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The usual paradigm in the theory of electron transport is related to the fact that the dielectric permittivity of
the insulator is assumed to be constant, with no time dispersion. We take into account the “slow” polarization
dynamics of the dielectric layers in the tunnel barriers in the fluctuating electric fields induced by single-electron
tunneling events and study transport in the single-electron transistor (SET). Here “slow” dielectric implies a time
scale that is slow compared to the characteristic time scales of the SET charging-discharging effects. We show
that for strong enough polarizability, such that the induced charge on the island is comparable to the elementary
charge, the transport properties of the SET substantially deviate from the known results of transport theory of
the SET. In particular, the Coulomb blockade is more pronounced at finite temperature, the conductance peaks
change their shape, and the current-voltage characteristics show the memory effect (hysteresis). However, in
contrast to SETs with ferroelectric tunnel junctions, here the periodicity of the conductance in the gate voltage
is not broken; instead, the period strongly depends on the polarizability of the gate dielectric. We uncover the
fine structure of the hysteresis effect where the “large” hysteresis loop may include a number of “smaller” loops.
Also we predict the memory effect in the current-voltage characteristics I (V ), with I (V ) �= −I (−V ).
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I. INTRODUCTION

The single-electron transistor (SET) is one of the most
studied nanosystem [1–7]. This is possibly the simplest device
in which strong electron correlations and the quantum nature
of electrons can be directly observed. It consists of two
electrodes known as the drain and the source, connected
through tunnel junctions to one common electrode with a low
self-capacitance, known as the island. The electrical potential
of the island can be tuned by a third electrode, known as
the gate, capacitively coupled to the island; see Fig. 1 for an
equivalent circuit.

For decades there was nearly a paradigm in the theory
of electron transport at the nanoscale that when calculating
dc current, the permittivity of dielectric layers in tunnel
nanojunctions may be taken to be constant, without any
frequency dispersion [4,5,8–10]. However, this paradigm is
not always true. A number of physical processes contribute
to the polarization of a dielectric. Some of them are fast, and
some are slow compared to the time scales of the electric field
change in the nanojunctions [11–20]. There has been progress
in the development of dielectric materials with a strong and,
at the same time, quite slow response to the external electric
field [19,21,22]. The SET is a perfect laboratory device to
study this physics: charging-discharging effects in the SET are
controllable and have well-defined time scales.

The Coulomb blockade suppresses electron transport ex-
cept for values of the gate voltage where electrons sequentially
tunnel one by one through the SET from the source to the
drain. Electric fields in the tunnel junctions change in time
while electrons tunnel through the island. Dielectric layers in
the tunnel junctions are polarized at finite electric field. The
usual assumption in the theory of SETs is that the polarization
of any dielectric layer in the tunnel barrier instantly follows the

electric field in time: P(t) = χ̂ E(t), where the constant χ̂ is
the dielectric permittivity (tensor) of the dielectric layer [4,10].
It follows from the last expression that the capacitance C of
any tunnel junction in the SET is related to the geometric
capacitance C(0) as C = ε C(0), where for a flat capacitor with
isotropic dielectric ε = (1 + 4πχ ) [23]. This is the only place
where the polarization appears in the “classical” theory of
SETs. However, these relations have limited applicability. In
general, the polarization of the dielectric is nonlocal in time:
P(t) = ∫ t

−∞ χ̂(t − τ )E(τ )dτ , where χ̂ (t) is the dynamical
electric permittivity. (Here we assume the linear response
regime.) The time dependence of χ̂(t) implies that tuning
the dielectric polarization P(t) by an electric field cannot be
done arbitrarily fast. This happens, for example, in dielectric
materials with polarization due to the shift of heavy and inert
ions [12,18,20].

The response of polarization P(t) to the external field is
characterized by the time scale τP , the decay time of χ̂ (t). The
second characteristic time scale in the problem is the time of
the electric field correlation τE . For τP � τE the polarization
has the form P(t) ≈ χ̂0E(t), where χ̂0 = ∫ ∞

−∞ χ̂(τ )dτ . In the
opposite case, τE � τP , the polarization P(t) does not follow
the electric field E(t) instantaneously, and it has the form

P(t) ≈ χ̂ 〈E〉, (1)

where 〈E〉 is the electric field averaged over the time scale τP .
It follows from Eq. (1) that the simple relation for capacitance,
C = ε C(0), is not valid. Therefore the theory of single-electron
tunneling in the SET should be modified, and that is the main
goal of our paper.

The characteristic time of charge relaxation in the SET
is τE = R�C� , where R� is of the order of the bare tunnel
resistance of the left and right tunnel junctions and C� is the
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FIG. 1. The equivalent scheme of a single-electron transistor [4].

sum of all the capacitances (see Fig. 1). The time scale τE is in
the range of dozens of nanoseconds to picoseconds, depending
on the system geometry and materials. The switching time
of a dielectric material τP is in the range of seconds to
femtoseconds, depending on the material and the particular
physical process behind the polarization phenomena [18,20].

Therefore the regime of a “slow” insulator, τE � τP , is very
important for SET devices. However, there is paradigm in
which the existing theories with τP � τE satisfactorily explain
most experiments with SETs. What is the justification for a
new theory? The answer is simple: the effects discussed in this
paper are especially pronounced in SETs when, on average,
the polarization of a dielectric tunnel junction in the SET is
strong enough, meaning that the charge induced on the grain
by the polarized dielectric is of the order of the electron charge.
This condition can be reached only for large enough dielectric
permittivity ε. We will discuss how large that is below.

Recently, we have found a number of transport effects in the
SET with a slow ferroelectric in the capacitors (see Refs. [6,7]).
In particular, we investigated the memory effect in this SET.
Here we uncover distinct physical phenomena and report on
the memory effect (hysteresis) where conductance periodicity
in the gate voltage is not broken. Instead, the period strongly
depends on the polarizability of the gate dielectric due to the
linear dependence of the polarization on the external field
in the dielectric. Also, we uncover the unusual fine structure of
the hysteresis effect, where “large” hysteresis loop may include
a number of “smaller” loops. We predict that the memory
effect exists in the current-voltage characteristics, meaning
that I (V ) �= −I (−V ) for a given hysteresis branch even at
Vg = 0. The last two effects may exist in the ferroelectric
SET; however, neither of them has been found before. These
results are important: a SET device with hysteresis may be
promising for the “shuttle” of charge [24–26] free from moving
nanomechanical degrees of freedom: cycling the gate voltage
along the hysteresis loop might allow transfer of several charge
quanta through the SET. Other promising applications include
transistors [4] and memory cells. For example, the memory
effect in I (V ) and G(Vg) might help in writing data in and
reading data from the polarization state.

