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Maximizing the purity of a qubit evolving in an anisotropic environment
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We provide a general method to calculate and maximize the purity of a qubit interacting with an anisotropic
non-Markovian environment. Counter to intuition, we find that the purity is often maximized by preparing and
storing the qubit in a superposition of noninteracting eigenstates. For a model relevant to decoherence of a
heavy-hole spin qubit in a quantum dot or for a singlet-triplet qubit for two electrons in a double quantum
dot, we show that preparation of the qubit in its noninteracting ground state can actually be the worst choice
to maximize purity. We further give analytical results for spin-echo envelope modulations of arbitrary spin
components of a hole spin in a quantum dot, going beyond a standard secular approximation. We account for
general dynamics in the presence of a pure-dephasing process and identify a crossover time scale at which it
is again advantageous to initialize the qubit in the noninteracting ground state. Finally, we consider a general
two-axis dynamical decoupling sequence and determine initial conditions that maximize purity, minimizing
leakage to the environment.
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I. INTRODUCTION

A source of high-quality pure ancilla qubits is an essen-
tial element in a wide variety of applications in quantum
information science. Pure ancillas are required to introduce
redundancy into quantum error-correcting codes [1–6], for
the preparation of Greenberger-Horne-Zeilinger (GHZ) states
for quantum-enhanced precision measurements [7,8], as a
low-entropy resource for algorithmic cooling [9–11], and to
perform high-fidelity qubit readout [12–15].

Despite the importance of having high-quality ancillas, it
is often taken for granted that high-purity ancillas can be
prepared by allowing a physical qubit system to fall into its
noninteracting ground state in contact with a thermal bath at
low temperature. For this reason, the preparation of an ancilla
in the computational basis is often assumed to be easy relative
to the more difficult task of preserving the coherence of an
arbitrary qubit state. However, qubits that couple strongly
to a complex environment can become correlated with the
environment in a way that significantly reduces purity due to
leakage to environmental degrees of freedom. Qubits that are
manipulated on a time scale that is short compared to a typical
thermal equilibration time may not even reach equilibrium.
Although there now exist methods to mitigate the effects of
somewhat impure ancilla qubits in quantum error correction
schemes [16], for all of the applications stated above, it is
important to prepare and store ancilla qubits in a way that
maximizes their purity.

When a qubit and its environment are initialized in a
factorized pure initial state, a reduction in the purity of
the qubit characterizes entanglement between the qubit and
its environment. In this case, the purity can be used as a
measure of nonclassical correlations that develop during the
evolution of the qubit with its environment and hence can
distinguish truly quantum from classical dynamics. This topic
has become especially interesting in the context of spin-bath
dynamics [17–20]. For slowly evolving nuclear-spin baths,

it is indeed possible to approach pure-state initial conditions
through algorithmic cooling [9–11] or direct measurement of
the bath state [13,21–25], so studying the purity for these
systems is especially important from both a practical and a
fundamental point of view.

As we show below, the evolution of qubit purity becomes
highly nontrivial for a qubit interacting with a slow anisotropic
environment. Anisotropic hyperfine couplings between a
central qubit spin and environmental spins are important for
nitrogen-vacancy centers in diamond [26–28], electrons bound
to phosphorus donor impurities in silicon [29,30], electrons in
graphene or carbon nanotubes [31,32], and especially for hole
spins in III-V semiconductors or silicon [33–37]. Heavy-hole
spins can indeed approach the extreme-anisotropic limit of
a pure Ising-like coupling to nuclear spins [33]. Finally,
singlet-triplet (S-T0) qubits, describing two electrons in a
double quantum dot, are described by precisely the same
anisotropic decoherence model [38] as a heavy-hole spin qubit
(see Fig. 1).

Coherence properties of single-hole spins in quantum dots
have been probed in detail only relatively recently [37].
Measurements of a coherent-population-trapping dip [39,40]
have suggested long hole-spin coherence times, �100 ns.
These measurements have been supported by time-domain
studies for single-hole spin echoes [41,42] and mode-locking
or spin-echo measurements for ensembles [43,44]. Alterna-
tive measurements of hole-spin dynamics have been per-
formed through spin-noise spectroscopy, revealing a probable
anisotropic decay of hole-spin coherence [45,46].

In addition to optical coherent control of hole spins in
self-assembled quantum dots [39,41,47,48], there are several
suggestions for electrical manipulation of hole spins [49–51].
Such electrical control has recently been demonstrated for hole
spins in III-V nanowire quantum dots [52], and coherence
times have now been measured for hole spins in Ge-Si
core-shell nanowire quantum dots [53]. The very recent
achievement of the few-hole regime in lateral gated double-dot
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FIG. 1. (Color online) (a) A hole spin in a flat unstrained quantum
dot having thickness d much smaller than width L, subjected to a
magnetic field of magnitude B applied in-plane and a hyperfine-
induced nuclear Overhauser field hz fluctuating with amplitude
σN . (b) Bloch sphere for a singlet-triplet (S-T0) qubit subject to a
fluctuating nuclear difference field δhz and exchange coupling J with
fluctuations δω(t) due to charge noise [38]. All results for the S-T0

model follow directly from the hole-spin model with the replacements
hz → 2δhz, γH B → J , and γj → 0.

devices [54] suggests that previous highly successful mea-
surements performed for electron spins [55–60] can now be
performed for hole spins, which show promise for much longer
coherence times [33,35].

In the rest of this paper, we introduce a general method
that can be used to calculate and enhance the purity of
a qubit interacting with an anisotropic environment. We
apply this method to the experimentally relevant problems of
heavy-hole and singlet-triplet (S-T0) spin-echo and dynamical-
decoupling dynamics. Counter to common intuition, we find
that preparation of the hole spin in its Zeeman ground state
can be the worst choice if the goal is to maximize purity. This
surprising result is not limited to the problem of hole-spin
echoes. On quite general grounds, the ideal choice to maximize
purity will typically not be initialization in the eigenbasis of
the isolated qubit Hamiltonian at sufficiently short time, and
whenever pure-dephasing processes are weak or absent.

The rest of this paper is organized as follows. In Sec. II, we
review properties of the purity and derive general conditions to
achieve the maximum purity at time t , starting with a factorized
initial state of the qubit and a generic environment. In Sec. III,
we illustrate the method in the limit of a Born-Markov
approximation, leading to exponentially decaying correlations.
We demonstrate that, even in this limit, it can be suboptimal
to store a qubit in the noninteracting eigenbasis. In Sec. IV,
we calculate spin-echo dynamics for a non-Markovian model
relevant to either a heavy-hole spin in a quantum dot or a
singlet-triplet (S-T0) qubit formed by two electrons in a double
quantum dot (see Fig. 1). In Sec. V, we give general conditions
to maximize qubit purity in a spin-echo experiment. In
Sec. VI, we consider the more general case of purity/coherence
decay accounting for a pure-dephasing process in addition to
anisotropic hyperfine coupling. In Sec. VII, we generalize the
approach to a two-axis dynamical-decoupling sequence and
illustrate the method on the same model valid for heavy-hole
or S-T0 qubits. We conclude in Sec. VIII with a summary of the
main results. Technical details are given in Appendices A–D.

II. QUBIT PURITY

Here we give a brief introduction to the key observable
that we will evaluate, the qubit purity P (t). In addition to
its importance for the preparation of high-quality ancillas in

quantum error correction schemes [61], purity characterizes
the ability to extract a finite qubit polarization after interacting
with a bath for a time t . Maximizing the purity is essential
for any scheme that aims to maximize the storage-and-
retrieval fidelity of a qubit interacting with an uncontrolled
environment.

The purity of a two-level system (a qubit) is generally
defined as [62]

P (t) = Tr
[
ρ2

S(t)
] = 1

2
+ 2|〈S(t)〉|2. (1)

Here, ρS(t) = 1
2σ0 + 〈S(t)〉 · σ is the reduced density matrix

of a qubit, where σ0 is the identity and σ is the vector of
Pauli matrices. For a pure state of the qubit, the Bloch vector
〈S(t)〉 lies on the surface of the Bloch sphere, |〈S(t)〉| = 1/2,
giving P (t) = 1, while a mixed state has |〈S(t)〉| < 1/2 giving
P (t) < 1. Understanding the dynamics of the length of the
Bloch vector, |〈S(t)〉|, therefore allows for a direct evaluation
of the purity P (t). In particular, we can establish a set of criteria
that maximizes the purity to avoid information loss.

Provided both a qubit and its environment are initially
prepared in a pure state, entanglement between the qubit
and environment can be characterized by the von Neumann
(entanglement) entropy,

E[ρS] = −TrρS log2 ρS = −
∑
s=±

ps log2 ps, (2)

p± = 1

2
(1 ± 2|〈S(t)〉|). (3)

Here, p± give the eigenvalues of ρS . In this case, a reduction
in the length of the Bloch vector |〈S(t)〉| < 1/2 [equivalently,
P (t) < 1] characterizes a finite degree of entanglement,
E[ρS] �= 0 [17]. Provided the environment itself can be
prepared in a pure state, the purity P (t) is therefore also an
important measure of nonclassical evolution.

