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Nonlinear magnetic dynamics in a nanomagnet–topological insulator heterostructure
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Magnetization dynamics of a nanomagnet, when strongly coupled with a topological insulator (TI) via the
proximity interaction, is examined theoretically in the presence of electrical current on the TI surface under
realistic transport conditions. Due to the spin-momentum interlock, the magnetic state and TI electron transport
depend significantly on each other. Such an interdependence leads to a variety of nonlinear dynamical responses
in all transport regimes including the scattering dominant diffusive cases. Generation of the anomalous Hall
current, in particular, is found to be a key to the unique features that have not been observed previously. For
instance, the anomalous Hall current can result in antiparallel alignment of the final magnetization state in
reference to the effective driving magnetic field by inducing an extra term that counters the damping effect.
Similarly the calculation also reveals steady oscillation of the magnetization under a broad range of conditions,
offering a robust mechanism for highly efficient magnetization reversal and/or spin wave excitation under a dc
bias.
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I. INTRODUCTION

Magnetic devices have been an essential component in the
development of information technology. Information can be
easily encoded into and decoded from the stable magnetization
states of nanomagnets. Much effort has been devoted to im-
proving the magnetization switching efficiency and reliability
[1–5], among which the search for electric control has been a
major focus. For instance, the transition from the Ampere-field
driven magnetic switches to the spin transfer torque (STT)
driven counterparts has already seen significant advancements
during the past decade. Apart from the applications to magnetic
switches, the STT effect has also been shown to excite steady
oscillations when the additional torque from spin transfer
accurately cancels the magnetic damping effect [1–3]. In the
case of magnetic insulators, where the STT mechanism is
not applicable owing to the absence of free electrons, the
electrical control can be achieved by exploiting the intrinsic
multiferroic properties that exist in some crystal groups and
heterostructures [6–8]. Most of them rely on the strain to
mediate the piezoelectric and magnetostrictive effects. The
magnetization orientations are restricted by the crystalline
anisotropy that the strain can manipulate.

In the context of electric control of magnetization, the
unique advantage of spin-momentum interlock in the topologi-
cal insulators (TIs) offers a promising alternative [9]. The flow
of electrons on a TI surface is naturally spin polarized; as such,
an adjacent magnet in direct contact can potentially experience
the exchange field through the proximity interaction and
change its magnetization [10–16]. In this scenario, electron
spin is the medium that couples the electrical variable (i.e.,
the electron momentum) with the magnetic variable (i.e.,
the magnetization of the adjacent magnet). Intuitively, the
magnetization would align with the exchange field from the
electron spin. However, electron transport on the TI surface
is also strongly affected by the magnetization state [17], thus
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forming a correlated nonlinear system. Complex dynamical
behaviors can be expected.

Figure 1(a) illustrates a typical structure that utilizes the
combination of a ferromagnetic insulator (FMI) and a TI.
As indicated, the magnet (i.e., FMI) is in direct contact
with the TI. Two surface electrodes are used to drive the
electron flow through the interface region between the layers.
An earlier theoretical investigation based on a self-consistent
treatment of the TI-FMI system revealed the previously
unidentified magnetic responses such as magnetization re-
versal and sustained oscillations under a dc bias condition
[12]. The key to this nontrivial outcome is the interdependent
nature of the dynamics; namely, the spin polarized TI current
modulating the magnetization via the effective magnetic field
and conversely, the magnetization affecting the TI surface
current via the electronic band modification. However, the
study assumed coherent electron transport between the two
contacts, greatly limiting the range of practical application at
room temperature.

In a realistic device, the coherence is unlikely to hold
even if electrons could travel through the magnetic barrier
ballistically. Furthermore, a fully diffusive treatment may be
more appropriate for a large device or with an imperfect
sample, where substantial scattering is anticipated. Here, we
extend the study of the coupled dynamic response to the
practicable realm; i.e., the ballistic but noncoherent transport
and the fully diffusive transport in the interface region of
interest. The loss of coherence in both cases is attributed
conveniently to the phase breaking events that electrons suffer
in the TI surface channel before entering the portion covered
by the FMI. This investigation aims at extending the coupled
dynamics to all transport regimes and identifying the key
influencing factors.