This paper is organized as follows. In Sec. II we discuss
the general properties of a SET with slow dielectric and the
methods for investigating transport properties. In Sec. III we
investigate the SET with a slow dielectric located in the gate
electrode at zero bias voltage, V2 − V1. In Sec. IV we consider
the case with the slow dielectric in the left and right tunnel
barriers of the SET and uncover the memory effect in the
current-voltage characteristics I (V ). Finally, in Sec. V we
discuss the validity of our approach and the requirements for
slow dielectric materials which are necessary to observe the

effects predicted in this paper. In the same section we show
that the Coulomb blockade in the SET with slow dielectrics is
less affected by temperature.

II. ELECTRON TRANSPORT THROUGH A SET WITH
SLOW TUNNEL BARRIERS

A. Model

Consider the single-electron transistor depicted in Fig. 1.
Two side electrodes serve as the transistor source and drain.
Electric current flows through the transistor channel, which
is the metal island placed between leads and connected to
the source and drain by the tunnel junctions. The bottom
gate electrode controls electron transport through the channel.
Current does not flow through the gate electrode (similar to
the field effect transistors). The theory of a “classical” SET
is developed in Refs. [2–5]. The essential feature of the SET
discussed here is related to the fact that the gate capacitor
and/or tunnel junction capacitors are filled with a dielectric
material with some special properties. This dielectric material
has a very long response time, leading to the essential time
dispersion of the capacitor. As a result, the electric polarization
of the gate capacitor should be considered in a special way.

In the following it is convenient to distinguish between the
geometrical junction capacitances C

(0)
i and the low-frequency

capacitances Ci that include the slow dielectric response.
The difference between them, aside from the unimportant
geometrical factor, is

�Ci = Ci − C
(0)
i = αiSi/di, (2)

where αi is the dielectric polarizability of the ith junction
(i = 1,2,g), Si is the junction surface area, and di is the
effective electrode-island distance. Here αi so defined includes
all the demagnetization factors related to the geometry of the
capacitors and effects related to nonuniform and anisotropic
dielectric layers [23]. For a flat capacitor with an isotropic
dielectric, C(0) = S/4πd and α = χ .

We assume that the electrodes are biased with the voltages
V1 = −V/2, V2 = V/2, and Vg . The grain potential φ(n) at a
given number of excess electrons n can be found by balancing
the induced charges:

n e =
∑

i

C
(0)
i [φ(n) − Vi] +

∑
i

�Ci(〈φ〉 − Vi), (3)

〈φ〉 =
∞∑

n′=−∞
pn′φ(n′), (4)

where pn is the probability to find n excess charges on the
grain. Two terms originate in (3) because we distinguish
between the electric field produced by the capacitance C

(0)
i

and the contribution due to the polarized dielectric with a slow
response. So the terms proportional to the coefficient �Ci in
Eq. (4) can be considered charges induced on the grain by the
polarized dielectric layers that are constant in tunneling events.

The probability distribution pn in the steady state can be
found using the detailed balance equation [2–5]

pn

n→n+1 = pn+1


n+1→n, (5)
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where the rate 
n→n+1[Vi,n,〈φ〉] describes the change in the
grain charge from n to n + 1 electrons. The electric current
has the form

I = e

∞∑
n=−∞

pn

[

n→n−1

s − 
n→n+1
s

]
. (6)

Here the lower index of 
 refers to the tunneling rate
corresponding to the particular tunnel junction, s = 1 or 2, and
the rate 
 in Eq. (5) is equal to 
1 + 
2. Solving Eqs. (3)–(5)
self-consistently, we find the current-voltage characteristics of
the SET using Eq. (6).

We use the “orthodox” theory [2–5] to calculate the
Coulomb-blockade peaks in the differential conductance of
the SET. It implies that the tunnel junction resistances R1,2

are much larger than the resistance quantum Rq = h/e2: this
condition ensures perfect quantization of the excess charge
on the island. The temperature T must be much smaller than
the charging energy (it is of the order of electrostatic energy
of one excess electron on the island); see Sec. V D for a
discussion of the correct definition of the charging energy.
Also the electron level spacing on the island should be smaller
than the temperature (see Sec. V).

In the leading order the probability per unit time to change
the island occupation number from n to n ± 1 through the first
junction is given by Fermi’s golden rule:



(1)
n→n±1 = 1

e2R1
�Fn→n±1

1 NB

(
�Fn→n±1

1

)
, (7)

where NB(ω) = 1/[exp(ω/T ) − 1] is the Bose func-
tion [4,27], R1 is the tunnel junction resistance, and �Fn→n±1

1
denotes the free-energy change, with Q′

0 being the effective
charge,

�Fn→n±1
1 = �U±

n ∓ W1, (8)

where ∓W1 is the work done by the leads and the gate to
transfer an electron to/from the grain through the first tunnel
junction. The calculation of 
 rates requires knowledge of the
difference in the electrostatic energies when the number of
excess charges on the grain differs by one elementary charge:
�U±

n = U (n ± 1) − U (n). If the polarization in dielectric
layers on electron jumps follow φ adiabatically, Pi = αi(φ −
Vi)/di , we have �U±

n = Ec(1 ± 2n), where Ec = e2/2C�

with all the capacitances C� = ∑
i Ci being properly renor-

malized, Ci = C
(0)
i (1 + 4παi). However, for slow dielectric

layers the polarization Pi = αi(〈φ〉 − Vi)/di stays constant
during the tunneling, and for the energy difference we find
(see Appendix A)