We assume the dynamics of 〈S(t)〉 are generated by a
Hamiltonian

H (t) = H0(t) + V (t), H0(t) = HS(t) + HE, (4)

where the Hamiltonians HS(t) and HE act only on the
system and environment Hilbert spaces, respectively, and the
perturbation V (t) typically couples the two spaces. HS(t) and
V (t) are generally time dependent to account for control pulses
and classical noise, but we will assume HS(t) commutes
with itself for all times, [HS(t),HS(t ′)] = 0. For factorized
initial conditions ρ(0) = ρS(0) ⊗ ρE(0) with initial system
(environment) density matrix ρS(E)(0), we can generally write

〈S(t)〉 = 〈[e− 1
2 L(t)S̃(t)]〉S. (5)

Here, the interaction picture is defined (setting � = 1) by

Õ(t) = U0(t)OU
†
0 (t), U0(t) = ei

∫ t

0 dt ′H0(t ′), (6)

corresponding to an SO(3) rotation matrix [R0(t)] applied to
the vector S = (Sx,Sy,Sz)T :

S̃(t) = U0(t)SU
†
0 (t) = [R0(t)] · S. (7)

We use the notation

〈· · · 〉S(E) = TrS(E)[ρS(E)(0) · · · ] (8)
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for an average over the initial state of the system (environment).
The time evolution is generated by a superoperator that acts
exclusively on the qubit space,

e− 1
2 L(t) = 〈T ei

∫ t

0 dt ′LV (t ′)〉E. (9)

T is the usual time-ordering operator. The interaction-picture
Liouvillian LV (t) is defined by its action on an arbitrary
operator O through

LV (t)O = [Ṽ (t),O]. (10)

The action of Eq. (9) can generally be described by an affine
map (see Ref. [63])1

e− 1
2 L(t)S = [R′(t)] · [M(t)] · [R(t)] · S + 〈δS(t)〉. (11)

Here, [R(t)] and [R′(t)] are SO(3) rotation matrices. [M(t)] is
a magnification matrix that is diagonal with real eigenvalues,

[M(t)] =
⎛
⎝e−λ1(t)/2 0 0

0 e−λ2(t)/2 0
0 0 e−λ3(t)/2

⎞
⎠. (12)

The inhomogeneous term in Eq. (11), 〈δS(t)〉, typically sets the
long-time equilibrium value of the spin, 〈δS(t → ∞)〉, which
is independent of the initial state for an ergodic system. For
systems interacting with a sufficiently high-temperature ther-
mal environment, the inhomogeneous term may be negligible,

〈δS(t)〉 	 0. (13)

Indeed, this turns out to be the case in the experimentally
relevant problems of a hole-spin or S-T0 qubit interacting with
an unpolarized nuclear-spin bath, which we address below (see
also Appendix A). Thus, we first proceed under the (realistic)
assumption that Eq. (13) is satisfied.

Inserting Eq. (7) into Eq. (5), and applying Eq. (11) with
〈δS(t)〉 = 0, gives

〈S(t)〉 = [R0(t)] · [R′(t)] · [M(t)] · [R(t)] · 〈S(0)〉. (14)

The first two rotations, [R0(t)] · [R′(t)], preserve the length of
the Bloch vector, so they will not enter into the formula for
purity. This leaves

|〈S(t)〉|2 =
∑

μ

[M(t)]2
μμ([R(t)] · 〈S(0)〉)2

μ. (15)

The effect of [R(t)] is to align the Bloch vector along principal
axes defined by a set of mutually orthogonal unit vectors êμ(t)
(see, e.g., Fig. 3 below),

êμ(t) · S = ([R(t)] · S)μ. (16)

1The result in Ref. [63] is written in the form (adapted to the notation
used here) [O] · [S], where [O] is a rotation matrix and [S] is a
real symmetric matrix. Since a real symmetric matrix can always be
diagonalized by an orthogonal transformation, [S] = [R−1][M][R],
we find the term on the right-hand side of Eq. (11) is [O] · [S] =
[R′] · [M] · [R] with [R′] = [O] · [R−1].

Using Eqs. (12), (15), and (16) in Eq. (1) then gives a compact
form for the purity,

P (t) = 1

2
+ 2

∑
μ

e−λμ(t)|〈S(0)〉 · êμ(t)|2. (17)

The purity of the qubit at time t therefore depends on
the eigenvalues λμ(t) and on the initial conditions through
〈S(0)〉 · êμ(t). In particular, it is always possible to maximize
P (t) by choosing to initialize the qubit along a direction êμ(t)
associated with the smallest eigenvalue, λμ(t) < λν(t) (μ �=
ν). In this case, the purity is given simply by

Pμ(t) = 1

2
(1 + e−λμ(t)), |〈S(0)〉 · êμ(t)| = 1/2. (18)

Note that the general case of finite 〈δS(t)〉 is not signifi-
cantly more complex—in this case, we simply need to find the
initial state 〈S(0)〉 that maximizes the magnitude,

|〈S(t)〉| = |[R′(t)] · [M(t)] · [R(t)] · 〈S(0)〉 + 〈δS(t)〉|. (19)

However, the result for this general case cannot be expressed
in the simple form of Eq. (17).

When L(t) can be expressed as a real symmetric matrix
([L]αβ = [L]βα , where [L]αβ = 2Tr{SαLSβ}), this matrix is
diagonalized with an orthogonal rotation, i.e., [R′(t)] =
[R−1(t)] in Eq. (11). In this case, the parameters λμ(t) are
the real eigenvalues of the superoperator L(t) and the unit
vectors êμ(t) determine the associated eigenoperators through

L(t)[êμ(t) · S] = λμ(t)[êμ(t) · S]. (20)

Decomposing the spin operator S in terms of its components
along the unit vectors êμ then gives a simplified expression for
the spin expectation values when [L] is symmetric,

〈S(t)〉 =
∑

μ

e−λμ(t)/2êμ(t) · 〈S(0)〉[R0(t)] · êμ(t). (21)

The case of a real symmetric generator L(t) will be relevant
to the example of hole-spin or S-T0 qubit dynamics, which we
address in the following sections.

To solve the eigenvalue equation (20), it is first necessary
to derive a suitable approximation for the superoperator L(t),
defined by Eq. (9). As will be shown below, when H0(t)
generates sufficiently rapid oscillations in Ṽ (t), a leading-order
Magnus expansion can be performed on the time-ordered
exponential in Eq. (9). For a sufficiently large environment
with initial state described by many uncorrelated degrees of
freedom, the moments associated with the average 〈· · · 〉E
will be approximately Gaussian. When 〈LV (t)〉E = 0, the
combination of these two approximations leads to

L(t) 	 L0(t) =
∫ t

0
dt1

∫ t

0
dt2〈LV (t1)LV (t2)〉E. (22)

Of course, the applicability of Eq. (22) depends sensitively on
the details of the physical system under study. In the remaining
sections, we will evaluate and justify this formula for a model
with a pure Ising-like anisotropic hyperfine coupling. This
model is directly relevant to hole spins in quantum dots or to
singlet-triplet (S-T0) qubits formed by two electrons in double
quantum dots (see Fig. 1).
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Higher-order terms in the Magnus expansion involve
progressively more integrals over the oscillating perturbation
Ṽ (t). The leading-order Magnus expansion can therefore
always be justified at sufficiently short time. A general
sufficient condition for convergence of the Magnus expansion
is [64] ∫ t

0
dt ′||Ṽ (t ′)||2 < π. (23)

Convergence of the expansion is then generally guaranteed for
t < tmax, where

tmax = π

max[||Ṽ (t ′)||2]
, (24)

and where max[||Ṽ (t ′)||2] is the maximum of ||Ṽ (t ′)||2 on
the interval [0,t]. In practice, Eq. (24) often drastically
underestimates the range of applicability of the leading-order
Magnus expansion. When all terms in Ṽ (t) are rapidly
oscillating about zero with typical amplitude δωrms and typical
fast frequency ω, a direct analysis of the higher-order terms
leads to the condition [35]

t � τmax = ω

δω2
rms

. (25)

The fast frequency ω may be given by the precession frequency
for a spin system. Alternatively, in the case of a dynamical-
decoupling sequence (which we consider in Sec. VII), the
fast frequency may be given by ω ∼ 1/τ , where τ is the
time between decoupling pulses. We have found the analysis
leading to Eq. (25) to accurately reflect the time scale of failure
of the Magnus expansion for, e.g., the free-induction decay of
a hole spin in a quantum dot [65].

III. BORN-MARKOV LIMIT

Equation (22) generally accounts for nonstationary and
non-Markovian dynamics. This is necessary for a slow envi-
ronment and a qubit subjected to a dynamical-decoupling se-
quence. Before considering this more general scenario, here we
explore the consequences of a Born-Markov approximation,
appropriate to the limit of weak coupling to an environment
with a short bath correlation time compared to the relevant
dephasing (Tφ) and relaxation (T1) times. We assume a qubit
with system Hamiltonian HS = ωSz, so that the computational
basis states, |0〉 = | ⇓〉 and |1〉 = | ⇑〉, are associated with the
Bloch vector aligned along the ẑ axis. Bloch-Redfield theory
then gives the nonvanishing superoperator matrix elements and
inhomogeneous term in the interaction picture:

[L(t)]xx = [L(t)]yy 	
(

1

Tφ

+ 1

2T1

)
2t, (26)

[L(t)]zz 	 2t

T1
, (27)

〈δSz(t)〉 	 (1 − e−t/T1 )〈Sz〉, (28)

with long-time steady-state value 〈Sz〉.
In this limit, a spin prepared along +ẑ will decay according

to

〈Sz(t)〉 = (1/2 − 〈Sz〉)e−t/T1 + 〈Sz〉. (29)

For a spin prepared along +x̂ and in the absence of pure
dephasing (1/Tφ = 0),

〈Sx(t)〉 = (1/2)e−t/2T1 . (30)

Expanding for short time, we find |〈Sx(t)〉| > |〈Sz(t)〉| at
leading order in t/T1 whenever 〈Sz〉 < 1/4. Thus, in the
absence of a pure-dephasing process and for a sufficiently high-
temperature environment (so that 〈Sz〉 is sufficiently small),
it is advantageous to prepare the system in a superposition
of noninteracting eigenstates, even in the case of Markovian
decay.

