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Spin-dependent coherent transport in a double quantum dot system

L. S. Petrosyan1,2 and T. V. Shahbazyan1

1Department of Physics, Jackson State University, Jackson, Mississippi 39217, USA
2Russian-Armenian State University, 123 Hovsep Emin Street, Yerevan, 0051, Armenia

(Received 26 June 2015; published 16 September 2015)

We study spin-resolved resonant tunneling in a system of two quantum dots sandwiched between doped
quantum wells. In the coherent (Dicke) regime, i.e., when quantum dot separation is smaller than the Fermi
wavelength in a two-dimensional electron gas in quantum wells, application of an in-plane magnetic field leads to
a pronounced spin-resolved structure of conductance peak line shape even for very small Zeeman splitting of the
quantum dots’ resonant levels. In the presence of electron-gas spin-orbit coupling, this spin-resolved structure is
washed out due to Fermi surface deformation in the momentum space. We also show that Aharonov-Bohm flux
penetrating the area enclosed by tunneling electron pathways completely destroys the conductance spin structure.
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I. INTRODUCTION

Interference effects in electron transmission through lo-
calized states in semiconductor nanostructures such as, e.g.,
semiconductor quantum dots (QD), are among the highlights
in coherent transport studies [1,2]. The electron phase acquired
in the course of tunneling through several pathways provided
by QDs situated between doped semiconductor leads can
result in striking features of the conductance lineshape near
the transmission resonance [3]. The simplest realization of
coherent transport is served by two QDs independently coupled
to a two-dimensional electron gas (2DEG) in the left and right
leads while the direct tunneling between QDs is weak [4]. In a
magnetic field, the conductance of such a double QD system
exhibits Aharonov-Bohm oscillations [5–7] as a function of
magnetic flux penetrating the area enclosed by tunneling
pathways [4,8,9]. At zero field, the coherence between QDs is
controlled by their coupling via the continuum of electronic
states in the leads [4,10]. If QD separation a is comparable
to the electron Fermi wavelength in 2DEG λF , then the
electron transmission is mediated by the system eigenstates
rather than by individual QDs, leading to conductance peak
narrowing or Fano-like lineshapes [4,11–13]. A revealing
optical analogy is cooperative emission of two excited atoms
at a distance smaller than the radiation wavelength from
each other (Dicke superradiance) [14,15]; QD coupling via
continuum of electronic states is similar to coupling of two
emitters via electromagnetic field [4,10,16].

On the other hand, spin-dependent tunneling in semicon-
ductor nanostructures has recently attracted much interest
due to the possibility of controlling simultaneously spin
and charge currents in electronic circuits [17]. Well-resolved
spin-polarized currents were observed through single-electron
or few-electron QDs subjected to an in-plane magnetic field
[18–24]. At zero field, spin-dependent transport can be realized
in semiconductor structures characterized by a strong spin-
orbit (SO) coupling due to either bulk inversion asymmetry
(Dresselhaus term in the Hamiltonian) or structural inversion
asymmetry in the growth direction (Rashba term) [25]. In
single- or double-barrier quantum well structures, the SO-
induced Fermi surface splitting leads to distinct transmission
coefficients for electrons with opposite spins (spin filter-
ing) [26–36]. Resonant tunneling through QDs with SO-split

energy levels revealed additional structure in the conduction
line shape corresponding to spin-polarized currents [37,38].

In this paper we study spin-dependent resonant tunneling
through a double QD system sandwiched between doped
semiconductor quantum wells (see Fig. 1). Specifically, we
focus on spin-resolved resonant tunneling in the Dicke regime,
i.e., akF < 1, where kF is the electron Fermi wave vector in
a 2DEG. In this regime, the zero-field conductance lineshape
represents a narrow peak of width ∼(akF )2� on top of a wide
peak of width ∼2�, where � is the single QD conduction peak
width [4]. We demonstrate that an in-plane magnetic field,
which introduces disbalance between spin-polarized electrons
in a 2DEG, leads to a pronounced spin structure of the narrow
conduction peak even for very weak Zeeman splitting of
QD energy levels, �Ez