�U±
n = E(0)

c

(
1 ± 2n ∓ 2

∑
i

PiSi/e

)
, (9)

where E(0)
c = e2/2C(0)

� , C(0)
� = ∑

i C
(0)
i , and PiSi =

�Ci(〈φ〉 − Vi).
The work done by the leads and the gate to transfer an

electron to/from the grain remains the same as in the orthodox
theory [2–5], except for the fact that only the geometrical

capacitances C
(0)
i should be taken into account:

W1 = e
([

C(0)
g + C

(0)
2

]
V1 − C

(0)
2 V2 + Q′)

C(0)
�

, (10)

W2 = e
([

C(0)
g + C

(0)
1

]
V2 − C

(0)
1 V1 + Q′)

C(0)
�

, (11)

where the effective gate-induced charge Q′ is

Q′ = −C(0)
g Vg +

∑
i

�Ci (〈φ〉 − Vi). (12)

This in particular implies that for temperature T → 0 the
effective ground-state free energy is defined as

F0 = E(0)
c min

n
(n − Q′/e)2. (13)

Below we use the notation Q = −CgVg for the traditional
gate-induced charge. We show that although the effects of
slow polarization are far from being a simple renormalization
of capacitances C

(0)
i → Ci , the conductance periodicity in

Q holds and maintains its period |e| for any values of the
parameters �Ci .

B. Nature of the memory effect: Analytical estimates

The detailed balance equation (5) can be solved analytically
for the set of voltages Vg near the “degeneracy points,” where
the ground-state energy of the SET changes from n to n ± 1
excess charges. The last condition requires the effective charge
Q′ to be close to e(n + 1/2). In this case only the two
probabilities pn are finite, while the other probabilities are
exponentially suppressed by the factor e−E

(0)
c /T . In order to

illustrate the origin of the memory effect, we will focus on the
degeneracy point between n = 0 and n = 1 at V1,2 = 0. Using
Eqs. (3) and (4), we find for the average potential 〈φ〉

nF

[
(1 − 2Q′/e)E(0)

c

] = e〈φ〉/2E(0)
c + Q′/e, (14)

where nF is the Fermi function. Equation (14) has one or three
solutions for a given gate voltage Q. The latter case is shown in
Fig. 2. The presence of three distinct solutions for the average
potential 〈φ〉 at a given parameter Q indicates the memory-
effect instability. Using the graphical solution of Eq. (14),
we estimate the criterion for the memory-effect instability,∑

i �Ci/C(0)
� � 2T/E(0)

c . This criterion corresponds to the
critical value of �C� when the memory effect just appears;
see Eq. (36) below for the exact expression.

III. SET WITH A SLOW INSULATOR IN THE GATE
CAPACITOR

A. Numerical study of electron transport through a SET

Here we study electron transport through a SET numeri-
cally. We consider the SET with a slow dielectric layer in the
gate capacitor. This setup is the most favorable for experiment
since in this case there is no electron tunneling through the gate
electrode and it can be arbitrarily thick, allowing a wide choice
of dielectric materials. Moreover, as we will show in Sec. IV,
at V = 0 by considering the gate capacitor we still preserve
all the qualitative effects introduced by slow dielectrics in a
general case.
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FIG. 2. (Color online) Graphical solution of Eq. (14) showing
three possible solutions for an average grain potential 〈φ〉 at a
given gate voltage Vg . Parameters are Q = −0.07|e|, C(0)

g = 0.5C(0)
� ,

�Cg/C(0)
� = 0.5, and T = 0.4 E(0)

c . The three distinct solutions for
〈φ〉 at a given Q0 correspond to the memory effect instability.

Thus, for a time, we assume that the only nonzero �C is
�Cg .

For �Cg = 0 the conductance is a periodic function of the
effective gate voltage Q; see the gray curve in Fig. 3. The
conductance peaks are well fitted by the orthodox theory, in
which, near the peak maximum, the conductance is

G(0)(δQ(0)) ≈ e δQ(0)/C(0)
� T

2(R1 + R2) sinh
(
eδQ(0)/C(0)

� T
) . (15)

Here δQ(0)/e = mink[−C(0)
g Vg/e − (2k + 1)/2] � 1.

At finite but small �Cg , when the induced charge on
the island due to polarization is smaller than the elementary
charge, the conductance peaks change their shape but preserve
their amplitude and position (see Fig. 3).

The opposite case, with dielectric polarization being strong
enough to induce a charge on the island of the order of
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FIG. 3. (Color online) Conductance peaks for �Cg/C(0)
� =

0, 0.3, 0.6. The unit of conductance GT 1 is the conductance of
the first tunnel junction of the SET. Parameters are capacitances
C

(0)
1 = 0.3C(0)

� , C
(0)
2 = 0.5C(0)

� , and C(0)
g = 0.2C(0)

� and temperature
T = 0.2E(0)

c . The slow dielectric in the gate capacitor modifies the
shape of the conductance peaks but preserves the periodicity in
parameter Q, in contrast to the SET with a ferroelectric in the gate
capacitor [7].
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FIG. 4. (Color online) Memory effect instability in the SET with
a slow insulator in the gate capacitor. (a) and (b) The conductance
branches corresponding to increasing and decreasing Q, respectively,
and �Cg/C(0)

� = 0.6, 1, 2, 4, (c) polarization, and (d) the average
grain potential (arrows show the direction of Q evolution for a
given branch) for �Cg/C(0)

� = 4. Gray lines show stable and unstable
branches of polarization and the average potential. Parameters are
capacitances C

(0)
1 = 0.3C(0)

� , C
(0)
2 = 0.5C(0)

� , and C(0)
g = 0.2C(0)

� and
temperature T = 0.2E(0)

c as in Fig. 3.

the elementary charge or larger, is more interesting. In this
case the conductance peaks show the hysteresis, and their
shape depends on the direction of Q evolution (see Fig. 4).
The hysteresis appears for �Cg � C(0)

� 2T/E(0)
c [see Eq. (29)].