In the next section, we consider the more general case
of a slow non-Markovian environment. For a non-Markovian
system-environment evolution, purity can be lost and recov-
ered through a series of revivals that can be induced through a
dynamical-decoupling sequence. The optimization over initial
conditions in this case is therefore nontrivial, but practically
useful.

IV. NON-MARKOVIAN DYNAMICS: HEAVY-HOLE
AND S-T0 SPIN ECHO

Here we will present a model of non-Markovian dynamics,
allowing the recovery of qubit purity at later times through
recurrences. We will primarily focus on the dynamics of a
heavy-hole spin in a quantum dot. However, a special limit of
the model is directly relevant to S-T0 qubits formed by two
electrons in a double quantum dot.

A. Hole-spin model

We consider a model Hamiltonian, appropriate for a heavy-
hole spin qubit in a flat semiconductor quantum dot [35]
with an in-plane magnetic field applied along the x axis [see
Fig. 1(a)]:

H = HZ + Hhf, (31)

HZ = −γHBSx −
∑
j,kj

γjBIx
kj

, (32)

Hhf = hzSz =
∑
j,kj

Akj
I z
kj

Sz. (33)

In the sums above, j labels the distinct nuclear isotopes and kj

labels the set of sites occupied by nuclear spins of isotope
j . Here, HZ gives the hole-spin and nuclear-spin Zeeman
terms, and Hhf describes the anisotropic hyperfine interaction
between hole and nuclear spins. S = σ/2 is a pseudospin-1/2
operator in the heavy-hole subspace, and Ik is the nuclear spin
at site k. The hole gyromagnetic ratio is γH = μBg⊥, with
μB the Bohr magneton and g⊥ the in-plane hole g factor.
The gyromagnetic ratio of the nucleus at site kj of isotopic
species j having total spin Ij is denoted by γj . The hyperfine
couplings Akj

are given by Akj
= Ajv0|ψ(rkj

)|2, where Aj is
the hyperfine coupling for nuclear species j , v0 is the volume
per nuclear spin, and ψ(rk) is the heavy-hole envelope wave
function evaluated at site rk . For a Gaussian envelope function
in two dimensions [21],

Ak 	 A

N
e−k/N , k = 0,1,2, . . . , (34)
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FIG. 2. (Color online) Hahn-echo sequence. π rotations about x̂
reverse dephasing from static fluctuations in hz along ẑ due to the
hyperfine interaction. For the sake of clarity, we have assumed g⊥ 	 0
for this illustration so that there is no precession of the hole spin
about x̂.

where N is the number of nuclear spins within a quantum-dot
Bohr radius.

Further assuming a uniform distribution of different nuclear
species across the dot and N � 1 (typically N 	 104–106), we
define the average hyperfine constant A as

A =
∑

k

Ak 	
∑

j

νjA
j , (35)

where νj is the isotopic abundance of species j . In numerical
estimates, we will assume, for simplicity, a single average
value A of the hyperfine constant corresponding to νj for
an In0.5Ga0.5As quantum dot [33] (A 	 13 μeV), and γj , Ij

appropriate for natural abundances of isotopes of Ga, As,
and In taken from Table 1 of Ref. [66]. For heavy holes, the
ratio |A/A(e)| of hole-to-electron hyperfine coupling strengths
has been estimated theoretically [33] in GaAs and confirmed
experimentally [67,68] in InGaAs and InP/GaInP to be of the
order of |A/A(e)| ∼ 0.1. This is consistent with A 	 13 μeV
since A(e) 	 90 μeV in GaAs [69].

Random fluctuations in the nuclear field cause rapid hole-
spin decoherence via the hyperfine coupling described above.
A spin-echo sequence can remove fluctuations that are approx-
imately static over the time scale of hole-spin preparation and
measurement. A Hahn-echo sequence corresponds to a free
evolution for time t < τ , application of a π rotation about the
x axis, Ux(π ), at t = τ , followed by another free evolution for
time t ∈ (τ,2τ ). We consider a second π rotation, U

†
x (π ), at

t = 2τ to return the spin to its original orientation (see Fig. 2).
Noting that Ux(π )SzU

†
x (π ) = −Sz, but Ux(π )SxU

†
x (π ) = Sx ,

we account for the Hahn-echo sequence illustrated in Fig. 2
with the identifications

H0 = HZ, V (t) = s(t)Hhf, (36)

where

s(t) =
{+1, 0 � t < τ

−1, τ � t � 2τ.
(37)

With the associations given in Eq. (36), we can now apply
the analysis of Sec. II to the problem of Hahn echo, using the
leading-order Magnus expansion and Gaussian approximation
to obtain the approximate generator L(2τ ) 	 L0(2τ ) given in
Eq. (22). See Refs. [35,37,70] for further details on imple-
menting the Magnus expansion and Gaussian approximation
specific to this problem.

To make analytical progress, we rewrite the superoperator
L0 in matrix form. In the basis of spin-1/2 operators,
{Sx,Sy,Sz}, the matrix elements [L0(2τ )]αβ are given by

L0(2τ )Sα =
∑

β

[L0(2τ )]βαSβ ; α,β = x,y,z. (38)

The matrix [L0(2τ )] can be found explicitly in terms of bath
correlation functions 〈Bα(2τ )Bβ(2τ )〉, with bath operators Bα

defined by (see Appendix A)∫ 2τ

0
dtṼ (t) =

∑
α

Bα(2τ )Sα. (39)

We assume the initial state of the nuclear-spin bath describes
uncorrelated spins without second-order coherences and with
vanishing polarization, so that

〈h+
j h+

j ′ 〉 = 〈h−
j h−

j ′ 〉 = 0, (40)

〈h+
j h−

j ′ 〉 = 〈h−
j h+

j ′ 〉 = 2σ 2
j δjj ′ . (41)

Here we have introduced the nuclear-field operators over an
isotope j ,

hj =
∑
kj

Akj
Ikj

, h±
j = h

y

j ± ihz
j . (42)

Equation (41) above defines the nuclear-field fluctuation σj

due to isotope j . For the purposes of studying system-bath
entanglement, it may be interesting to prepare a pure state
of the bath and observe the resulting purity dynamics [see
the discussion leading to Eq. (2) above]. We note that the
conditions given in Eqs. (40) and (41) will be approximately
satisfied for a pure state with suitably random initialization
(e.g., by choosing a random orientation for each nuclear
spin independently). For practical measurements, the initial
conditions of the nuclear-spin bath are often well described by
an infinite-temperature thermal state, for which

σ 2
j = Ij (Ij + 1)

3

∑
kj

(
Akj

)2
. (43)

For explicit estimates, we will make use of the total nuclear-
field variance,

σ 2
N =

∑
j

σ 2
j . (44)

B. Mapping to an S-T0 qubit

As illustrated in Fig. 1, the model presented here for heavy-
hole spin dynamics and decoherence can be mapped exactly
onto a well-studied model of singlet-triplet decoherence [38].
In particular, the heavy-hole spin-Sz eigenstates |⇑〉 and |⇓〉
can be associated with two-electron states |↑↓〉 and |↓↑〉 for
two electron spins in a double quantum dot, making up the
singlet |S〉 and triplet |T0〉 states:

|⇑〉 → |↑↓〉, (45)

|⇓〉 → |↓↑〉, (46)
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|S〉 = 1√
2

(|↑↓〉 − |↓↑〉), (47)

|T0〉 = 1√
2

(|↑↓〉 + |↓↑〉). (48)

The following associations for energy scales complete the
mapping:

γHB → J, (49)

hz → 2δhz, (50)

γj → 0. (51)

Here, J is the exchange coupling, δhz is the nuclear difference
field between the two quantum dots, and for a double quantum
dot subject to a uniform magnetic field, δhz commutes with the
nuclear-spin Zeeman term, leading to γj = 0. Inhomogeneities
in the magnetic field in this case could lead to dynamics in δhz,
which can then act back on the S-T0 qubit. This effect has been
investigated recently in Ref. [70], but we neglect it here for
simplicity.

C. Hahn-echo dynamics

As suggested by the form of Eq. (39), the bath operators
can be conveniently rewritten in terms of the complex-valued
filter functions

Zj±(2τ ) = σj

∫ 2τ

0
dts(t)eiωj±t (52)

= −i
4σj

ωj±
sin2 ωj±τ

2
eiωj±τ , (53)

ωj± = (γH ± γj )B. (54)

In the conventional theory of spin-echo decay, functions such
as Eq. (52) determine a filter function F that restricts the
frequency content of the noise that can act to dephase a qubit
through the absolute magnitude of Zj± [71–75],

F(ωj±,2τ ) ∝ |Zj±(2τ )|2. (55)

Here, we will find that both the magnitude and the phase of the
functions Zj±(2τ ) are essential in determining spin dynamics.
While the magnitude of the functions Zj±(2τ ) will modify the
spectral content of the noise, the phase of these functions will
be crucial in determining a set of principal axes that determines
the anisotropy of the decay process. Quite significantly, we will
be able to exploit information about this decay anisotropy to
identify optimal initialization/storage protocols to maximize
the purity of a spin qubit.

