical/(e2/εlB ) = 0.0978
√

ν. Note that Ct of each 2pCFC is
valid only within the range of 1/(2p + 3) < ν � 1/(2p + 1), where
its curve is plotted in a solid line, denoting that the 2pCFC is the
lowest energy state here.

ν = 1/(2p + 1), which can be used as a distinctive signature
for a phase transition between different CFC states.

Another important observable is the compressibility,
whose inverse can be computed as follows [48]: κ−1 =

1
2πl2

B

ν2 ∂2

∂ν2 (νE
2pCFC), where it is used that the electron density is

related with the filling factor via n = ν/2πl2
B . Figure 4 shows

κ−1 of various CFC states as a function of the filling factor.
At first sight, it may seem strange that the compressibility
becomes negative in some regimes. This does not, however,
mean an instability here since, by construction, we do not allow
the positive background charge to relax. What we obtain above
is the electronic part of the compressibility called the proper
compressibility [49], which can be negative. In fact, the proper
compressibility is directly measured in capacitive experiments
[41–43] or by scanning single-electron transistor [44–46].
Compressibility has served as a powerful tool for detecting
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FIG. 4. (Color online) Inverse of the compressibility, κ−1, of
various CFC states as a function of filling factor, ν, obtained
in (a) the isolated and (b) the renormalized two-body formalism.
Similar to Ct , κ−1 of each 2pCFC is valid only within the range of
1/(2p + 3) < ν � 1/(2p + 1), where its curve is plotted in a solid
line.

phase transitions between different fractional quantum Hall
states as well as between differently spin polarized states at a
given fraction [44–46]. Our calculations predict discontinuous
changes in compressibility at the phase boundaries separating
the different CFC phases, which can allow a determination of
the phase diagram. Observation of such transitions inside the
crystal phase will serve as direct evidence for the correlated
CF character of WCs in the LLL, corroborating existing
experimental indications of the CFC states [50,51].

It is noteworthy that this work provides an example where
an accurate analytical treatment has become possible for
a strongly correlated state in the LLL. It would be worth
investigating if our method can be extended to the liquid states
of CFs.

The authors are grateful to Alexander C. Archer for sharing
the MC simulation results for the energy of CFC states (from
Ref. [38]). J.K.J. acknowledges financial support from the
National Science Foundation under Grant No. DMR-1401636.

[1] E. Wigner, Phys. Rev. 46, 1002 (1934).
[2] Y. E. Lozovik and V. I. Yudson, JETP Lett. 22, 11 (1975).
[3] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.

48, 1559 (1982).
[4] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
[5] For a review, see J. K. Jain, Composite Fermions (Cambridge

University Press, Cambridge, 2007).
[6] E. Y. Andrei, G. Deville, D. C. Glattli, F. I. B. Williams,

E. Paris, and B. Etienne, Phys. Rev. Lett. 60, 2765
(1988).

[7] H. W. Jiang, R. L. Willett, H. L. Stormer, D. C. Tsui, L. N.
Pfeiffer, and K. W. West, Phys. Rev. Lett. 65, 633 (1990); H. W.
Jiang, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, and K. W. West,
Phys. Rev. B 44, 8107 (1991).

[8] V. J. Goldman, M. Santos, M. Shayegan, and J. E. Cunningham,
Phys. Rev. Lett. 65, 2189 (1990).

[9] F. I. B. Williams, P. A. Wright, R. G. Clark, E. Y. Andrei,
G. Deville, D. C. Glattli, O. Probst, B. Etienne, C. Dorin,
C. T. Foxon, and J. J. Harris, Phys. Rev. Lett. 66, 3285
(1991).