0 � �, i.e., when no spin splitting
would normally be observed in single QD tunneling. The
spin-resolved conductance lineshape in the Dicke regime is
shown to be very sensitive to other system parameters as well,
e.g., to the energy-level difference due to QD size variation.
We show that SO coupling in a 2DEG, by deforming the
2DEG Fermi surfaces, suppresses the conductance sensitivity
to electron spin polarization in the Dicke regime. We also
show that Aharonov-Bohm flux through the area enclosed by
electron tunneling pathways completely destroys the fine spin
structure of the conductance.

This paper is organized as follows. In Sec. II, we derive
the general expression for the conductance in the presence
of in-plane magnetic field and 2DEG SO coupling within the
tunneling Hamiltonian approach. In Sec. III, we describe our
analytical results for the cases when only magnetic field or
only SO coupling is present. In Sec. IV, we present the results
of our numerical calculation, and Sec. V concludes the paper.

II. SPIN-DEPENDENT TWO-CHANNEL
RESONANT TUNNELING

We consider electron resonant tunneling between left and
right 2DEGs located in z = ∓d planes, respectively, through
a pair of QDs placed in the z = 0 plane at a distance a

from each other (see Fig. 1). The system is subjected to an
in-plane magnetic field B = B(cos φ, sin φ,0) characterized
by vector potentials AL,R = Ba(± sin φ, ∓ cos φ,0) in the

1098-0121/2015/92(11)/115423(7) 115423-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.115423


L. S. PETROSYAN AND T. V. SHAHBAZYAN PHYSICAL REVIEW B 92, 115423 (2015)

FIG. 1. (Color online) Schematics of resonant tunneling of an
electron through a pair of QDs sandwiched between doped semi-
conductor layers in in-plane magnetic field.

left/right 2DEGs, where φ is azimuthal angle. Within the
tunneling Hamiltonian approach, the system Hamiltonian is
H = HL + HR + HQD + HT , where Hα [with α = (L,R)] is
the 2DEG Hamiltonian in the left/right plane, HQD is the
Hamiltonian of localized states in QD, and HT describes the
tunneling between them. The 2DEG Hamiltonian has the form

Hα = 1

2m

(
k + e

c
Aα

)2

+ βσ × k + 1

2
gμ(σ · B), (1)

where the first, second, and third terms describe, respectively,
the orbital, SO, and Zeeman contributions. Here e, m, and g

are, respectively, electron charge, effective mass, and the g

factor; c and μB are the speed of light and Bohr magneton;
β is the Rashba SO constant; and σ is the Pauli matrices
vector. We assume identical left and right 2DEGs that are
characterized by the same m and g and set � = 1 throughout.
In a standard manner, by eliminating Aα in the orbital term via
gauge transformation, the 2DEG energy spectrum Ekδ and the
eigenstates ψα

kδ(r) in each plane can be found as

Ekδ = k2

2m
+ δ|ξk|, ψ

L,R
kδ (r) = eikr±i e

c
B×r

√
2A

(
1

δeiθk

)
, (2)

where the variable

ξk ≡ |ξk|eiθk = eiφωz/2 − iβkeiϕ (3)

depends both on the orientation of the wave vector, ϕ = arg(k),
and on the magnetic field orientation φ relative to the x

axis. Here ωz = gμBB is 2DEG Zeeman energy, δ = ±1 is
chirality, and A is the normalization area. The two possible
signs (±) of magnetic phase in Eq. (2) correspond to the
left/right 2DEG, respectively. For each chirality δ = ±1,
the Fermi surface kδ

F (ϕ) represents closed contours in k space

satisfying

k2

2m
± |ξk(φ)| = EF , (4)

where EF is the Fermi energy. In the presence of SO
coupling, the Fermi-surface shape depends on the magnetic
field orientation φ.