Direct evaluation of the bath correlation functions and
application of the relationships derived in Appendix A gives
the matrix

[L0(2τ )] =
(

λx(2τ ) 0

0 [Lyz(2τ )]

)
. (56)

Here, one eigenvalue of the superoperator is λx(2τ ). The 2 × 2
submatrix [Lyz(2τ )] can be written as

[Lyz(2τ )] = 1
2 [λx(2τ )τ0 + ReZ2(2τ )τ3 + ImZ2(2τ )τ1],

(57)

where we have introduced the 2 × 2 identity matrix τ0 and
usual Pauli matrices τμ. In Eq. (57), we have also introduced
the complex function Z(2τ ),

Z2(2τ ) =
∑

j

Zj+(2τ )Zj−(2τ ). (58)

By diagonalizing the matrix in Eq. (56), we solve Eq. (20)
for the eigenvalues λμ(2τ ) and vectors êμ(2τ ), with μ = x,±,

L0(2τ )[S · êμ(2τ )] = λμ(2τ )[S · êμ(2τ )]. (59)

We find the eigenvalues

λx(2τ ) = 1

2

∑
j

[|Zj+(2τ )|2 + |Zj−(2τ )|2], (60)

λ±(2τ ) = 1

2
[λx(2τ ) ± |Z(2τ )|2]. (61)

When either γH > γj or γj > γH for all nuclear-spin species
j , Eq. (61) becomes

λ±(2τ ) = 1

4

∑
j

[|Zj+(2τ )| ± |Zj−(2τ )|]2. (62)

The associated unit vectors (illustrated in Fig. 3) are

êx = x̂, (63)

ê+(2τ ) = cos θ (2τ )ŷ + sin θ (2τ )ẑ, (64)

ê−(2τ ) = − sin θ (2τ )ŷ + cos θ (2τ )ẑ. (65)

The angle θ (2τ ) is determined by the SU(2) rotation that
diagonalizes Eq. (57). This angle is given by

θ (2τ ) = arg Z(2τ ). (66)

The vectors êμ(2τ ) are parametrized by the time τ between
π pulses. However, we stress that these are not dynamical
quantities, evolving during the echo sequence. Instead, êμ(2τ )

FIG. 3. (Color online) Unit vectors satisfying the eigenvalue
equation (59), forming an orthonormal basis. êx = x̂, while ê+(2τ )
and ê−(2τ ) correspond to ŷ and ẑ rotated by an angle θ (2τ ) [given by
Eq. (66)] about the x axis.
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determines the initial condition for a spin that should be chosen
to recover a given purity Pμ(2τ ) after a Hahn-echo sequence.

Inserting Eq. (53) for the complex-valued filter functions
Zj±(2τ ) into Eq. (58) shows that θ (2τ ) can generally alternate
between two simple forms:

θ (2τ ) =
{
γHBτ − π

2 , G(2τ ) > 0
γHBτ, G(2τ ) < 0,

(67)

with

G(2τ ) =
∑

j

σ 2
j sin2

(ωj+τ

2

)
sin2

(ωj−τ

2

)
(
γ 2

H − γ 2
j

)
B2

. (68)

Alignment of the spin along ê−(2τ ) at time t = 0 will
maximize the purity at time t = 2τ since λ−(2τ ) gives the
smallest eigenvalue [see Eqs. (60) and (61)]. Referring to
Fig. 3 and Eq. (67) for the angle θ (2τ ), we see that when
the nuclear-spin system can be taken as approximately static
compared to the hole-spin precession, γH > γj (givingG > 0),
a spin initialized along ê−(2τ ) will advance in time at an angle
φ = θ (2τ ) + π/2 − γHBt = γHB(τ − t) from the y axis. The
spin will then be aligned with the y axis at the time of
the first π pulse (t = τ ). That this choice is optimal can be
simply understood from a semiclassical model of a fluctuating
magnetic field along z in the limit of a purely static nuclear
field and arises from the perfect symmetry of this problem
for reflections through the x axis within the x − y plane (see
Appendix B). This scenario (γj 	 0) applies exactly to the case
of an S-T0 qubit in a uniform magnetic field (see Sec. IV B).
In the opposite limit of a slow hole-spin precession compared
to the nuclear-spin precession, γH < γj (G < 0), the optimal
choice is to prepare the hole spin so that it aligns with the z axis
at the first π pulse. This result is easy to understand in the limit
γH = 0, since in this case the z component of the hole spin is a
constant of the motion, and is therefore preserved for all time.
More generally, when γH ∼ γj , the optimal initialization axis
will alternate nontrivially as a function of τ to favor alignment
with either ŷ or ẑ at the time of the first π pulse. When we
consider additional pure-dephasing processes in Sec. VI below,
we will find such a nontrivial behavior even when γH � γj ,
the limit typically realized in current experiments.

For this problem, spin dynamics in the Sx subspace has
been discussed previously [35]. In this subspace, we find

〈Sx(2τ )〉
〈Sx(0)〉 	 e− 1

2 λx (2τ ). (69)

A motional-averaging regime is reached for λx � 1, corre-
sponding to ω � σN , where σN ∼ A/

√
N is the typical am-

plitude of nuclear-field fluctuations and ω = B · max{γi,γH }
gives the frequency of rapid oscillations. In this regime, the
hole spin experiences envelope modulations2 with amplitude

2These modulations have a similar origin to electron spin-echo
envelope modulation (ESEEM), well known in the spin-resonance
literature. However, the effect here is distinct from the usual approach
to ESEEM since we have accounted for leading nonsecular correc-
tions through the leading-order Magnus expansion. Without these
corrections, the modulation would vanish for the highly anisotropic
interaction considered here.

∼λx ∼ |σN/ω|2 < 1. From Eq. (69), it is already clear that a
hole spin initially aligned along x̂ will have a purity that is
modulated in time according to the envelope modulations.

Further setting g⊥μB = γH = 0 in the expressions above,
Eq. (69) recovers the result previously given in Ref. [35],

〈Sx(2τ )〉
〈Sx(0)〉 	 exp

⎡
⎣−

∑
j

8σ 2
j

(γjB)2
sin4

(
γjBτ

2

)⎤
⎦. (70)

We now evaluate 〈Sy(2τ )〉 and 〈Sz(2τ )〉 by inverting
Eqs. (64) and (65) for ê+(2τ ) and ê−(2τ ),

Sy = cos θ (2τ )S · ê+(2τ ) − sin θ (2τ )S · ê−(2τ ), (71)

Sz = sin θ (2τ )S · ê+(2τ ) + cos θ (2τ )S · ê−(2τ ). (72)

The evolution takes a simple form in terms of the operators
S ′

±,

S ′
± = Sy ± iSz. (73)

The spin evolution in the y − z plane is then described by

〈S ′
+(2τ )〉 = eiφ(2τ )

∑
μ=±

√
μe− 1

2 λμ(2τ )〈S(0)〉 · êμ(2τ ), (74)

where φ(2τ ) = −γHB2τ + θ (2τ ),
√+ = √

1 = 1, and√− = √−1 = i. The phase φ(2τ ) tracks the mismatch in evo-
lution of the interaction-picture rotating frame and the rotation
to principal axes for the generator L0(2τ ) (see Fig. 3). The
eigenvalues λμ(2τ ) control the degree of damping/modulation
in the amplitude of the spin.

The spin dynamics under the action of the anisotropic
interactions presented here is strongly dependent on the initial
direction of the spin and on the measurement axis. We will
find it convenient to parametrize the initial state for a spin in
the y-z plane by an angle ϕ between the y axis and the initial
spin vector,

〈S ′
+(0)〉 = 〈Sy(0)〉 + i〈Sz(0)〉 = 1

2eiϕ. (75)

For a spin prepared at an angle ϕ to the y axis, we define the
coherence factor in the rotating frame,

Cϕ(2τ ) = 2eiγH B2τ 〈S ′
+(2τ )〉, 〈S ′

+(0)〉 = 1
2eiϕ. (76)

We then find the general expression for this coherence factor,

Cϕ(2τ ) = e−λx (2τ )/4+iϕ

{
cosh

[ |Z(2τ )|2
4

]

− e−i2[ϕ−θ(2τ )] sinh

[ |Z(2τ )|2
4

]}
. (77)

The first term in Eq. (77) [∝ cosh (|Z|2/4)] varies slowly in
the rotating frame, while the second term [∝ sinh (|Z|2/4)]
experiences violent modulations at a frequency determined
by the hole-spin Zeeman energy, 2θ (2τ ) ∼ γHB2τ , due to
nonsecular “counter-rotating” corrections. This second con-
tribution, ∼|Z|2 � 1, evolves slowly in the laboratory frame,
in spite of the hole-spin Zeeman term. Thus, while the first
term would likely decay rapidly due to electric-field-induced
fluctuations in the hole Zeeman energy, as reported in recent
experiments [40–42], we expect some contribution from the
second term to survive this dephasing mechanism. Such a
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pure-dephasing process is investigated in detail in Sec. VI
below.