Despite the memory effect the conductance remains periodic
in the renormalized gate voltage Q = −(C(0)

g + �Cg)Vg ,
with the same period |e| for any �Cg . This behavior is in
striking contrast to the SET with a ferroelectric in the gate,
where due to the nonlinearity of the polarization–electric-field
dependence the periodicity of the conductance is broken (see
Ref. [7]).

Now we discuss the structure of the memory effect.
Above the critical value of �Cg there are many branch
solutions of the self-consistency equation for the average grain
potential, Eq. (4), for the given temperature, bias, and gate
voltage. The question is, How do we choose the right branch?
Figure 5 provides an answer to this question. According to
the branching theory [28], the jumps occur at the “branching
points,” where the observable has an infinite derivative in
parameter Q. On the other hand, the branch should correspond
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FIG. 5. (Color online) Memory effect: (a)–(d) and (f) the conductance for �Cg/C(0)
� = 1.3, 3.3, 5.3, 10, 20 for stable and unstable branches

of Eq. (4) for the average grain potential. (e) The polarization for �Cg/C(0)
� = 10. Arrows indicate the positions of hysteresis jumps for a

particular branch with increasing Q. All plots are shown at fixed temperature T = 0.2E(0)
c .

to the minimum of some effective energy functional. In our
case (no bias) the effective energy,

F = −T ln Z, Z =
∑

n

exp

(
− E(0)

c (n − Q′/e)2

T

)
.

(16)

For zero temperature it reduces to the free energy F0 discussed
above.

The plots of the free energy have a dependence on the
parameter Q similar to that of the zero-bias conductance G.
To illustrate this point we show in Fig. 6 the free energy for
�Cg/C(0)

� = 0.6, 1.3. Figure 5(b) shows that the conductance
branch between points A and B is metastable: the free energy
for this curve is larger than the free energy for the branch
below. However, during the adiabatically slow increase of
parameter Q the system does not switch to the lowest branch
at point A; instead, it may go up to the metastable branch.
The external perturbation can drive the system outside of the
metastable branch before the bifurcation point. Usually, this
“perturbation” plays the role of the Langevin forces induced by

-1.0 -0.5 0.0 0.5 1.0

0.00

0.01

0.02

0.03

0.04

0.05

fre
e

en
er

gy
,2

F/
E

c

Q/|e|

ΔCg/C
(0)
Σ =
0.6
1.3

FIG. 6. (Color online) Free energy in Eq. (16) for �Cg/C(0)
� =

0.6, 1.3 and temperature T = 0.2E(0)
c . The shape of the free-energy

plot is similar to that of the conductance G(Q) plot in Fig. 5(a).
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FIG. 7. (Color online) Memory effect in (a) the conductance and
(b) the polarization of the gate insulator. The red hysteresis loop
corresponds to the back and forth change of parameter Q in the
interval (−2,1), while the blue curve corresponds to the (−2,2)
interval. Parameters are �Cg = 7.5C(0)

� , T = 0.2 E(0)
c , while C

(0)
i ,

i = 1,2,g and Rj , j = 1,2, similar to Fig. 3.

the thermostat. In this case the jumps occur randomly within
the same region before the bifurcation point. This scenario is
typical for any hysteresis.

Intuitively, one may suppose that if conductance “jumps”
from one branch to another, the final branch should have the
lowest possible free energy for the parameter Q corresponding
to the jump. Indeed, this is the case in Figs. 5(a)–5(c).
However, in Figs. 5(d) and 5(f), this rule is violated. The
system could jump, for example, to the point marked by the
red ball in Fig. 5(d), instead of finishing at the point marked
by the gray ball, which has a larger free energy. However,
this energetically favorable transition is “forbidden”: while
continuously changing the polarization in such a process, the
system would have to pass the energy barrier of approximately
E(0)

c /4 (free-energy maximum). Thus the higher-order jumps
(over the average charge difference) are suppressed by the
factor exp(−E(0)

c /4T ).

B. The fine structure of the memory effect

Performing numerical studies of the memory effect, we
assumed that Q increases (or decreases) monotonically from
minus to plus infinity (or vice versa). However, for large
enough �Cg , when polarization induces more than one
electron on the grain, the hysteresis loop depends on the
interval where the parameter Q changes. This is shown in
Fig. 7 with two possible hysteresis loops: The red hysteresis
loop corresponds to a back and forth change of Q in the interval
(−2,1), while the blue curve corresponds to the interval
(−2,2). In the second case the larger hysteresis loop includes
smaller loops. As a result, the understanding of the memory
effect at finite intervals of Q evolution requires consideration

of all branches of the SET observables such as conductance
and polarization.

C. Analytical description of the conductance peaks
and the memory effect

Here we present the analytical description of transport
properties of a SET. At V = 0 and within the two-state
approximation the form of the conductance peaks G(Q) can be
found using Eq. (15) with the proper substitution Q(0) → Q′,
where Q′ is defined in Eq. (12): with this substitution we have
for conductance G(Q) = G(0)(Q′). For the average potential,
generalizing Eq. (14), we obtain

〈φ〉 = e

C(0)
�

[
1

2
tanh

(
E(0)

c

T

δQ′

e

)
− δQ′

e

]
, (17)

where δQ′/e=mink[Q′/e−(k + 1/2)]. Combining Eqs. (17)
and (12), we find

δQ′ C�

C(0)
�

− e

2

�Cg

C(0)
�

tanh

(
E(0)

c

T

δQ′

e

)
= δQ, (18)

where δQ = Q − (k + 1/2)e is the deviation of Q, k is the
same as for δQ′, and C� = C(0)

� + �Cg . It should be noted that
the above equations are valid for any δQ as long as δQ′ � 1.

1. Small polarization

Here we discuss the limit of small polarization, meaning
that the induced charge on the island is small compared to the
elementary charge e. Using the small parameter, �Cg/C(0)

� �
1, we expand Eq. (18) up to the second order,

(δQ′)0 = δQ
C(0)

�

C�

, (19)

(δQ′)1 = (δQ′)0 + e

2

�Cg

C�

tanh

(
E(0)

c

T

(δQ′)0

e

)
. (20)

The conductance now may be found by substituting δQ(0) with
(δQ′)0,1 in Eq. (15):

G(δQ) = G(0)(δQ′). (21)

The numerical calculations in Fig. 8(a) show that the first-
order approximation, Eq. (20), describes well the peak shape
for small parameter �Cg/C(0)

� ≈ 0.1, while the zero-order
approximation is not sufficient. We note that �Cg/C(0)

g and
thus the renormalization of the conductance period over Vg

can be arbitrary in this approximation.