The tunneling Hamiltonian describing transitions between
QD and 2DEG states has the form

H =
∑
jss ′

Ess ′
j c

†
jscjs ′ +

∑
kδα

Eα
kδc

†
kδαckδα

+
∑

kδαjs

(
V

js

kδαc
†
jsckδα + H.c.

)
, (5)

where Ess ′
j = Ejδss ′ + 1

2g0μB(B · σ )ss ′ is the QD energy
matrix. Here Ej (j = 1,2) are QD resonant energy levels, g0

is the QD g factor (the spin quantization axis is chosen along
z and s = ±1 corresponds to spin-up/-down projections), and
V

js

kδα is the electron transition matrix element between QD state
|js〉 and 2DEG state |kδα〉 (α = L,R). We assume no spin flip
during tunneling in the lateral direction.

Within the tunneling Hamiltonian approach, the conduc-
tance is given by [10]

G = e2

π�
Tr

(
�̂R 1

EF − Ê − �̂
�̂L 1

EF − Ê − �̂†

)
, (6)

where the matrix Ess ′
jk = δjkE

ss ′
j is diagonal in QD indices,

�̂ = �̂L + �̂R is the QD self-energy matrix due to the
transitions to the left and right 2DEG,

(
�α

)ss ′

jk
≡ (�α)ss

′
jk − i

2
(�α)ss

′
jk =

∑
kδ

V
js

kδαV ks ′∗
kδα

EF − Ekδ + i0
, (7)

and the trace is taken in both configuration and spin space.
The transition matrix element can be presented as [4] V

js

kδα =
tαψαs

kδ (rj ), where rj are the in-plane projection of QD
coordinates and tα is the tunneling amplitude between QD and
2DEG (we assume that the potential barrier is sufficiently high
and neglect the tα dependence on energy). The self-energy (7)
then takes the form(

�α

)ss ′

ij
= t2

αGss ′
α (ri − rj ), (8)

where

Gss ′
L,R(ri − rj ) = 1

2
e±i(1−δij )(ad/l2) sin φ

∑
δ=±

δ(s−s ′)/2

×
∫

d2k

(2π )2

eik(ri−rj )+iθk(s ′−s)/2

EF − Ekδ + i0
(9)

is the 2DEG Green’s function corresponding to eigenstates (2),
l = √

c/eB is the magnetic length, and θk = arg(ξk). The
decay matrix �̂ and energy shift matrix �̂, which are
determined, respectively, by the singular and principal parts of
the Green’s function (9), represent 4 × 4 matrices in spin and
configuration space. Note that the electron Green’s function (9)
is known explicitly in the presence of either magnetic field or
SO coupling but not both.
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III. CALCULATION OF CONDUCTANCE

We consider a symmetric case when two QDs with resonant
levels E1 = E2 = E0 at a distance a from each are separated
by a tunneling barrier of thickness d from identical 2DEGs
(see Fig. 1). In this case, the tunneling amplitudes are equal,
tL = tR = t , and the QD self-energies due to tunneling to
left/right 2DEG differ only by the Aharonov-Bohm phase
factor: (�L,R)ss

′
ij = e±i(1−δij )(ad/l2) sin φ�̃ss ′

ij , with

�̃ss ′
ij = t2

2

∑
δ=±1

δ
s−s′

2

∫
d2k

(2π )2

eik·rij +iθk(s ′−s)/2

EF − k2/2m − δ|ξk| + i0
,

(10)

where ξk ≡ |ξk|eiθk is given by Eq. (3) and we denoted
rij = ri − rj .