Equation (77) recovers the expected results for initialization
along one of the principal axes, ϕ = ϕ±(2τ ), corresponding to
alignment of the initial spin with ê±(2τ ) (see Fig. 3):

Cϕ± (2τ ) = exp[iϕ±(2τ ) − λ±(2τ )/2], (78)

ϕ+(2τ ) = θ (2τ ), (79)

ϕ−(2τ ) = θ (2τ ) + π/2. (80)

To explore the general spin dynamics of this problem, in
which no special care has been taken to initialize the spin along
one of the principal axes ê±, we define the general correlators
Cαβ corresponding to the coherence for initialization along
axis β and measurement along axis α in the rotating frame:

Cyy(2τ ) = Re[Cϕ=0(2τ )], (81)

Czy(2τ ) = Im[Cϕ=0(2τ )], (82)

Czz(2τ ) = Im[Cϕ=π/2(2τ )], (83)

Cyz(2τ ) = Re[Cϕ=π/2(2τ )]. (84)

Correlators such as those given above have been measured, for
example, in recent experiments on hole spins in single quantum
dots [42]. Those experiments showed similar modulations as
seen here, although the authors of Ref. [42] have interpreted
the modulations in their data in terms of a dynamic nuclear
polarization effect. Two of the correlators above are shown for
typical experimental parameters in Fig. 4. We note that the
general correlators will contain contributions from each of the
eigenvalues λ±(2τ ). While each of these experiences modu-
lations at the nuclear Larmor frequency, the modulations for
λ± = ∑

j (|Zj+| ± |Zj−|)2/4 are π out of phase with respect
to each other [see, e.g., the modulations of P+ (determined
by λ+) relative to those for P− (determined by λ−) in Fig. 5].
These out-of-phase modulations generally lead to a sequence
of maxima at twice the nuclear Larmor frequency, similar to
the result seen for modulations in the experiment of Ref. [42].
We note that the same modulations with the same frequency
are predicted within this model for free-induction decay [the
limit n = 0 of an n-pulse dynamical-decoupling sequence;
see Eq. (D1) in Appendix D]. The amplitude of modulations
(∝ 1/B2) is strongly suppressed in a large magnetic field B,
so for high-field experiments (e.g., B = 3–6 T in Ref. [42]), it
may be difficult to see this effect. However, for B � 1 T and
for typical quantum-dot parameters, the modulations can be a
substantial fraction of the decay, as we show here.

V. MAXIMIZING PURITY

The spin-echo purity P (2τ ) characterizes our ability to
recover a pure ancilla qubit at a time 2τ after preparation and
application of a refocusing pulse. From Eq. (17), this quantity
depends on the initialization of the qubit. In particular, if we
initialize along one of the unit vectors êμ(2τ ), we find the
simple expression for the purity at time 2τ , as in Eq. (18),

Pμ(2τ ) = 1
2 (1 + e−λμ(2τ )). (85)

As discussed in Sec. II following Eq. (17), and as is clear
from Eq. (85), the purity of a qubit recovered at time 2τ
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FIG. 4. (Color online) Correlators in the rotating frame
[Eqs. (81)–(84)], assuming an in-plane magnetic field B = 1 T, with
in-plane hole-spin g factor g⊥ = 0.04, for an InxGa1−xAs quantum
dot containing N = 104 nuclear spins assuming uniform In doping
x = 0.5, and nuclear gyromagnetic ratios γj and total nuclear spins
Ij from Ref. [66] appropriate for this material.

can be maximized by initializing along the direction êμ(2τ )
associated with the smallest eigenvalue λμ(2τ ).

Naı̈vely, one might expect that the best strategy would be to
prepare an ancilla qubit in an eigenstate (e.g., the ground state)
of the unperturbed Hamiltonian H0. In the case of hole-spin
qubits, this would correspond to preparing the spin along the
applied magnetic field [along the x axis for the geometry shown
in Fig. 1(a)], |0〉 = |⇑x〉 [where Sx |⇑x〉 = +(1/2)|⇑x〉]. For
S-T0 qubits, this corresponds to initializing and storing in
the singlet state |S〉 [see Fig. 1(b)]. However, in this case,
with the generator given in Eq. (56), we find the following
general relationship, valid for all τ within the range of validity
of the Gaussian approximation and leading-order Magnus
expansion:

λx(2τ ) � λ+(2τ ) � λ−(2τ ). (86)

The inequalities in Eq. (86) follow directly from Eqs. (60)
and (61).

Quite generally, the purity is maximized by preparing the
hole spin in the y − z plane, in an equal superposition of
Zeeman eigenstates:

P−(2τ ) � P+(2τ ) � Px(2τ ). (87)

The three quantities in Eq. (87) are shown in Fig. 5 for typical
experimental parameters, illustrating the inequality. In the limit
γH = μBg⊥ = 0, this result can be intuitively understood.
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FIG. 5. (Color online) Spin-echo purity Pμ(2τ ) from Eq. (85)
assuming initialization along ê−(2τ ) [P−(2τ ), blue dashed line],
ê+(2τ ) [P+(2τ ), black dotted line], and êx(2τ ) = x̂ [Px(2τ ), red
solid line], with B = 1 T, g⊥ = 0.04, N = 104, and γj and Ij from
Ref. [66]. The purity at time 2τ is maximized when initializing
along ê−(2τ ). Top panel: purity with a finite in-plane hole g factor,
g⊥ = 0.04. Bottom panel: purity with a vanishing in-plane hole g

factor, g⊥ = 0.

When g⊥ = 0, [Sz,H ] = 0, so a spin initialized along the z

axis will be preserved for all time, while a spin initialized
along x̂ or ŷ will decay due to fluctuations along ẑ (see the
lower panel of Fig. 5; in this case, ê− = ẑ,ê+ = ŷ). That this
relationship [Eq. (87)] continues to hold for g⊥ �= 0 in any
magnetic field and for all τ (within the range of validity of the
approximations used here) is less trivially obvious.

It is straightforward to extend the above analysis to the more
general case of an arbitrary anisotropic hyperfine tensor (see
Appendix A). In this case, when leading nonsecular corrections
are included using the leading-order Magnus expansion and
Gaussian approximations, the Zeeman ground state will
not generally be optimal for initialization. The procedure
described here can be used to predict an optimal state in which
to store an ancilla. This may be useful in other systems with
anisotropic interactions, including nitrogen-vacancy (NV)
centers in diamond [13], or phosphorus donors in silicon [14],
where the high-fidelity preparation of electron-spin ancillas is
important for nuclear-spin readout.

The nonintuitive result given in Eq. (87) presupposes
the absence of additional decoherence mechanisms. A rapid
pure-dephasing process would typically reduce the purity for
states initialized perpendicular to the magnetic field, relative to

those initialized along the magnetic field. One source of pure
dephasing for hole spins arises due to electric-field-induced
fluctuations in the Zeeman energy (equivalently, fluctuations
in the exchange interaction for S-T0 qubits). Such a mechanism
has been identified as the predominant dephasing source
for hole spins in Refs. [41] and [40]. In the presence of a
Markovian pure-dephasing process that takes place on a time
scale Tφ , our conclusions remain valid in the limit 2τ < Tφ

whenever the decay due to pure dephasing is small compared
to the amplitude of envelope modulations, i.e., when γH � γi ,

2τ � 2τc = Tφ

(
A√

NγHB

)2

. (88)

For storage of ancilla qubits beyond the time scale indicated
in Eq. (88), it will be advantageous to prepare the qubit in the
Zeeman eigenbasis.

We consider the detailed role of a pure-dephasing process
on the general dynamics of a hole-spin (equivalently, S-T0)
qubit and on purity decay in the next section.

VI. PURE DEPHASING

As mentioned above, pure-dephasing mechanisms can
modify the results of our analysis for maximizing purity. In
particular, a pure-dephasing mechanism due to a fluctuating
Zeeman term through an electric-field-dependent g factor has
been identified as a primary source of decoherence for hole
spins in recent experiments [40,41]. It is straightforward to
generalize the analysis of the previous sections to the case of
a fluctuating Zeeman term with the replacement [35]

γHB2τ → γHB2τ + φ(2τ ); φ(2τ ) =
∫ 2τ

0
dtδω(t), (89)

with δω(t) a Gaussian random variable describing a stationary
white-noise process,

〈〈δω(t)δω(t ′)〉〉 = 2

Tφ

δ(t − t ′). (90)

Here, double angle brackets 〈〈·〉〉 indicate an average over
realizations of the noise δω(t). The white-noise form given
in Eq. (90) is a reasonable approximation for, e.g., Johnson-
Nyquist noise due to nearby metallic gates [76,77]. This
assumption will break down for, e.g., colored noise due
to slowly varying charged impurities [40]. It would be
straightforward to extend the analysis presented here to the
case of Gaussian colored noise. To emphasize the limitations
of our earlier conclusions in the presence of pure dephasing,
here we focus on the simplest (and often realistic) white-noise
form given in Eq. (90).