II. MODELS AND THEORETICAL ANALYSIS

The fully coupled dynamics must incorporate both the
magnetization dependent TI surface transport and the influence
of the surface current on the magnetization rotation. In the
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FIG. 1. (Color online) (a) Schematic illustration of the TI-
magnet structure under investigation. An insulating nanomagnet
(FMI) is placed on top of a TI surface, where two electrodes are
used to inject the current through the TI-FMI interface region. The
red arrow ( �m) denotes the magnetization of the magnet. (b) and (c)
show the mechanisms for the transverse current (i.e., the anomalous
Hall effect) due to the in-plane and the out-of-plane magnetization,
respectively. The thick arrows (yellow) represents the electron flow
while the thin arrows (red) denote the corresponding spin polarization.
The inset in (b) illustrates the shift of the iso-energy contour in the
momentum space (TI) due to the in-plane magnetization (FMI).

previously reported analysis [12], the system was modeled
essentially as the quantum mechanical wave tunneling through
a barrier by coherently matching the boundary conditions
at the two magnetic junctions. Thus the resultant solutions
such as the magnetization state and the current exhibit the
inherent dependence on the interference. Accordingly, it is
rather difficult to discern if an observed nonlinear behavior
is the consequence of the nontrivial magnetization dynamics
or simply the interference effect. This is important since the
latter phenomenon (i.e., interference), as mentioned above, is
unlikely to survive at the ambient temperature. Moreover the
model Hamiltonian that was based on a relatively simple form
of the surface exchange interaction, may have missed out on
some of the more complex physical processes. For instance,
the impact of interband exchange—a source for the anomalous
Hall effect—has not been considered.

The key difference in the noncoherent regime (i.e., the
present study) is that each magnetic junction (or boundary) is
treated independently and the electron transport between them
accounted for in a particlelike manner (no interference). The
presence or absence of the scattering events while traveling
in the TI region covered by the magnet just separates the
diffusive vs ballistic cases. When the electrons suffer no
scattering (i.e., ballistic but noncoherent), the TI surface
channel can be described by a classical double barrier problem.
Then the total transmission may be given as T0/(2 − T0)
[= ∑∞

i=0 T0(1 − T0)2iT0] by summing over all possible sequen-
tial transmission events [18]. Here, i represents the number of

reflections back-and-forth between the two boundaries before
the eventual passage and T0 the probability associated with
each boundary as discussed in the literature [19]. To be
more specific, the transmission probability T0 is obtained as a
function of the magnetization M, the electron energy E, and the
lateral momentum ky . Subsequently the channel conductance
can be calculated by the usual Landauer formalism; viz., GM ∝∑

ky

∫
TM(E,ky) ∂f

∂E
dE, where TM(E,ky) = T0/(2 − T0) and

f (E) is the Fermi-Dirac function. The corresponding current
(Jx) is simply the linear product of the conductance GM
and the driving voltage V . The diffusive case, on the other
hand, may be considered as two boundaries separated by
an Ohmic resistor in the middle. As such, three resistors
connected in series could be an adequate description. The
M-dependent conductance at each junction can be obtained
from T0 following the Landauer approach (defined as G0

M
by setting TM = T0 in the expression given above), while the
additional resistance (Rc) of the diffusive channel is readily
estimated from the electrical resistivity of the TI surface. Then,
the current is simply given as V divided by the total resistance;
i.e., Jx = V/(Rc + 2

G0
M

). Strictly speaking, the resistivity of the

TI surface may also be affected by the band modification and
thus potentially a function of M. However, this effect appears
relatively minor if the TI chemical potential is sufficiently away
from the band extremum (see also the numerical values given
in Sec. III). Accordingly, the standard models described above
are expected to capture the key dependence of the driving
current (Jx) on the magnetization. On the other hand, they
do not account for the potential presence of the transverse
current—the anomalous Hall effect. Indeed, this transverse
current flow provides a key component as demonstrated later
in the discussion. Again, the magnetization and the current are
interdependent and must be solved for simultaneously.