A. Dicke tunneling in the presence of in-plane magnetic field

Consider first the conductance in the absence of SO
coupling in 2DEGs (β = 0). The Fermi surface, as determined
by Eq. (4) with ξk = eiφωz/2, represents two circles in
momentum space with radii kδ

F given by

k±
F = kF

√
1 ∓ ωz/2EF , (11)

where kF = √
2mEF . In this case we have θk = φ, and so the

spin and orbital degrees of freedom in the self-energy (10)
factorize,

�̃ss ′
ij = − i�

4

∑
δ=±1

δ
s−s′

2 eiφ(s−s ′)/2H
(1)
0

(
kδ
F rij

)
, (12)

where H
(1)
0 (x) is the Hankel function of the first kind and � =

mt2 is the resonant level spectral width for an isolated QD due
to tunneling to the 2DEG (see below). The function H

(1)
0 (kδ

F rij )
can be viewed as a 2 × 2 matrix in configuration space with di-
agonal elements H

(1)
0 (0) and nondiagonal elements H

(1)
0 (kδ

F a).
Note that Im[H (1)

0 (0)] contains logarithmic divergence that
should be properly regularized. Namely, for infinitesimal rij =
ε → 0, we have H

(1)
0 (kδ

F ε) ≈ 1 + (2i/π )[γE + ln (kδ
F ε/2)],

where γE is the Euler constant. We now subtract the zero-
field value of Im[H (1)

0 (kδ
F ε)], i.e., with kδ

F = kF , so that the
regularized expression for H

(1)
0 (0) is 1 + (2i/π ) ln (kδ

F /kF ).
Such regularization corresponds to zero energy shift for an
isolated QD in the absence of magnetic field; hereafter, we
will use only regularized quantities. The matrix H

(1)
0 (kδ

F rij )
can be written in terms of the Pauli matrices in configuration
space τ as

H
(1)
0

(
kδ
F rij

) =
[

1 + 2i

π
ln

(
kδ
F

kF

)]
Iτ

+ [
J0

(
kδ
F a

) + iY0
(
kδ
F a

)]
τ1, (13)

where Iτ is the unit matrix and we used H (1)
n (x) = Jn(x) +

iYn(x), with Jn and Yn being Bessel functions of the first
and second kinds, respectively. Expressing the spin factor in
Eq. (12) via Pauli spin matrices as

Sss ′
δ (φ) ≡ δ

s−s′
2 eiφ(s−s ′)/2 = (Iσ + δσ · b̂)ss ′ , (14)

where b̂ is a unit vector along the magnetic field (Iσ is the
unit matrix in spin space), the self-energy �̂α = �̂α − i�̂α/2
is presented as a 4 × 4 matrix in spin and configuration space
with

�̂L,R = �

2

∑
δ=±1

Sδ ⊗ [
Iτ + �L,RJ0

(
kδ
F a

)
τ1

]
,

�̂L,R = �

4

∑
δ=±1

Sδ ⊗
[

2

π
ln

(
kδ
F

kF

)
Iτ + �L,RY0

(
kδ
F a

)
τ1

]
,

(15)

where �L,R = e±i(ad/l2) sin φ is the Aharonov-Bohm factor.
Using these expressions, the conductance (6) can be straight-
forwardly evaluated.

Since orbital and spin sectors in Eq. (15) factorize, they
can be diagonalized independently, and an explicit expression
for the conductance can be obtained. For simplicity, consider
magnetic field directed along the x axis (i.e., φ = 0). In this
case, there is no Aharonov-Bohm flux (�L,R = 1), so that
�L = �R , and after simple algebra, we obtain

G = e2

π�

∑
q,p=±

�2
qp(

EF − E0 − p �Ez
0/2 − �qp

)2 + �2
qp

, (16)

where �Ez
0 is the QD Zeeman energy and

�qp = �
[
1 + qJ0

(
k

p

F a
)]

,

�qp = �

[
1

π
ln

(
1 − p

ωz

2EF

)
+ qY0

(
k

p

F a
)]

, (17)

with Fermi momenta k
p

F corresponding to the two Fermi
surfaces (p = ±) given by Eq. (11).