Accounting for the modification to the Zeeman term, given
by Eq. (89), the coherence factor in the rotating frame becomes

Cϕ(2τ ) = 2〈〈〈e−iφe− 1
2 L[φ]〉〉S ′

+〉S, 〈S ′
+(0)〉 = 1

2eiϕ. (91)

In the absence of hyperfine coupling, we would have L = 0,
leaving a simple exponentially decaying coherence factor,

Cϕ(2τ ) = eiϕ− 1
2 〈〈φ2(2τ )〉〉 = eiϕ−2τ/Tφ , (92)

where we have used the fact that the noise is Gaussian in
the first step and the fact that it is white [Eq. (90)] in the
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second step. While φ is Gaussian distributed, L[φ] is a highly
nonlinear function of φ, making a direct Gaussian average
difficult. In general, we would like an expansion valid up to
time scales t � Tφ (giving 〈〈φ〉〉 � 1), so an expansion for
small φ, which was justified in evaluating the longitudinal
spin 〈Sx(2τ )〉 [35], is not generally possible for the coherence
factor. Instead, here we perform a moment expansion, valid
for |L| � 1,

〈〈e−iφe− 1
2 L[φ]〉〉 = 〈〈e−iφ〉〉〈e− 1

2 L[φ]〉φ. (93)

Here, for an arbitrary operator O, the average 〈·〉φ is defined
by

〈O[φ]〉φ = 〈〈e−iφO[φ]〉〉
〈〈e−iφ〉〉 = e

1
2 〈〈φ2〉〉〈〈e−iφO[φ]〉〉. (94)

At leading order in the moment expansion,

〈e− 1
2 L[φ]〉φ 	 e− 1

2 〈L[φ]〉φ . (95)

From a leading-order Magnus expansion, we have L 	 L0,
and in the regime of applicability of the Magnus expansion,
|L0(2τ )| < 1 for all time, allowing us to neglect all higher
moments with small corrections.

Averaging over random instances of the fluctuating Zeeman
term, δω(t), then gives an analogous expression to Eq. (57),
but accounting for pure dephasing,

〈[Lyz]〉φ = 1
2 (〈λx〉φτ0 + 〈ReZ2〉φτ3 + 〈ImZ2〉φτ1). (96)

The averages above are evaluated explicitly in Appendix C.
The coefficients in Eq. (96) are no longer real, but the matrix
can nevertheless be exponentiated directly to determine the
coherence factor

Cϕ(2τ ) = e−2τ/Tφ − 〈λx 〉φ/4

[
eiϕ cosh

Q2

4
− e−iϕ 〈Z2〉φ

Q2
sinh

Q2

4

]
,

(97)

where

Q2 = [〈ReZ2〉2
φ + 〈ImZ2〉2

φ

]1/2
. (98)

The angle θ is then the value θ = ϕ for which the length
of the Bloch vector (set by |Cϕ|) is minimal (corresponding
to alignment along the vector ê+). This value can be read off
directly from Eq. (97), giving

θ = 1

2
arg

[
〈Z2〉φ tanh Q2/4

Q2

]
. (99)

The purities for a hole spin initialized in the y − z plane are
shown for typical experimental parameters in Fig. 6 along with
the angle θ (2τ ) that determines the principal axes forL0. In the
presence of a pure-dephasing process, the optimal initialization
axis alternates as a function of τ to favor alignment of the
spin with either the y axis at t = τ [θ (2τ ) − γHBτ 	 −π/2]
or the z axis at t = τ [θ (2τ ) − γHBτ 	 0]. The additional
dynamics induced through the average over random Zeeman
fields gives rise to a nontrivial evolution of the angle θ (2τ )
beyond this simple picture (see Fig. 7). While these corrections
may be small here, they can be accurately determined using
the procedure outlined above, provided the dephasing model
itself is known accurately.
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FIG. 6. (Color online) Top: Purities P− (red solid line) and P+
(blue dashed line). Bottom: Angle θ (2τ ) determining the initial axes,
as in Fig. 3. We have assumed a Markovian pure-dephasing process
due, e.g., to electric-field noise. We have assumed a dephasing time
Tφ = 1 μs and have used the same material parameters as in Figs. 4
and 5 for an In0.5Ga0.5As quantum dot but with a magnetic field of
B = 400 mT.

The correlators Cαβ corresponding to initialization along
direction β ∈ {y,z} and measurement along direction α ∈
{y,z} are shown in Fig. 8 for typical experimental parameters.
Here we account for both pure dephasing from electric-field
fluctuations and modulations of the decay envelope due to
hyperfine coupling. Notably, Cyy and Czz show a strong full-
amplitude decay with small modulations [Figs. 8(a) and 8(b)].
In contrast, Czy and Cyz [Figs. 8(c) and 8(d)] grow on a
very short time scale on the order of the inverse hole-spin
precession frequency, and subsequently slowly decay. Within
the approximations made above, there will generally be a
small nondecaying portion of the coherence arising from
counter-rotating contributions to Cϕ that are independent of
the fluctuating Zeeman energy to leading order.

Detail of the purities for initialization along each of the three
principal directions (ê±,êx) is shown in Fig. 9, accounting for
pure dephasing. For time τ � τc, with τc given by Eq. (88),
the optimal initialization axis alternates between ê− (giving
P−, i.e., initialization perpendicular to the magnetic-field
quantization axis) and x̂ (giving Px , initialization along
the magnetic field). In contrast, for τ > τc, pure-dephasing
processes dominate over the effect of envelope modulations
and it will be advantageous once again to initialize a hole spin
along the magnetic field.
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FIG. 7. (Color online) Detail of the angle θ for the evolution
shown in Fig. 6. The angle θ defines the unit vectors ê± (see Fig. 3).
Due to the presence of a pure-dephasing process, the optimal angle
θ follows a complex trajectory, in general, deviating slightly from
θ (2τ ) − γH Bτ = 0, − π/2.

VII. TWO-AXIS DYNAMICAL DECOUPLING

As is well known, a sequence of many π rotations applied
in rapid succession can be used to decouple a qubit from an
environment having a finite correlation time, by averaging the
interaction to zero [71,78,79]. In general, to simultaneously
control fluctuations along the magnetic-field axis (due, e.g.,
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0.95

1.00

FIG. 9. (Color online) Purities for preparation along the unit
vectors êμ in the presence of a Markovian pure-dephasing process
giving Tφ = 1 μs. The purities are P− (red solid line), P+ (blue
dashed line), and Px (black dotted line). The material parameters
are as in Figs. 4 and 5 for an In0.5Ga0.5As quantum dot, and for
this plot we have taken a magnetic field of B = 400 mT. In the
presence of the pure-dephasing process, at certain times it becomes
advantageous to prepare the qubit along the x̂ direction [when
Px(2τ ) > P−(2τ )].

to g-factor modulation) and transverse to the magnetic-field
axis (due, e.g., to hyperfine coupling), it is useful to consider
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FIG. 8. (Color online) Correlators Cαβ (2τ ) showing the dynamics for preparation along axis β and measurement along axis α in the rotating
frame. The material parameters used are the same as in Figs. 4 and 5 for an In0.5Ga0.5As quantum dot, but with magnetic field B = 400 mT
and with a pure dephasing process giving rise to Tφ = 1 μs.
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FIG. 10. Sign functions for (a) πx pulses, (b) πz pulses, and (c)
for a periodic dynamical-decoupling (PDD) sequence consisting of n

equally spaced π pulses (shown here for n odd).

π rotations about two orthogonal axes [80]. Rotations about
the x̂ axis (πx pulses) lead to Sz → −Sz, averaging out the
Ising-like hyperfine coupling ∼ hzSz. Rotations about the ẑ
axis (πz pulses) result in Sx → −Sx , averaging out the Zeeman
term, ∼ γHBSx . We can generally account for a sequence of
fast πx and πz pulses with the replacements

H0 → H0(t) = HS(t) + HE, (100)

V (t) → V (t) = sx(t)Hhf, (101)

where sx(t) is the sign function for πx pulses. The system
Hamiltonian HS(t) generally accounts for a time-dependent
fluctuating Zeeman splitting and a sign function for πz pulses,
sz(t):

HS(t) = −sz(t)[γHB + δω(t)]Sx. (102)

This leads directly to the complex-valued filter functions

Zj±(t) = σj

∫ t

0
dt ′sx(t ′)ei[φz(t ′)±γj Bt ′], (103)
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FIG. 11. (Color online) Evolution of hole-spin purity under an n-pulse periodic dynamical-decoupling (PDD) sequence [(τ − π )n − τ ]
with g⊥ = γH = 0. In this case, the purities are identical for π rotations about x̂ (π = πx) or ŷ (π = πy). The purities are P− (blue dashed line),
P+ (red solid line), and Px (black dotted line), for initialization along ê−, ê+, and êx , respectively. We show dynamics for (a) free-induction
decay, n = 0, (b) Hahn echo, n = 1, (c) n = 20, and (d) n = 100. We have assumed the same material parameters as in Figs. 4 and 5 for an
In0.5Ga0.5As quantum dot, but here we assume a magnetic field of B = 400 mT. Recurrences occur with a period ∼2π�/γInB 	 266 ns (given
by the indium Larmor frequency), with the first maximum at ∼ π�/γInB for n even.

115424-12



MAXIMIZING THE PURITY OF A QUBIT EVOLVING IN . . . PHYSICAL REVIEW B 92, 115424 (2015)

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1.0

FIG. 12. (Color online) Hole-spin purity under an n-pulse periodic dynamical-decoupling (PDD-X) sequence [(τ − πx)n − τ ]. Here, we
take g⊥ = 0.04, but all other parameters are equivalent to those given in the caption of Fig. 11. The purities are P− (blue dashed line), P+ (red
solid line), and Px (black dotted line), for initialization along ê−, ê+, and êx , respectively. We show dynamics for (a) free-induction decay,
n = 0, (b) Hahn echo, n = 1, (c) n = 10, and (d) n = 50. Resonances occur [as in (c)] when the frequency of πx pulses is comparable to the
hole-spin precession frequency.

with

φz(t) =
∫ t

0
dt ′sz(t

′)[γHB + δω(t ′)]. (104)

Equation (103) can now be substituted into the previous
expressions to find the purity and associated principal axes
for an arbitrary interlaced sequence of πx and πz pulses [see
Figs. 10(a) and 10(b)].