2. Amplitude and form of the conductance peak
in the hysteresis regime

The solution of Eq. (18) becomes ambiguous for large
values of �Cg , where conductance G(Q) acquires hysteresis.
In this case the form of conductance peaks becomes non-
symmetric, and the conductance G(Q) has a maximum at the
branching (bifurcation) point corresponding to the jump of the
polarization. The bifurcation points in Eq. (18) can be found
as follows:

d

dQ′

[
δQ′ C�

C(0)
�

− e

2

�Cg

C(0)
�

tanh

(
E(0)

c

T

δQ′

e

)]
= 0, (22)
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FIG. 8. (Color online) (a) Numerical solution for the conductance peak for �Cg/C(0)
� = 0.05 (blue line); the orange line is the zero-order

solution from Eq. (19), and the red line is the first-order solution from Eq. (20). (b) Numerical and analytical solutions of conductance for
�Cg/C(0)

� = 0.1. The first order approximates well the conductance peak at small �Cg . (c) Conductance at critical �Cg , where hysteresis
appears. (d) Conductance hysteresis. (e) Amplitude of conductance peak vs �Cg . Points represent the numerical solution, the dashed curve is
Gmax = 1/2(R1 + R2), and the green solid curve shows Eq. (24) for Gmax. Parameters are T = 0.06 E(0)

c , while C
(0)
1 , C

(0)
2 , C(0)

g , and R1,2 are the
same as in Fig. 3.

which reduces to

cosh2

(
E(0)

c

T

(δQ′)max

e

)
= E(0)

c

2T

�Cg

C�

. (23)

The two solutions of Eq. (23) correspond to the increasing
and decreasing evolution of Q (solutions with δQ′ < 0 and
δQ′ > 0, respectively). These two solutions result in mirror-
reflected shapes for the peaks, so we focus only on decreasing
Q. For the conductance maximum we find

Gmax = 1

2(R1 + R2)

arccosh
(√

E
(0)
c

2T

�Cg

C�

)
√

E
(0)
c

2T

�Cg

C�

(
E

(0)
c

2T

�Cg

C�
− 1

) . (24)

The predicted conductance maximum amplitude variation is
shown in Fig. 8. One can see that the curve breaks at the critical
value of �Cg , indicating the start of the hysteresis regime.

We note that since, within the scope of the two-state
approximation and for �Cg above the critical value, Eq. (24)
gives the exact maximum, its applicability depends only on
temperature. At finite �Cg the conductance maximum does
not exactly correspond to a degeneracy point δQ′ = 0, but
still δ(Q′)max � 1 for T � E(0)

c . For example, for temperature
T = 0.06E(0)

c and �Cg → ∞ we have δ(Q′)max/|e| ≈ 0.1 �
1, meaning that our consideration is valid (see Fig. 8).

Now we find the form of the conductance peaks. Ex-
panding Eq. (18) up to the second order near δ(Q′)max, we

obtain

A0 + A2[δQ′ − δ(Q′)max]2 = δQ, (25)

where

A0 = eT

E
(0)
c

C�

C(0)
�

arccosh

(√
Ec

2T

�Cg

C�

)

− e

2

�Cg

C(0)
�

√
1 − 2T

E
(0)
c

C�

�Cg

(26)

and

A2 = E(0)
c

eT

C�

C(0)
�

√
1 − 2T

E
(0)
c

C�

�Cg

. (27)

It follows from Eqs. (25) and (21) that the conductance
derivative in δQ diverges as 1/

√
x near its maximum value.

3. The peak form at the bifurcation point

To find the conductance peak at the critical value of �Cg

we expand the hyperbolic tangents in Eq. (18) up to the third
order. As a result, we obtain

δQ′
[

1 − �Cg

C(0)
�

(
E(0)

c

2T
− 1

)]
+ e�Cg

6C(0)
�

(
E(0)

c

T

δQ′

e

)3

= δQ.

(28)
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The linear term equals zero at the critical point. For critical
polarizability of the gate insulator we find

�C(c)
g = C(0)

�

(
E(0)

c /2T − 1
)−1

. (29)

Also we find that

δQ′ = eT

E
(0)
c

3

√
6
δQ

e

(
E

(0)
c

2T
− 1

)
. (30)

Using Eq. (21), we find that the peak maximum can be
approximated with the function 1/(1 + x2/3) (here x ∝ δQ),
while the derivative diverges at the conductance maximum
as 1/ 3

√
x. As follows from Fig. 8(c) and Eq. (30), this

approximation for conductance works well only near its
maximum value.

IV. SINGLE-ELECTRON TUNNELING THROUGH A SLOW
DIELECTRIC LAYER

A. Conductance peaks with slow dielectrics in all capacitors

Here we consider the general case, with slow dielectric
layers in all capacitors with polarizabilities �C1, �C2,�Cg .
Using Eq. (12), we find

Q′ = Q + �C�〈φ〉(Q′,V ) − (�C2 − �C1)
V

2
, (31)

where we introduce the parameter

�C� =
∑

i=1,2,g

�Ci. (32)

Here we explicitly show that the functions Q′ and 〈φ〉 depend
on voltage V . In general, this dependence results in an
additional contribution to the conductance proportional to
∂Q′/∂V :

G(Q,V ) = ∂I (0)(Q′,V )

∂V

= G(0)(Q′,V ) + ∂I (0)(Q′,V )

∂Q′
∂Q′

∂V
, (33)

where I (0)(Q,V ) is the current in the orthodox theory, gener-
ally not limited by the two-state approximation. However, the
current I is zero for zero bias voltage for any Q; therefore
the last term can be omitted at V = 0. This explains why in a
two-state approximation we can calculate the conductance by
replacing Q by Q′ in Eq. (15) for the orthodox theory.

