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Comment on “Single-point kinetic energy density functionals: A pointwise kinetic energy density
analysis and numerical convergence investigation”
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We suggest a more nuanced view of the merit and utility of generalized gradient approximations (GGAs) for
the noninteracting kinetic energy (KE) than the critique of Xia and Carter (XC) [Phys. Rev. B 91, 045124 (2015)].
Specifically, the multiple valuedness of the Pauli term enhancement factor (denoted G[n] by XC) with respect
to the inhomogeneity variable s can be excluded by enforcement of a bound on the Kohn-Sham KE to achieve
universality of the functional along with enforcement of proper large-s behavior. This is physically sensible in
that the excluded G values occur for s values that correspond to low densities. The behavior is exacerbated by
peculiarities of pseudodensities. The VT84F KE GGA, constructed with these constraints, does not have the
numerical instability in our older PBE2 functional analyzed by XC.

DOI: 10.1103/PhysRevB.92.117101 PACS number(s): 71.10.Ca, 71.15.Mb, 71.15.−m

Part of Xia and Carter’s [1] [(XC) hereafter] interesting
recent investigation of single-point orbital-free kinetic energy
(OFKE) density functionals involved writing the standard
Kohn-Sham (KS) KE energy density as

τs([n]; r) = τvW([n]; r) + G([n]; r)τTF([n]; r), (1)

with τvW = |∇n|2/8n and τTF = cTFn
5/3 as the canonical

von Weizsäcker [2] and Thomas-Fermi [3,4] KE densities,
respectively, and n(r) as the electron number density. This
is the Pauli term decomposition; see Ref. [5] and references
therein. XC’s numerical exploration of G([n]; r) showed, in the
example of fcc Al, that G is not a single-valued function of the
reduced density gradient sXC = |∇n|/n4/3. See XC’s Fig. 6
and associated discussion. (The subscript XC distinguishes
their gradient variable from the more common s variable used
in our papers s = κsXC with κ = 1/[2(3π2)1/3] = 0.161 62.
Behavior found at large sXC corresponds to intermediate s

behavior. This becomes important below.) On this basis they
concluded that “ . . . it is not sensible to predict G using
only s” and further that “ . . . this multivalued character calls
into question the validity of the GGA’s F (s).” GGA is
the generalized gradient approximation in which G([n]; r) ≈
Fθ (s). Then, among various informative tests, they explored
the convergence behavior (with respect to plane-wave cutoff)
of the mildly empirical GGA OFKE functional PBE2 which
came from our group several years ago [6].

We believe that XC’s stance regarding GGAs is too harsh
and that a more nuanced perspective is useful. In support of
that view, we summarize here why it is both feasible and useful
to deal with the double valuedness by application of physically
relevant constraints to construct a GGA. In relation to that, we
show that the lack of convergence with respect to plane-wave
cutoff which XC found for the PBE2 is eliminated in a fully
constraint-based GGA, namely, the VT84F [7].

At the outset we stipulate that no OFKE GGA can meet
all the requirements derivable for the exact G[n] any more
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than an exchange-correlation (xc) GGA can meet all the
exact requirements on it [8]. The issue is whether a useful
GGA can be developed by judicious determination and use
of the physically most important constraints. In that context,
for simplicity of comparison with prior work, consider the
behavior of G for which x = 0, x being the coefficient of
∇2n in XC’s definition of τs , XC’s Eq. (11). Begin at s = 0
and consider first only the lower branch of G([n]; r) as shown
in XC’s Fig. 6. There exists a global bound on the KS KE,
conjectured by Lieb [9] and proved, at least to the rigor typical
in physics, by the infinite particle limit of the inequality due
to Gázquez and Robles [10], namely,

Ts � TvW + TTF. (2)

To compel an approximate functional to be universal, that
is to obey this bound for all possible densities, necessitates
imposition of the constraint locally τs � τvW + τTF. This
imposition corresponds to common usage of the Lieb-Oxford
bound in GGA exchange functionals [11,12]. Although ev-
idently not a necessary condition, this pointwise constraint
yields a nonempirical GGA [for which G([n]; r) ≈ Fθ (s)] that
automatically cuts out all of the values above unity on the
lower branch of G since Fθ � 1 because of the constraint.

In the case of xc GGAs, multivaluedness has been known
for some time [12,13], yet there are highly successful xc
GGAs. The corresponding issue for an OFKE GGA is whether
anything useful is left after removing G > 1 by requiring
Fθ � 1. First, the region of the lower branch in which XC
found G([n]; r) substantially in excess of unity is roughly
sXC > 6 → 10 or s > 1 to 1.6. But it is well documented that
even many isolated systems, which have very diffuse density
tails (hence, large s), have essentially zero density beyond
roughly s > 4 and very little density for s > 2.5. See Fig. 6
in Ref. [12] as well as earlier work in Ref. [13]. Often the KS
KE is nearly totally determined by the behavior of G over a
smaller range of s. In the SiO molecule, for example, the KS
KE is dominated by contributions from 0.26 � s � 1.30 [14].
Where there are nonzero contributions to the KE density for
larger values of s, what the cutoff in a proper GGA does
is to approximate the lower branch of G in that region by
unity, at most. (To meet other constraints, our actual GGAs
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use a smaller value [7].) The physical justification is that
such contributions are comparatively small even though the
lower branch of G substantially exceeds unity because n is
small (hence one expects n5/3 to be smaller yet), so a GGA
underestimate of G in that region should be a satisfactory
approximation. Note also that it is an exact requirement for
any OFKE GGA that lims→∞ τGGA(s) = τvW. Physically this
is because arbitrarily large s corresponds to density tail regions.
Those are one-electron densities, hence they correspond to the
von Weizsäcker KE density. Cutting off is eminently sensible
therefore on grounds of both constraints.