In this section, for simplicity, we will assume negligible
noise in the Zeeman splitting [δω(t) 	 0]. Further, we will fo-
cus on two specific (simple) dynamical-decoupling sequences:
periodic dynamical decoupling with equally spaced πx pulses
(PDD-X) and equally spaced πy pulses (PDD-Y), for which

sx(t) = s(t), sz(t) = 1 (PDD-X), (105)

sx(t) = sz(t) = s(t) (PDD-Y ), (106)

where

s(t) = 1 + 2
n∑

k=1

(−)kθ (t − kτ ). (107)

Equation (107) is illustrated schematically in Fig. 10(c). In this
case, it is straightforward to evaluate Eq. (103) analytically.

We give explicit analytical forms for Zj±(t) in Appendix D.
The resulting purity decay and associated angle θ determining
the principal axes are shown for a range of parameters in
Figs. 11–14.

Figure 11 illustrates purity decay for the case of a vanishing
hole-spin g factor, γHB → 0. In this limit, the filter functions
are given [see Eq. (D1)] by

Zj± = σj

γjB
tan

(
γjBτ

2

)
[1 + (−)ne±iγj B(n+1)τ ]. (108)

In this case, all fluctuations h̃z(t) are along ẑ. Due to rotational
symmetry about ẑ, the magnitude of Sz is preserved for all time
(blue dashed line in Fig. 11), and the dynamics are generally
identical for repeated πx pulses (PDD-X) or repeated πy pulses
(PDD-Y). A spin prepared along any other axis will decay with
partial recurrences near the zeros of |Zj±|. These are separated
by the typical nuclear-spin precession period, ∼ 2π/γjB. The
first zero after τ �= 0 occurs at (n + 1)τ 	 π/γjB for n even
and at (n + 1)τ 	 2π/γjB for n odd.

With a nonzero hole-spin g factor, the purity dynamics
depends strongly on the decoupling sequence (PDD-X or PDD-
Y). Dynamics for a PDD-X sequence are shown in Fig. 12
with typical parameters for a heavy-hole spin in a quantum
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FIG. 13. (Color online) Purities (top) and angle θ [(n + 1)τ ] (bot-
tom) defining principal axes for a PDD-X sequence with n = 10, using
the same parameters and line labeling as Fig. 12(c).

dot. At a critical time scale, a resonant dip develops in the
purity dynamics [see Fig. 12(c)]. This dip is a consequence of
the well-known phenomenon of accelerated decoherence [78]
and can be understood from the filter functions reported in
Appendix D, giving

Zj±[(n + 1)τ ] 	 i
2σj (n + 1)

ωj±
, ωj±τ → π. (109)

Thus, the degree of purity decay ∼ |Zj±|2 is bounded but
increasing for small n. The absolute time scale for the dip,
(n + 1)τ 	 (n + 1)π/ωj±, can be pushed out to longer time
by increasing n. This resonant dip is similar to that identified
as a useful tool for sensing [81,82]. The methods presented
here can be used to preserve pure qubit states in spite of
these resonant dips [blue dashed curve in Fig. 12(c)], when
it is not possible to suppress these dips with faster π pulses
[Fig. 12(d)]. Alternatively, this method can be used to identify
the initialization direction that would be most susceptible to
purity decay, enhancing signal to noise when such a resonant
dip is used for sensing. In Fig. 13, we show the evolution of the
angle θ defining principal axes near the resonant dip shown in
Fig. 12(c).

Resonant dips such as those shown in Fig. 12(c) can
be avoided altogether within this model by performing a
sequence of repeated π pulses about the y axis (PDD-Y).
Evolution under an n-pulse PDD-Y sequence is shown for
a heavy-hole spin in a quantum dot in Fig. 14. For n even
[Figs. 14(a) and 14(c)], phase evolution is not symmetric

about the halfway point, (n + 1)τ/2, leading to nontrivial
jumps in the purity evolution and associated angle θ . In
contrast, n odd [Figs. 14(b) and 14(d)] allows for symmetric
time-reversed dynamics, unwinding phase evolution under the
Zeeman term. This distinction between time-symmetric and
time-asymmetric decoupling sequences is well known [83].
For a PDD-Y sequence with n odd, we find |Zj+| = |Zj−|
[see Appendix D], leading to λ− = 0 [see Eq. (62)]. Thus,
to leading order in the Magnus expansion, the purity can be
preserved perfectly with the correct initialization [blue dashed
line in Fig. 14(b)].

In the limit of an S-T0 qubit (γj → 0), a PDD-Y sequence
with n odd leads to Zj± = 0 [from Eq. (D2)], giving no decay
for any initialization direction. As pointed out in Ref. [84] for
the analogous problem of a Josephson charge qubit coupled to
two-level fluctuators, this result actually holds to all orders in a
Magnus expansion. Of course, pure dephasing due to exchange
fluctuations would lead to a finite decay even in this case.

VIII. CONCLUSIONS

We have given a general procedure for the calculation
of the non-Markovian dynamics of qubit purity for qubits
interacting with an anisotropic environment. Applying this
procedure to the case of a hole-spin or S-T0 qubit interacting
with a nuclear-spin bath, we find that (at sufficiently short
times) the qubit purity is maximized by storing the qubit
in a superposition of noninteracting eigenstates. Storage of
the qubit in its noninteracting ground state can actually be
the worst choice for these systems. The fact that storage in
the computational basis (noninteracting eigenbasis) is sub-
optimal is not unique to hole spins and S-T0 qubits. We
expect this to be true for a wide variety of qubit systems
when ancillas are required a short time after preparation
and if pure-dephasing processes are weak. This effect is
especially pronounced for systems interacting with anisotropic
non-Markovian environments, including hole spins, nitrogen-
vacancy center spins, and spins bound to phosphorus donor
impurities.

In the process of calculating purity for a hole-spin qubit,
we have given closed-form analytical expressions for all
spin components describing the spin-echo and dynamical-
decoupling dynamics of hole spins in the presence of a
nuclear-spin bath. In particular, we have shown how echo
envelope modulations can be described by a combination of
terms arising from (i) a rotation to a set of principal axes êμ

for the generator of evolution L, and (ii) modulations in a set
of eigenvalues λμ. While both contributions enter into the spin
dynamics in general, the eigenvalues are most important for
determining the purity, provided the spin is initialized along
an appropriate principal axis. We have fully accounted for a
pure-dephasing process arising from white-noise fluctuations
in the hole-spin Zeeman energy and have illustrated the
resulting rich dynamics. All of the results presented here are
directly applicable to S-T0 qubits, under the mapping described
in Sec. IV B.

We expect the calculations for qubit purity given here
to be useful in quantum-information protocols that require
high-purity ancillas, including quantum error correction,
algorithmic cooling, and methods for high-fidelity readout.
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FIG. 14. (Color online) (a),(b) Purities Pμ and (c),(d) associated phase θ defining principal axes for an n-pulse PDD-Y sequence
[(τ − πy)n − τ ], with (a),(c) n = 10 (even) and (b),(d) n = 11 (odd). Line styles and parameters are the same as in Figs. 12 and 13.

The general approach taken here emphasizes the fact that,
for anisotropic systems, optimizing coherence is not simply
a matter of manipulating the spectral content of the noise
(associated with eigenvalues λμ), but also the geometry of
the noise, determined by initializing with respect to principal
axes êμ.
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APPENDIX A: AVERAGE HAMILTONIAN
AND GENERATOR

We take the leading-order Magnus Hamiltonian to have the
general form

H (0)(t) =
∫ t

0
dt ′Ṽ (t ′) =

∑
α

Bα(t)Sα, (A1)

where Bα(t) are Hermitian bath operators that act exclusively
on the environment.

The matrix elements of L0 [defined by Eq. (22) of the main
text] can then be written in terms of B = (Bx,By,Bz)

T as

[L0]0α = 1

2
Tr{σ0L0Sα} (A2)

= −1

2
Im〈B × B〉E · êα, (A3)

[L0]αβ = 2Tr{SαL0Sβ} (A4)

= Re{δαβ〈B · B〉E − 〈BβBα〉E}. (A5)

Here, Sα = σα/2 are spin-1/2 operators for α = x,y,z, while
σ0 is the identity in the qubit Hilbert space and êα is a unit vec-
tor along an axis in Cartesian coordinates (êx = x̂, êy = ŷ, êz =
ẑ). In Eqs. (A3) and (A5), we have used the fact that the bath
operators are Hermitian, giving Im〈BαBβ〉 = 〈[Bα,Bβ]〉/2 and
Re〈BαBβ〉 = 〈{Bα,Bβ}〉/2, where [·] indicates a commutator
and {·} is an anticommutator. A sufficient condition for the
inhomogeneous term, given by Eq. (A3), to vanish within a
leading-order Magnus expansion, given by Eq. (13), is then

Im〈B × B〉E = 0 ⇒ 〈δS(t)〉 = 0. (A6)

We now consider the most general anisotropic hyperfine
Hamiltonian,

V = Hahf =
∑
γ δ,k

A
γ δ

k I
γ

k Sδ. (A7)
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If the environment Hamiltonian is described by a general
inhomogeneous Zeeman term,

HI = −
∑

k

γkBk · Ik, (A8)

the interaction picture results in a rotation

Bβ(t) =
∑
k,γ δα

A
γδ

k g
γ δ,αβ

k (t)Iα
k . (A9)

For the case of nuclear spin I = 1/2, for example, the
coefficients in the expansion of Eq. (A9) are given explicitly
by

g
γ δ,αβ

k (t) =
∫ t

0
dt ′2Tr

{
Ĩ

γ

k (t ′)Iα
k

} · 2Tr{S̃δ(t ′)Sβ}. (A10)

With Eq. (A9), it is straightforward to estimate the matrix
elements given in Eq. (A3). All terms are proportional to the
initial polarization of the nuclear-spin system and therefore
vanish,

Im〈B × B〉I = 0. (A11)

Here, we have used the subscript I = E for the nuclear-spin
environment. Thus, for an initially unpolarized nuclear-spin
bath, we are justified in neglecting the inhomogeneous term to
leading order in a Magnus expansion,〈

I
γ

k

〉
I

= 0 ⇒ 〈δS(t)〉 	 0. (A12)

Specializing to the case of an Ising-like hyperfine interaction,

A
αβ

k = δαzδβzAk, (A13)

and the spin-echo problem discussed in Sec. IV, we find
explicit forms for the bath operators Bα , in terms of the
complex-valued filter functions Zj±(2τ ) given in Eq. (52) of
the main text:

Bx = 0,

By =
∑

j

1

4σj

[(Zj− − Z∗
j+)h+

j − (Zj+ − Z∗
j−)h−

j ], (A14)

Bz =
∑

j

−i

4σj

[(Zj− + Z∗
j+)h+

j − (Zj+ + Z∗
j−)h−

j ].