For zero voltage, V = 0, Eq. (31) reduces to

Q′ = Q + �C�〈φ〉(Q′). (34)

Then

δQ′
(

1 + �C�

C(0)
�

)
− e

2

�C�

C(0)
�

tanh

(
E(0)

c

T

δQ′

e

)
= δQ. (35)

As we can see, the only distinction between Eqs. (35) and (18)
is the replacement of �Cg with �C� . It follows that for V =
0 the SET with slow insulators in tunnel junctions behaves
qualitatively similar to the only �Cg > 0 that was considered
previously. The only difference is related to the fact that the
slow dielectric in the gate capacitor renormalizes the period of

the Q oscillations of conductance, while slow dielectrics in all
other capacitors of the SET do not.

Now, we can generalize our results for positive �Cg > 0
obtained earlier. In particular, the critical polarization, where
the memory effect in the conductance G(Q) first appears,
becomes the integral quantity [see Eq. (32)] that includes
properties of all the slow dielectric layers:

�C
(c)
� = C(0)

�

(
E(0)

c /2T − 1
)−1

. (36)

The amplitude of the conductance peaks can be found using the
substitution �Cg → �C� in Eq. (24). The shape of the peaks
can be obtained using the same substitution in the equations
in Sec. III C 3, where still δQ = −(C(0)

g + �Cg)Vg .

B. Memory effect in current-voltage characteristics

Above we discussed the properties of a SET with slow
dielectric barriers, related to the variation of the gate voltage
Vg at bias V = 0. In this section we instead concentrate on
the current-voltage characteristic I (V ) of a SET in the case
of electron tunneling through a slow insulator in the left
and the right capacitors (see Fig. 1). We neglect the gate
to simplify the situation, thus putting Cg = 0. Such systems
have been extensively studied in experiments over the last two
decades. They can exhibit Coulomb blockade at room temper-
ature [21,29–31], and their ease of fabrication makes a wide
range of barrier materials available for experiments. Following
Ref. [21], we consider the current-voltage characteristic of the
SET in a wide range of bias voltages.

The typical current-voltage characteristics I (V ) are shown
in Fig. 9; in Figs. 9(a)–9(c) the coefficients �C2 = 0 and
�C1 are finite. It follows that there is a memory effect in
I (V ) at large enough �C1, and this effect depends on the
direction of the bias-voltage evolution. The jumps in Fig. 9(b)
correspond to the regions of hysteresis, while the arrows show
the evolution of the voltage. Figure 9(c) shows the hysteresis in
I (V ) for �C1/C(0)

� = 3.5. The current-voltage characteristics
may have many hysteresis loops, depending on the amount of
electron charge that the dielectric polarization may induce on
the grain. The hysteresis in the current-voltage characteristics
appears for the first time for �C1 larger than C(0)

� . This is the
first critical value of polarization. For �C1 � 2C(0)

� the second
hysteresis loop appears in I (V ). Therefore this is the second
critical value of �C1. For larger values of �C1 we expect a
further increase in the number of hysteresis loops.

Two cases of current-voltage characteristics are compared
in Figs. 9(d) and 9(e): (i) finite �C1 and zero �C2 and (ii)
�C1 = �C2. In both cases the set of critical values of �C

is the same, and for large bias voltage the current-voltage
characteristics asymptotically coincide.

Figure 9 shows that the current-voltage characteristics of
the SET strongly depend on the direction of bias voltage V .
Moreover, for a given hysteresis branch

I (V ) �= −I (−V ), (37)

which happens in the absence of Q and is notably different
from the result for a regular SET.
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FIG. 9. (Color online) Current-voltage characteristics I (V ) of a SET with zero gate capacitance, Cg = 0. (a) I (V ) for �C1/C(0)
� =

0.0,0.25,0.5,0.75,1.0,1.25. Smoother curves correspond to smaller �C1. (b) �C1/C(0)
� = 1.5. The jumps in I (V ) in (b), (c), (e), and (f)

correspond to the memory effect: the branch depends on the direction of the voltage change. (c) I (V ) for �C1/C(0)
� = 3.5. The I (V ) curve can

have many hysteresis loops depending on the amount of electron charge induced on the grain by the dielectric polarization. Insets in (b) and
(c) show the details of the hysteresis. (d) I (V ) for �C1/C(0)

� = 1.25, �C2/C(0)
� = 0 (black curve) and �C1/C(0)

� = �C2/C(0)
� = 1.25 (orange

curve); (e) graphs for �C1/C(0)
� = 1.5, �C2/C(0)

� = 0 (black curve) and �C1/C(0)
� = �C2/C(0)

� = 1.5 (orange and blue curves). (f) I (V ) for
�C1/C(0)

� = �C2/C(0)
� = 3.5. Parameters are T = 0.06 E(0)

c , C
(0)
1 = 0.6C(0)

� , C
(0)
2 = 0.4C(0)

� , and Ri , i = 1,2, similar to Fig. 3. The unit of
voltage is E(0)

c /|e|, and the current is normalized to E(0)
c /|e|RT1.

C. Influence on the Coulomb staircase

By the Coulomb staircase in this section we mean a steplike
behavior of I (V ) in the regime of Coulomb blockade. The
Coulomb staircase is often used as an indication of Coulomb
blockade (Refs. [21,29,32–34]). In the following we show how
the slow polarization influences the shape of the staircase.
Again, we take Cg = 0 and consider the conditions when the
staircase is the most pronounced, i.e., T = 0 and strongly
asymmetric barriers R1  R2. At zero temperature tunneling
may occur only in the direction of chemical potential drop,
that is, from the first electrode to the second, assuming
V > 0. Due to the relatively high tunneling rate through the
second electrode, the number of excess electrons on the island
almost always stays at the minimum energetically allowed
number nmin. It can be determined as the lowest n for which
�Fn+1→n

2 < 0 is true since �Fn→n+1
1 < 0 holds for any

n < 0. For a given nmin the current can be calculated as

I = 1

eR1
�F

nmin→nmin+1
1 , (38)

where �F1 is the free-energy change on tunneling through the
first electrode. For a conventional SET the above formula leads
to a staircase-shaped I (V ) characteristic with the step width