Figures 1(b) and 1(c) illustrate schematically the mecha-
nisms of the anomalous Hall current in the TI-magnet system.
The in-plane magnetization along the +x axis shifts the TI sur-
face electronic dispersion and causes the transmitted electron
to have a net momentum toward the −y direction, resembling
light transmission through the media with a refractive index
mismatch [19]. In the ballistic but noncoherent case (where
the FMI length L is limited to the electron mean free path
λ), the transmissions through the two magnetic boundaries are
independent processes as mentioned above and the trajectory
beneath the magnet is determined by the refraction at the
incoming edge [Fig. 1(b)]. Consequently, the net nonzero
momentum along the −y axis constitutes the anomalous
Hall current that is accompanied by the corresponding −x

spin polarization via spin-momentum interlock. A detailed
study of the quasioptic behavior found the anomalous Hall
current ratio β (i.e., the ratio between the anomalous Hall
current and the driving current) to be around 0.5 that is also
invariant to the direction of current flow [19]. As this Hall
current concerns only the x component of the magnetization, it
can be expressed as Jy = −βxmx |Jx |, where m = M/|M| =
(mx,my,mx) denotes the FMI magnetization normalized to
the saturation magnetization |M| (≡M0). In the fully diffusive
transport, on the other hand, it gives a negligible contribution
as the refracted momentum would be quickly relaxed by
scattering events (i.e., βx ≈ 0). Note that the current actually
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refers to the electron flux throughout the discussion; hence,
there is a sign difference with the convention. Another point
worth a comment is that the transverse electron flow is not
induced when the driving current and the magnetization are
aligned orthogonal to each other in the plane (e.g., mx with
the y-directional driving potential). Hence, the phenomenon
discussed above deviates somewhat from the conventional
anomalous Hall effect. Nevertheless it can cause a transverse
current under a certain magnetization condition and is termed
as such.

Unlike the in-plane component discussed above, the out-
of-plane magnetization induces the transverse current under
both ballistic and diffusive conditions [Fig. 1(c)] [20–23].
A sizable anomalous Hall effect has been discovered in
magnetically doped and magnet capped TIs, indicating the
potential significance in the coupled magnetization-current
response [22–24]. The physical origin of this phenomenon
follows from the traditional models of the anomalous Hall
effect, with the contributions of both the intrinsic and the
extrinsic nature [25]. As it turns out, the intrinsic factors such
as the field induced interband exchange have shown to be
dominant in most TI materials [20–23]. Unfortunately, simple
governing equations for the amplitude of the Hall current
are yet to be provided in the literature due to the theoretical
complexities. Nevertheless, there are sufficient results that lead
to quasiquantitative estimations with a degree of confidence.
Similar to the in-plane counterpart, this component of the
Hall current can be expressed as Jy = −βzmzJx with the
corresponding ratio βz. In comparison, the earlier study based
on the coherent treatment did not fully consider the Hall
contribution by the z magnetization for the lack of appropriate
physical treatments [12].

Following the description of the anomalous Hall effect
given above, a qualitative picture of the coupled TI-magnet
system can be developed. In the ballistic transport, both
the in-plane (‖x̂) and the out-of-plane (‖ẑ) magnetization
can induce the anomalous Hall current (‖ŷ), which brings
additional spin polarization or the effective magnetic field that
in turn affects the magnetization. On the other hand, just the
effect of mz needs to be considered in the diffusive transport
because the mx-induced anomalous Hall current exists only
around the magnetic boundaries and, thus, becomes negligible
in terms of the magnet as a whole. To circumvent the numerous
unknowns in calculating the magnitude of the Hall effect, we
treat the ratios βx,z as variables in the analysis around the values

found in the literature (for instance, βz ≈ 0.05) [23,24,26]. It
is interesting to note that in most cases, the anomalous Hall
current with βz > 0 exhibited a p-type (holelike) ordinary Hall
character even though the examined TI samples could be both
n type and p type [24,26]. The physical reason for this behavior
is outside the scope of the present investigation. We assume
that the TI sample is n type and the anomalous Hall effect is
larger than the ordinary Hall effect due to the magnet’s stray
field so that βz is positive.

To compute the response of the coupled TI-FMI system,
the expressions describing the TI surface current and those for
the magnet must be solved simultaneously. With the driving
current Jx and the corresponding anomalous Hall current
Jy = −βxmx |Jx | − βzmzJx , the net spin polarization can be

expressed as S = Jy

evF
x̂ − Jx

evF
ŷ (vF being the Fermi velocity).