Applying the rules in Eq. (41) for an uncorrelated and unpo-
larized nuclear-spin state immediately gives the nonvanishing
correlators,

〈ByBy〉 = 1
2 (λx − ReZ2), (A15)

〈BzBz〉 = 1
2 (λx + ReZ2), (A16)

〈ByBz〉 = 〈BzBy〉 = − 1
2 ImZ2. (A17)

Here, Z2(2τ ) and λx(2τ ) are given in Eqs. (58) and (60) of the
main text, respectively. Inserting these correlators 〈BαBβ〉 into
Eq. (A5) directly gives the matrix form found in the main text
[Eqs. (56) and (57)].

Parenthetically, we note that arbitrary initial conditions
for the bath can be taken above, in principle, including
pure-state environment initial conditions (required to measure
entanglement through purity). However, for each bath initial

state, it will be important to justify the Gaussian approximation
used to derive Eq. (22). This approximation is very good for an
uncorrelated thermal bath or a sufficiently random “narrowed”
state [70], but may break down for pure initial conditions with
strong (classical or quantum) correlations.

APPENDIX B: SIMPLE EXAMPLE: γ j = 0

It is useful to consider a simple and direct application of
the analytical expressions derived in Appendix A. Here we
consider dynamics at a time scale that is short compared to
the nuclear-spin precession period, and neglect the nuclear
gyromagnetic ratio, so there is effectively one nuclear-spin
species j with γj 	 0 and we assume a single nuclear-field
variance σj = σN . This limit is directly applicable to S-T0

qubits (see Sec. IV B). Under these conditions, there is only
one complex filter function, Zj±(2τ ) = Z(2τ ), for one fixed
j [see Eq. (52)]. Setting ω = γHB,

Z(2τ ) = 4σN

ω
sin2 ωτ

2
ei(ωτ−π/2). (B1)

From Eq. (57), we see that the submatrix can be rewritten
as an outer product (a projector onto a vector constructed from
the real and imaginary parts of Z = X + iY ):

[
Lyz

0 (2τ )
] =

(
X2 XY

XY Y 2

)
=

(
X

Y

)
(X Y ). (B2)

The eigenvectors giving ê± are then simply this vector and the
vector orthogonal to it:

[
Lyz

0 (2τ )
](X

Y

)
= |Z|2 ·

(
X

Y

)
, (B3)

[
Lyz

0 (2τ )
]( Y

−X

)
= 0. (B4)

In terms of unit vectors,

ê+(2τ ) = 1

|Z(2τ )| [X(2τ )ŷ + Y (2τ )ẑ], (B5)

ê−(2τ ) = 1

|Z(2τ )| [−Y (2τ )ŷ + X(2τ )ẑ]. (B6)

Equation (B5) gives a quick shortcut to find the angle θ (2τ ) in
Fig. 3,

θ (2τ ) = arg Z(2τ ) = ωτ − π

2
. (B7)

From Eqs. (B3) and (B4), we can read off the eigenvalues,

λ+(2τ ) = |Z(2τ )|2 =
(

4σN

ω

)2

sin4 ωτ

2
, (B8)

λ−(2τ ) = 0. (B9)

Equation (B9) indicates that a spin initially aligned along ê−
will show no decay or modulations under a spin-echo sequence
within the range of applicability of approximations made here.
On the surface, this may not seem surprising since we have
assumed γj = 0, making the bath static and the spin-echo
dynamics reversible. However, a spin prepared along any
other direction will show violent modulations, as described
by Eq. (B8). The distinction between these two cases can be
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understood by considering the specific geometry and the phase
in Eq. (B7). Before the first π pulse, a spin initialized along
ê+ will evolve with a phase φ(t) [see also Eq. (74) for an
analogous expression after the echo sequence has been carried
out]:

〈S ′
+(t)〉 ∝ eiφ(t), φ(t) = −ωt + θ (2τ ). (B10)

Note that θ (2τ ) does not evolve with t since it determines
the initial condition. Inserting Eq. (B7), we see that the initial
condition is such that the spin lies along −ẑ at the time of the
first π pulse (t = τ ),

φ(τ ) = −π

2
. (B11)

This situation leads to rapid envelope modulations. In contrast,
a spin initialized along ê− will be oriented along ŷ at the first
π pulse and will show no modulations. We can understand
this difference by considering a model of a spin evolving in
the presence of a classical magnetic field, B = Bx x̂ + δBzẑ,
having a fixed x component Bx and slowly varying random z

component δBz. For initialization along ê−, a finite δBz will
result in a finite component along x̂ at the time of the first
π pulse, but the spin will lie approximately in the y-x plane
due to the choice of initial condition (with small corrections in
δBz/Bx � 1). In this plane, the system shows perfect mirror
symmetry for a reflection through the x axis, so a π pulse
about x̂ induces symmetric time-reversed dynamics, returning
the spin precisely to its starting point in the rotating frame
after a second π pulse is performed at t = 2τ . In contrast, if
the spin is initialized along ê+, it will lie approximately in the
x − z plane at the time of the first π pulse. In this plane, for
any finite value of δBz, there is no reflection symmetry for a π

rotation about the x axis. The spin’s cone of precession after
the π pulse can be quite different from that before the π pulse,
resulting in a mismatch in evolutions causing the modulations
indicated by Eq. (B8) for any finite δBz.

APPENDIX C: AVERAGES FOR PURE DEPHASING

Here we give expressions for the averages required to
evaluate the associated generator 〈L0〉φ , accounting for aver-
ages over realizations of the Gaussian random variable δω(t)
described by Eq. (90).

Explicitly, the eigenvalue 〈λx〉φ can be written as

〈λx〉φ = 1

2

∑
j

(〈|Zj+|2〉φ + 〈|Zj−|2〉φ), (C1)

where

〈|Zj±|2〉φ = 2σ 2
j

∫ 2τ

0
dt1

∫ t1

0
dt2s(t1)s(t2)Fj±(t1 − t2),

(C2)

and the functions Fj±(t) are

Fj±(t) = e−t/Tφ cosh[(iωj± + 2/Tφ)t]. (C3)

The remaining coefficients in the matrix representation of
〈L0〉φ , 〈ReZ2〉φ , and 〈ImZ2〉φ are given by

〈ReZ2〉φ =
∑

j

σ 2
j

∫ 2τ

0
dt1

∫ t1

0
dt2K

+
j (t1,t2), (C4)

〈ImZ2〉φ = −i
∑

j

σ 2
j

∫ 2τ

0
dt1

∫ t1

0
dt2K

−
j (t1,t2), (C5)

with integral kernels

K±
j (t1,t2) = s(t1)s(t2) cos[ωj (t1 − t2)]e(t1−t2)/Tφ

× [eiγH B(t1+t2) ± e−iγH B(t1+t2)−4(t1+t2)/Tφ ]. (C6)

The integrals can all be evaluated analytically, but we leave
them unevaluated here for notational convenience.

APPENDIX D: FILTER FUNCTIONS FOR
DYNAMICAL DECOUPLING

For an n-pulse PDD-X sequence, we find the generalized
filter function from direct integration of Eq. (103),

Zj±[(n + 1)τ ] = σj

ωj±
tan

(
ωj±τ

2

)
[1 + (−1)neiωj±(n+1)τ ].

(D1)

Here, ωj± = ω ± ωj , where ω = γHB gives the hole-spin
Zeeman splitting and ωj = γjB determines the Zeeman
splitting of nuclear-spin species j .

For an n-pulse PDD-Y sequence, integrating Eq. (103) gives

Zj±[(n + 1)τ ] = 2σj

sin ωjτ
eiωτ/2e±iωj (n+1)τ/2G±

n (τ ), (D2)

where

G±
n (τ ) = τ

2

[
sin

(
ωj (n + 2)τ

2

)
sinc

(
ωj±τ

2

)

− sin

(
ωjnτ

2

)
sinc

(
ωj∓τ

2

)]
(n even), (D3)

and

G±
n (τ ) = τ

2
sin

(
ωj (n + 1)τ

2

)[
e∓iωj τ/2sinc

(
ωj±τ

2

)

− e±iωj τ/2sinc

(
ωj∓τ

2

)]
(n odd). (D4)
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