�Vstep = |e|/C
(0)
1 , (39)

jumps of the current between the steps

�Istep = |e|/R1C(0)
�

, (40)

and the I (V ) slope between the jumps

dI/dV = C
(0)
2 V/C(0)

�
R1. (41)

Introducing slow dielectric into the tunnel junctions results
in some new effects (for the details of the calculations see
Appendix B). At V > |e|/C(0)

� slow polarization leads to
the rescaling of the staircase, which may be described by
substituting the capacitances in Eqs. (39)–(41) by the new
values Ci = C

(0)
i + �Ci , exactly like when dealing with a

conventional fast dielectric [see Fig. 10(b)]. Contrary to the
fast dielectric, the slow one shifts the staircase, making it
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FIG. 10. (Color online) Current-voltage characteristics I (V ) of a SET demonstrating the Coulomb staircase at T = 0, Cg = 0. (a) I (V ) in
the regime in which the scaling of the Coulomb staircase steps at large V is the same for slow and fast dielectric responses. Here R2/R1 = 10−3,
C

(0)
1 = 0.9C(0)

� , C
(0)
2 = 0.1C(0)

� . (b) The regime in which the periods of Coulomb staircases for slow (blue curve) and fast (red curve) dielectrics
of the same static polarizabilities are different. R2/R1 = 0.25, C

(0)
1 = 0.9C(0)

� , C
(0)
2 = 0.1C(0)

� . (c) and (d) The shifts of the staircases arising
from the hysteretic behavior of I (V ) for a SET with slow dielectrics. Arrows indicate the directions of voltage change for each curve. Here
R2/R1 = 10−3, C

(0)
1 = 0.7C(0)

� , C
(0)
2 = 0.3C(0)

� . The unit of voltage is |e|/C(0)
� , and current is measured in |e|/C(0)

� (R1 + R2).

asymmetric and, moreover, dependent on the direction of the
evolution of V , as illustrated in Figs. 10(c) and 10(d).

Interestingly, the shift in the I (V ) curve in experiments is
a well-known effect. It is usually accounted for by assuming
the presence of some additional spurious charge Q, induced
on the grain (as in Refs. [21,33]). However, the shift that we
predict is notably different, at least in one aspect: it reverses
its sign with the direction of the evolution of V .

We stress that the described rescaling and shift of I (V )
take place only under specific conditions V > |e|/C(0)

� and
R1  R2. If R2 are of the same order, the introduction
of the slow dielectric may change the staircase steps in a
more complex way. Such a situation is shown in Fig. 10(b),
where the staircase period does not correspond to the one
we would expect from the simple capacitance-renormalization
consideration. If R1/R2 is even closer to unity, the slow
dielectric barriers qualitatively change the current-voltage
curve, as was discussed in the previous section (see Fig. 9).

V. DISCUSSION

Before we discuss the specific features of our SET model,
here we briefly mention the limitations and a possible direction
of further investigations. Metallic island is characterized by an
important parameter: δE, the mean spacing of single-electron
levels. Here we focus on a relatively large metallic island
where δE is the smallest energy parameter: δE � T � E(0)

c .
However, if, for example, the diameter of the metallic island is
5 nm or smaller and T ∼ 300 K, δE may already become
comparable to T . (Semiconductor quantum dots achieve
this limit for much larger diameters.) This case has been
extensively debated for SETs [35]. Then solving the transport
problem for a SET with an active dielectric, we should take
into account the level statistics and calculate accordingly the
statistics of the peak heights in the methods generalizing the

Coulomb-blocked transport problem developed in Refs. [36–
39]. We leave this calculation for a forthcoming paper.

A. Requirements for dielectric materials

Here we discuss several possible dielectric materials which
can be considered slow insulators. At finite external electric
field the localized electric charges are shifted, and the dielectric
material is polarized. There are several physical processes
contributing to the polarization: (1) the shift and deformation
of the electron cloud, (2) the shift of ions in the lattice, and
(3) the molecular and/or macrodipole reorientation. Electrons,
ions, and dipoles can form a different polarization. The slowest
polarization formation corresponds to the electrocaloric and
migration (electron, ion, or dipole) mechanisms with the char-
acteristic dispersion frequency being in the range 10−4–10−1

and 10−3–103 Hz, respectively, at temperature T = 300 K.
The electromechanical mechanism corresponds to frequencies
of 105–108 Hz, while the thermal mechanism corresponds to
105–1010 Hz. The dielectrics for which the thermal mechanism
is the largest are promising for applications in nanostructures
and can be considered slow dielectrics.

Dithiol self-assembled monolayers (SAMs) have a static
dielectric permittivity ε(ω = 0) ∼ 3 and a characteristic re-
laxation frequency of ∼ 104 Hz [22]. These materials are good
candidates for slow dielectrics. Such dielectric layers have
been used in double-junction SETs [21]. The hysteresis has
not been observed in these experiments, but there was a con-
siderable discrepancy between the values of the capacitances
obtained from the fit of the experimental data with the orthodox
model and the ab initio calculations.

Other promising materials to observe the hysteresis are po-
lar crystal dielectrics, e.g., BaTiO3 and potassium dihydrogen
phosphate, with static dielectric permittivity ε(ω = 0) ∼ 103

and a typical relaxation frequency ωc ∼ 106 Hz.
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B. Fast capacitances

Here we discuss the geometric capacitance C
(0)
i , i = 1,2,g.

We assumed that these capacitances have an electrostatic
origin. However, in a rigorous analysis they include the
high-frequency dielectric permittivity ε∞(usually between 1
and 10). Thus in our consideration the slow polarizability αi

is the difference between the low- and high-frequency αi . As
an example, for BaTiO3 the difference between the high- and
low-frequency permittivities ε is ∼ 103. This difference is large
enough.

C. Critical polarization

The effects of slow polarization are governed by the ratio
of slow and fast capacitances �C�/C(0)

� . If a capacitor is
fully filled with a dielectric with permittivity ε(ω), then
�C�/C(0)

� = [ε(0) − ε(∞)]/ε(∞). It follows from Secs. III
and IV that at �C�/C(0)

� ∼ 1 the strong influence of slow
polarization may be observed, thus requiring ε(0) � 2 ε(∞).