Considering the exchange magnetic field Hex = (Hx,Hy,0) =
G

μ0LzM0
S, where Lz denotes the thickness of the magnet, μ0

the permeability of vacuum, and G the TI-magnet exchange
coupling energy, we have a well-defined relation between the
x and y components:

Hx = −βxmx |Hy | + βzmzHy. (1)

Then, the dynamics of the magnetic layer can be expressed in
the Landau-Lifschitz (LL) equation as

∂m
∂t

= − γ

1 + α2
m × Htot − γα

1 + α2
m×(m×Htot), (2)

where γ is the gyromagnetic ratio and α the Gilbert damping
factor. In addition, Htot represents the total effective field that
includes the TI-magnet exchange interaction (i.e., Hex) and the
anisotropy field of the magnet. The interdependence between
J and m makes it very difficult to get an analytical solution.

For a physical insight into the nontrivial influence of
the anomalous Hall current, a simplified example is also
considered before Eq. (2) is treated numerically. It can be
readily recognized from Eq. (1) that the term containing βx

behaves essentially like an additional hard-axis anisotropy
along the x axis with the anisotropy energy of 1

2μ0M0βx |Hy |.
The corresponding impact can be intuitively understood as
lowering the barrier for the switching between the ±x mag-
netization. Once βx and all of the anisotropy contributions
are ignored (for the sake of the more interesting βz), the total
effective field is reduced to Htot = (βzmzHy x̂ + Hy ŷ) and the
right-hand side of Eq. (2) becomes

RHS = γ

1 + α2
Hy

⎡
⎣

⎛
⎝

mz

0
−mx

⎞
⎠ + βzmz

⎛
⎝

0
−mz

my

⎞
⎠

⎤
⎦ + γ

1 + α2
Hy

⎡
⎣α

⎛
⎝

−mxmy

1 − m2
y

−mymz

⎞
⎠ + αβzmz

⎛
⎝

1 − m2
x

−mxmy

−mxmz

⎞
⎠

⎤
⎦

= γ

1 + α2
Hy

⎛
⎜⎝

mz − αmxmy + αβzmz

(
1 − m2

x

)

(α − βz)
(
1 − m2

y

) + βzm
2
x − αβzmxmymz

−mx − (α − βz)mymz − αβzmxm
2
z

⎞
⎟⎠. (3)

It is important to note that the terms containing α are associated
with the damping, while the rest drive the precession. In
particular, the y component of the above expression clearly
illustrates the competition between the damping and the

counter force that is induced by the anomalous Hall current
[see the term with (α − βz)]. When βz is set to zero (i.e., no Hall
effect), the magnetization m would eventually settle along the
direction parallel to Hy (i.e., the natural spin polarization of the

115429-3



DUAN, LI, SEMENOV, AND KIM PHYSICAL REVIEW B 92, 115429 (2015)

driving current) after transient dynamics as in the conventional
cases. If βz becomes nonzero and larger than α, on the other
hand, the resulting change of sign (i.e., α − βz < 0) could
mean the final magnetization in the antiparallel orientation
with Hy—a rather unprecedented prospect. In the limiting
case of βz ≈ α, a third possibility may be realized where
the damping is effectively canceled and the magnetization
enters into the state of sustained oscillations. The addition
of the βx term (in the ballistic transport) is not expected to
qualitatively alter the picture since it essentially mimics the
hard-axis anisotropy.

III. NUMERICAL RESULTS AND DISCUSSION

For the detailed quantitative analysis, the magnetization
dynamics of each transport condition is examined by numer-
ically solving the LL equation in the presence of βz, βx ,
and magnetic anisotropy. Figure 2 shows the results for the
diffusive transport as a function of the driving voltage V and
the damping parameter α. In this case, βx is set to zero due to its
negligible contribution following the discussion given earlier.
The magnet is assumed to have a dimension of 90×40×2.2
nm3 and the saturation magnetization of 1200 G. A hard-axis
anisotropy of 2.5×104 J/m3 along the y direction is also
considered. In combination with other anisotropy terms, this
in effect makes the x an overall easy axis for the magnet. We
also suppose that Bi2Se3 is used as the TI layer with a chemical
potential of u0 = 50 meV (by setting the Dirac point as the
reference) and the Fermi velocity vF = 4.6×107 cm/s. The
resistivity of the TI surface is taken to be ∼103�/� and
the TI-magnet exchange constant G = 40 meV. For conve-
nience, the bias is chosen such that electrons flow rightward
and the resulting effective field points toward the −y direction,

i.e., Hy < 0. Consequently, the intuitive behavior for a normal
magnet is to relax to the same (i.e., −y) direction. This is
indeed the case as indicated in Fig. 2(a) when α = 0.08. If
the damping constant is smaller than the βz factor, on the
other hand, Fig. 2(b) with α = 0.01 clearly illustrates that
the final state could reverse and settle down to the opposite
orientation (my = 1) in the manner consistent with the analysis
based on Eq. (3). Note that both switching dynamics look
almost identical except the final convergence points. The
corresponding trajectories in the magnetization space are
provided in Fig. 2(c) (see the blue vs orange curves).