What about the other branch of G? For small values of
s on that branch, it appears that G([n]; r) is particularly
large because of pseudodensity properties that are qualitatively
different from physical densities. XC’s Fig. 6(b) shows that G

for fcc Al is largest (roughly 14) for very small s, and XC’s
Figs. 2 and 3 confirm that this is true for small d = npseudo/n0.
(n0 is the average density.) XC’s Fig. 8 shows that small
npseudo occurs at the nuclear sites. Since for pseudodensities
τKS �= τvW at those sites, but τTF evaluated with that small
pseudodensity is small, G from the pseudodensities is forced to
be large. Such exaggerated behavior would not occur with the
true all-electron density, which obeys the Kato cusp condition
and has local maxima at the nuclear sites. Consequently τvW

dominates in the near-nucleus region [15], and the correspond-
ing G is much smaller than the G forced by the pseudodensity
in that region. We note that the VT84F [7] was parametrized in
part against the Kato condition. (As an aside, we suspect that
the pseudodensity also may be problematic for GGAs as well
as functionals with higher-derivative dependence because of
unphysical zeros of the pseudodensity gradient along bonds.
This may be a real problem for the OF density functional
theory agenda since local pseudopotentials are technically very
useful.)

Of course, these two diagnoses (on the lower and upper
branches) of the sources of large G and how to control them
do not entirely eliminate the challenge of the multivaluedness
of the exact KS G. The diagnoses do help understand how a
meaningful nonempirical GGA is feasible. The detail lost by
exclusion is offset, at least in part, by the addition of guaranteed
physical behavior via the constraints. Thus, although a GGA
cannot reproduce all the exact KS OFKE functional behaviors,
it can represent the most important part of G on the most
important range of densities and gradients.

We turn to instability of our PBE2 GGA with respect to
plane-wave cutoff. The PBE2 has been supplanted by our
VT84F, a nonempirical OFKE GGA functional which obeys all
of the foregoing bounding and asymptotic properties [7]. XC
did not test it. We have. Figure 1 shows that the VT84F is fully
stable against plane-wave cutoff. Note that this is precisely
the same test as XC performed for the PBE2, including use of
their prescription for the local pseudopotential. (For reference,
the calculated equilibrium lattice constants in increasing order
of the three cutoffs are 4.157, 4.166, and 4.164 Å.) We had
noted the stability distinction of the VT84F vs the PBE2
in Ref. [16]. There the passage just below Fig. 3 reads
“Our . . . PBE2 . . . [has] worse numerical convergence than
VT84F because of the same wrong large-s limit.” Wang
et al. [17] had found such GGA OFKE instabilities earlier.
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FIG. 1. (Color online) Energy vs unit-cell volume for fcc Al
computed at three plane-wave cutoff energies using the VT84F OFKE
functional and the PBE exchange-correlation functional.

XC also note that the near-nucleus density from the
PBE2 is peculiar. This is almost inevitable with any properly
positive-definite GGA [14]. A singularity at the origin in the
Pauli potential causes the artifact. It is on a very small scale.
Only a specially selected pseudopotential construction can
remove it. It is removed if the pseudodensity is completely flat
at nuclear sites, equivalent to s = 0 there [18]. One example
of removing the singularity is the GGA Pauli potential for the
model pseudodensity in Ref. [17] with a particular parameter
choice.

An essential difference between standard GGA KE func-
tionals (e.g., P92 [19] and E00 [20] tested by XC) and our
GGAs (VT84F and PBE2) is that the former do not predict
binding in small molecules at all, whereas the latter do predict
semiquantitatively correct binding in those molecules and
simple solids [6,14,21]. This categorical distinction and the
broad utility of these GGAs are suggestive of having achieved
a universal functional (although certainly not a proof). XC
had a different goal, namely, functionals which represent well
the behavior of a class of periodically bounded materials. In
fact, their fitted vWGTF1 functional obeys the global Lieb-
Gázquez-Robles bound [22] for such materials but not for free
molecules with a fixed parameter (ρ0 = ρmax in XC’s notation).
This nonuniversality can be viewed as a consequence of the
different emphasis of their work and ours.

Although there are distinct limitations on what can be
expected of a GGA OFKE functional, the multivaluedness
of G is not a prohibitive barrier to a useful nonempirical GGA.
The current situation is substantially better than the limitations
of the mildly empirical PBE2 functional (which is almost 10
years old) analyzed by XC. In particular, both the empirical
parametrization and the numerical convergence limitations of
the PBE2 have been eliminated in the entirely constraint-based
VT84F functional [7].

This work was supported by the US Department of Energy
Grant No. DE-SC0002139. We thank J. Xia and E. A. Carter
for a private communication about the boundedness of the
vWGTF1.

117101-2



COMMENTS PHYSICAL REVIEW B 92, 117101 (2015)

[1] J. Xia and E. A. Carter, Phys. Rev. B 91, 045124 (2015).
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