121103-4

http://dx.doi.org/10.1103/PhysRev.46.1002
http://dx.doi.org/10.1103/PhysRev.46.1002
http://dx.doi.org/10.1103/PhysRev.46.1002
http://dx.doi.org/10.1103/PhysRev.46.1002
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.63.199
http://dx.doi.org/10.1103/PhysRevLett.63.199
http://dx.doi.org/10.1103/PhysRevLett.63.199
http://dx.doi.org/10.1103/PhysRevLett.63.199
http://dx.doi.org/10.1103/PhysRevLett.60.2765
http://dx.doi.org/10.1103/PhysRevLett.60.2765
http://dx.doi.org/10.1103/PhysRevLett.60.2765
http://dx.doi.org/10.1103/PhysRevLett.60.2765
http://dx.doi.org/10.1103/PhysRevLett.65.633
http://dx.doi.org/10.1103/PhysRevLett.65.633
http://dx.doi.org/10.1103/PhysRevLett.65.633
http://dx.doi.org/10.1103/PhysRevLett.65.633
http://dx.doi.org/10.1103/PhysRevB.44.8107
http://dx.doi.org/10.1103/PhysRevB.44.8107
http://dx.doi.org/10.1103/PhysRevB.44.8107
http://dx.doi.org/10.1103/PhysRevB.44.8107
http://dx.doi.org/10.1103/PhysRevLett.65.2189
http://dx.doi.org/10.1103/PhysRevLett.65.2189
http://dx.doi.org/10.1103/PhysRevLett.65.2189
http://dx.doi.org/10.1103/PhysRevLett.65.2189
http://dx.doi.org/10.1103/PhysRevLett.66.3285
http://dx.doi.org/10.1103/PhysRevLett.66.3285
http://dx.doi.org/10.1103/PhysRevLett.66.3285
http://dx.doi.org/10.1103/PhysRevLett.66.3285


RAPID COMMUNICATIONS

ANALYTICAL THEORY OF STRONGLY CORRELATED . . . PHYSICAL REVIEW B 92, 121103(R) (2015)

[10] Y. P. Li, T. Sajoto, L. W. Engel, D. C. Tsui, and M. Shayegan,
Phys. Rev. Lett. 67, 1630 (1991).

[11] C.-C. Li, L. W. Engel, D. Shahar, D. C. Tsui, and M. Shayegan,
Phys. Rev. Lett. 79, 1353 (1997).

[12] L. W. Engel, C.-C. Li, D. Shahar, D. C. Tsui, and M. Shayegan,
Physica E 1, 111 (1997).

[13] C. C. Li, J. Yoon, L. W. Engel, D. Shahar, D. C. Tsui, and M.
Shayegan, Phys. Rev. B 61, 10905 (2000).

[14] W. Pan, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin,
and K. W. West, Phys. Rev. Lett. 88, 176802 (2002).

[15] P. D. Ye, L. W. Engel, D. C. Tsui, R. M. Lewis, L. N. Pfeiffer,
and K. West, Phys. Rev. Lett. 89, 176802 (2002).

[16] Y. P. Chen, R. M. Lewis, L. W. Engel, D. C. Tsui, P. D. Ye,
Z. H. Wang, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 93,
206805 (2004).

[17] G. Sambandamurthy, Z. H. Wang, R. M. Lewis, Y. P. Chen,
L. W. Engel, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Solid
State Commun. 140, 100 (2006).

[18] Y. P. Chen, G. Sambandamurthy, Z. H. Wang, R. M. Lewis,
L. W. Engel, D. C. Tsui, P. D. Ye, L. N. Pfeiffer, and K. W.
West, Nat. Phys. 2, 452 (2006).

[19] For a review, see M. Shayegan, in Perspectives in Quantum Hall
Effects, edited by S. Das Sarma and A. Pinczuk (Wiley, New
York, 1998), pp. 343–383.

[20] For a review, see M. Shayegan, in High Magnetic Fields: Science
and Technology, edited by F. Herlach and N. Miura (World
Scientific, Singapore, 2006), Vol. 3, pp. 31–60.

[21] Y. Liu, H. Deng, M. Shayegan, L. N. Pfeiffer, K. W. West, and
K. W. Baldwin, arXiv:1410.3435.

[22] K. Maki and X. Zotos, Phys. Rev. B 28, 4349 (1983).
[23] P. K. Lam and S. M. Girvin, Phys. Rev. B 30, 473 (1984).
[24] D. Levesque, J. J. Weis, and A. H. MacDonald, Phys. Rev. B 30,

1056 (1984).
[25] K. Esfarjani and S. T. Chui, Phys. Rev. B 42, 10758

(1990).
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