Another important consequence of the competition between
α and βz is the generation of steady oscillations when the
two values are comparable, as illustrated in Fig. 2(d). While
only 3 ns is plotted, the oscillations continue with negligible
damping well past the simulated time of 10 ns. Furthermore,
the resonant frequency is controllable via the applied voltage
or the damping factor. Although α is often considered a fixed
parameter for a given material, it can also be tuned through
doping or by introducing nonmagnetic cap layers [27,28].
Along with the sustained oscillations, the random flip-flops
between the ±x magnetization are possible as well before
relaxing to a stable configuration [see Fig. 2(e)]. Figure 2(f)
provides the magnetization trajectories for both the oscillations
and the flip-flops.

The multiplicity of the magnetization dynamics can be best
represented by a “phase diagram” mapped on the V -α param-
eter space. In Fig. 3, the lines denote the boundaries between
the different dynamical regimes, while the background color
indicates the characteristic frequency of magnetization rota-
tion. Starting from the magnetization along the +x direction,
the responses can be identified as small deviations due to Hex ,
a flip (i.e., −x) or flip-flops between ±x, alignment along Hy

FIG. 2. (Color online) Dynamical response of the magnetization from the initial state mx = −1 calculated under diffusive transport
conditions (i.e., βx = 0) with βz = 0.06 at different driving voltages V and damping constants α: (a) V = 0.25 V, α = 0.08; (b) V = 0.25 V,
α = 0.01; (d) V = 0.2 V, α = 0.03; (e) V = 0.15 V, α = 0.07. (c) and (f) show the corresponding trajectories in the magnetization space. The
blue (dark) and orange (light) curves in (c) represent the results of (a) and (b), respectively. Similarly in (f), they are for (e) (blue) and (d)
(orange). The red dot marks the initial state. The length L of 90 nm and the TI chemical potential u0 of 50 meV are assumed in all cases.
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FIG. 3. (Color online) Magnetization dynamics mapped on the
V -α parameter space. As in Fig. 2, the diffusive electron transport is
considered with βz fixed at 0.06. The solid lines separate the different
dynamical regimes. The dashed lines in the flip-flop region indicate
the smeared nature of the boundaries between the two final states
(+x or −x) after the precession. The background color provides the
corresponding frequency of the magnetization rotation. AO stands for
auto (or sustained) oscillations.

(−y), sustained or auto-oscillations, and antiparallel alignment
to Hy (+y). Switching to +y and the presence of auto-
oscillations in a broad parameter space are the consequence of
the anomalous Hall current (βz). By contrast, other regimes
(i.e., deviation and −y alignment) can also be found in
the ordinary dynamical processes. As each regime covers a
well-defined portion of the phase space, they are relatively
robust against the fluctuations. The magnetization rotation
frequencies are determined from the simulated magnetization
dynamics. For the sustained oscillations, it is the generated
(i.e., resonant) frequency. In the other regimes, the rotation
period extracted near the final convergence point is used for
simplicity. The frequency calculation also shows a tunable
behavior with a gradual change except some abrupt transitions
at the bifurcation boundaries. For instance, the frequency can
be modulated by more than an order of magnitude in the range
of approximately 1–10 GHz for the sustained oscillations.

When the polarity of the bias reverses (i.e., with the
electrons flowing leftward), the magnetization dynamics under
the diffusive transport conditions remain virtually unaltered.
Indeed, Fig. 4(a) is almost exactly an upside down version of
Fig. 3 [29]; note that the exchange field (Hy) induced by the

spin-polarized surface current is now along the +y direction.
In comparison, the impact of the varying chemical potential is
more substantial as it affects the results quantitatively even
though the key dynamical characteristics are mostly alike
[Fig. 4(b)]. The biggest deviation, however, is brought by
the change in the Hall current factor βz, particularly if it
switches to a negative value. Figure 4(c) shows one such
case where the damping is actually enhanced (α − βz > α).
Accordingly, the antiparallel alignment is no longer allowed,
while the auto-oscillation is limited to a very small region
in the parameter space. Although it is not commonly seen,
the possibility of a negative βz is not excluded either with
some preliminary indications of such from recent experimental
results [24,26].