The latter requirement becomes even less strict at lower
temperatures. In particular, the critical value of ε(0)(c)/ε(∞)
to observe the breakdown of conductance peaks goes to 1 as
T → 0 [see Eq. (36)]. For the conditions in Fig. 8(e) ε(0)(c) ≈
1.14 ε(∞).

D. Temperature dependence of the Coulomb-blockade effects

A well-known consequence of the orthodox theory of the
SET is that in order to experimentally observe the Coulomb-
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FIG. 11. (Color online) Temperature dependence of the
Coulomb staircase in I (V ) characteristics of (a) a regular SET and
(b) a SET with slow dielectrics in the tunnel barrier. In (b) the
SET parameters are C

(0)
1 = 0.7C(0)

� , C
(0)
2 = 0.3C(0)

� , �C1 = 1.4C(0)
� ,

�C2 = 0. In (a) C1 = 2.1C(0)
� and C2 = 0.3C(0)

� . For both plots
R2/R1 = 10−3, and in (b) I (V ) is shown for increasing voltage
V . The unit of voltage is |e|/C(0)

� , and the current is measured in
|e|/C(0)

� (R1 + R2).

blockade phenomenon, the temperature of the system should
be lower than Ec = e2/2C� . Here the total capacitance C�

includes dielectric susceptibility of the barrier media. In
contrast, our numerical calculations show that if the dielectric
response is sufficiently slow, only the ratio E(0)

c /T should
be taken into account when considering the blurring of the
Coulomb effects due to finite temperature. This must result in
a more pronounced blockade for a system with a slow dielectric
at a given temperature and electrode geometry, as illustrated
in Fig. 11.

VI. CONCLUSIONS

We showed that the dielectric materials at the nanoscale
demonstrate distinct physical phenomena. As an example we
studied the single-electron transistor. We found the memory
effect in the conductance-gate voltage dependence and in the
current-voltage characteristics of the SET. We uncovered the
complex fine structure of the hysteresis effect, where the large
hysteresis loop may include a number of smaller loops. We also
found that in order to estimate the influence of temperature on
the electronic transport one should compare T with e2/2C(0)

� ,
where in C(0)

� the slow part of the dielectric function is not
included.
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APPENDIX A: CALCULATION OF THE COULOMB
ENERGY CHANGE ON ELECTRON JUMPS

Here we show how the energy changes �U±
n are calculated.

If the number of electrons on the island changes from n to n ± 1
in some process, then the electrostatic energy change is

�U±
n =

∫ n±1

n

∑
i

(φ − Vi)dqi

=
∫ n±1

n

∑
i

(φ − Vi)
(
C

(0)
i dφ + SidPi

)
, (A1)

where qi are the charges of the capacitors and Pi are dielectric
polarizations in barriers. For fast and slow dielectrics Pi

behave differently during the process of electron jumps. If
the dielectric response is fast, Pi follows φ, which results
in capacitance renormalization. For slow dielectric layers the
polarization cannot change on the electron-jump time scale,
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and thus dP = 0, yielding

�U±
n = 1

2

∑
i

C
(0)
i (φ − Vi)

2

∣∣∣∣∣
φ(n±1)

φ(n)

. (A2)

φ(n) are calculated using the charge balance equation (3),

φ(n) = 1

C(0)
�

[
e

(
n −

∑
i

PiSi/e

)
+

∑
i

C
(0)
i Vi

]
. (A3)

Here Pi are constant and do not depend on n. By inserting
Eq. (A3) into (A2) we obtain Eq. (9).

APPENDIX B: THE SHAPE OF THE
COULOMB STAIRCASE

At zero temperature the tunneling rates for the electron to
and from the island are


n→n±1
1,2 = 1

e2R1,2

( − �Fn→n±1
1,2

)
�

( − �Fn→n±1
1,2

)
, (B1)

where n is the number of excess electrons on the island and
tunneling happens through the first or second electrode. Free-
energy changes �F1,2 on jumps are

�Fn→n±1
1 = e

C
(0)
�

[
e

2
± (ne − Q′) ± C

(0)
2 V

]
, (B2)

�Fn→n±1
2 = e

C
(0)
�

[
e

2
± (ne − Q′) ∓ C

(0)
1 V

]
. (B3)

Consider V > 0. It follows from (B1) that tunneling occurs
if for some n simultaneously �Fn→n+1

1 �0 and �Fn+1→n
2 �0

(there is no backward tunneling at T = 0). These conditions
may be combined into

Q′/e − 1/2 + C
(0)
1 V/e � n � Q′/e − 1/2 − C

(0)
2 V/e. (B4)

Since the tunneling from the first electrode to the island is much
slower than that from the island to the second electrode (R1 
R2), the number of electrons on the island almost constantly
stays at its lowest energetically allowed value nmin. The current
is then

I = −e

n→n+1

1 
n+1→n
2


n→n+1
1 + 
n+1→n

2

≈ −e

nmin→nmin+1
1 . (B5)

What remains is to calculate nmin. Since we neglect Cg ,
only the charge induced by the slow polarization gives rise to
Q′,

Q′ = �C�

C�

nmine + �C1C
(0)
2 − �C2C

(0)
1

C�

V. (B6)

nmin can be determined from the equation⌈
− 1

2
− nmin

1 + �C�/C(0)
�

+ C1(
1 + �C�/C(0)

�

) V

e

⌉
= 0,

(B7)
where �x� denotes the lowest integer larger than x. It worth
noting that Eq. (B7) predicts multiple solutions for nmin at V

close to the current jump points if �C� > 0 [see Fig. 10(d)].
The calculation of I yields

I (V ) = 1

R1C�

(
e

2

C�

C(0)
�

+ nmine + C2V

)
. (B8)

The latter formula demonstrates the full renormalization of
capacitances and a shift in the I (V ), as illustrated in Fig. 10(a).
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[12] H. Fröhlich, Theory of Dielectrics: Dielectric Constant and
Dielectric Loss (Clarendon Press, Oxford, 1958).
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