As electron transport in the interface region becomes
collision-free (i.e., L � λ), the influence of βx must be
accounted for in combination with the momentum refraction
at the boundaries. Figure 5(a) shows the calculation result
with βx = 0.6. When compared to the corresponding case
in the diffusive transport (Fig. 3), the key features are
rather alike except that the required biases are substantially
smaller. The reduction in the voltage may be attributed to
the equivalent hard-axis anisotropy provided by βx as well
as the negligible (or zero) Ohmic potential. The similarities
between the two figures indicate the relative insignificance of
βx in comparison to βz. This is further verified in Fig. 5(b)
when βz is artificially set to zero. Consistent with the earlier
discussion, a substantially different picture emerges with the
disappearance of the antiparallel alignment regime and the
narrowed parameter space for the oscillations (to small α).
The case with both βx,z = 0 is also shown in Fig. 5(c) for
reference. With the exception of antiparallel alignment, it
is remarkable to see the other responses maintained under
such a drastic change in the Hall coefficients βx,z. The
calculation clearly indicates the nonlinearly coupled nature of
the dynamics between the TI electrons and the magnetization
of the magnet even in the absence of the anomalous Hall effect.

It is worth noting that our results may serve as theoretical
guidance for experimental verification. The parametric inves-
tigation illustrates the critical transitions between the different
phases of dynamics. While the magnetic insulators often have
a small damping factor (<0.01), there are other factors that
could further facilitate the multiplicity of dynamical behaviors.
For one, the coefficients for the anomalous Hall effect are
certainly sample dependent and can be substantially smaller

FIG. 4. (Color online) Phase diagram of the magnetization dynamics with (a) a reversed bias (V < 0), (b) a different TI chemical potential
u0, and (c) a negative βz. The rest of the conditions and the notations are the same as in Fig. 3.
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FIG. 5. (Color online) (a) Magnetization dynamics calculated under ballistic but non-coherent transport conditions with βz = 0.06 and
βx = 0.6. (b) and (c) examine hypothetical cases with the specified conditions for reference. The rest of the parameters and the notations remain
the same as in Fig. 3.

than those used in the present study. This tends to shift the
transition points (or lines) in the phase diagram toward the
lower values of α [see, for example, Fig. 5(a) vs Figs. 5(b)
and 5(c)], exposing broader operation spectra. Additional
measurement data are necessary for a more accurate analysis.
Finally, the models and phenomena discussed here apply only
to the insulating magnets. The interaction between TI electrons
and the magnetic insulator is most suitably treated with the
exchange field. For a metallic magnet, on the other hand, there
could be spin-polarized electrons injected to the metal as well
as a shunt current through it. Thus, the spin transfer torque
model would be more appropriate [30]. Plus, the electron
transport on the TI surface also needs reconsideration as the
metal may pin the Fermi level.

IV. SUMMARY

The strongly coupled dynamics of electron transport and
magnetization switching is theoretically investigated in the TI-
magnet hybrid structure in the realistic transport regimes. The
nontrivial dynamics predicted earlier in a quantum mechanical
wavelike analysis are similarly observed in the particlelike

treatment, indicating the physically robust nature of these
phenomena beyond the simple interference effect in the
calculation. Further, the results illustrate an additional, unusual
possibility of antiparallel alignment between the magnet mag-
netization and the driving exchange field when the anomalous
Hall effect dominates over the normal damping process. The
investigation also reveals that some of these nonlinear magneti-
zation responses (such as the flip-flop and auto-oscillation) are
rather prevalent and can be achieved under a broad range of
anomalous Hall conditions as well as the transport regimes
including the diffusive cases. Accordingly, the proposed
mechanism of magnetization control is expected to offer a
highly efficient alternative to the STT or spin-Hall-based
approaches. In particular, the auto-oscillation phenomenon
can provide a compact and low-power solution for spin wave
generation with a range of practical applications [31–37].
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