For zero field, i.e., ωz = �Ez
0 = 0 and k

p

F = kF , both spin
channels contribute equally, and we recover the known result
for Dicke tunneling through a pair of QDs [4],

G = 2e2

π�

∑
±

�2
±

(EF − E0 − �±)2 + �2±
, (18)

where �± = �[1 ± J0(kF a)] and �± = ±�Y0(kF a). For
kF a � 1, the conductance line shape represents a narrow peak
of width �− ≈ (kF a)2�/4 on top of a wide peak of width
�+ ≈ 2�. With magnetic field turned on, each Zeeman-split
Fermi surface described by Eq. (11) contributes independently
to the conductance (16), thereby giving rise to the spin fine
structure of peak conductance. With a further field increase,
the Fermi surface k−

F shrinks to a point, and for ωz > 2EF the
2DEG is fully spin polarized. In the proximity of the critical
field, the conductance line shape undergoes dramatic changes,
as illustrated in the next section.

B. Dicke tunneling in the presence of SO coupling in 2DEG

Consider now the case of a 2DEG with Rashba SO coupling
at zero magnetic field. In this case, an analytical expression
for the electron Green’s function is well known, and Eq. (8)
takes the form (we suppress spin indices)

�̃ij = �
(0)
ij Iσ + �

(1)
ij (ẑ × r̂ij ) · σ , (19)

115423-3



L. S. PETROSYAN AND T. V. SHAHBAZYAN PHYSICAL REVIEW B 92, 115423 (2015)

where r̂ij and ẑ are unit vectors along rij and the z axis and
�

(0)
ij and �

(1)
ij are matrices in configuration space,

�̃
(0)
ij = − i�

4

∑
δ=±1

kδ
F

k̃F

H
(1)
0

(
kδ
F rij

)
, (20)

�̃
(1)
ij = −�

4

∑
δ=±1

δ
kδ
F

k̃F

H
(1)
1

(
kδ
F rij

)
. (21)

Here kδ
F = k̃F − δkR (with δ = ±1) are solutions of Eq. (4)

describing two Fermi surfaces, kR = mβ is the characteristic
momentum associated with Rashba SO coupling, and k̃F =√

k2
F + k2

R . Expressing the above matrices via Pauli matrices
in configuration space, we obtain (after regularization)

�̃
(0)
ij = �

4

∑
δ=±1

kδ
F

k̃F

[(
2

π
ln

kδ
F

kF

− i

)
Iτ − iH

(1)
0

(
kδ
F a

)
τ1

]
,

�̃
(1)
ij = −�

4

∑
δ=±1

δ
kδ
F

k̃F

H
(1)
1

(
kδ
F a

)
τ1. (22)

For QDs placed along the x axis, r̂ij = −r̂ji = x̂, the 4 × 4
self-energy matrix �̂α = �̂α − i�̂α/2 can be explicitly ob-
tained as

�̂α = �(Iσ ⊗ Iτ ) + �1(Iσ ⊗ τ1) + �2(σ2 ⊗ τ2),

�̂α = �0(Iσ ⊗ Iτ ) + �1(Iσ ⊗ τ1) + �2(σ2 ⊗ τ2), (23)

where

�1 = �

2

∑
δ=±1

kδ
F

k̃F

J0
(
kδ
F a

)
, �2 = −�

2

∑
δ=±1

δ
kδ
F

k̃F

J1
(
kδ
F a

)
,

�0 = �

4

∑
δ=±1

kδ
F

k̃F

2

π
ln

kδ
F

kF

, �1 = �

4

∑
δ=±1

kδ
F

k̃F

Y0
(
kδ
F a

)
,

�2 = − �

4

∑
δ=±1

δ
kδ
F

k̃F

Y1
(
kδ
F a

)
. (24)

By setting the SO coupling to zero, i.e., kδ
F = k̃F = kF , all

quantities in Eq. (24) have vanished, except �1 and �1, so
that the conductance (18) is recovered. Note, however, that,
in the presence of SO coupling, no explicit formula for the
conductance can be derived and Eq. (6) still needs to be
evaluated numerically.

In the presence of both magnetic field and SO coupling,
no analytical expression for the self-energy matrix (19) is
available. The results of our numerical calculations of the
conductance are presented in the next section.

IV. NUMERICAL RESULTS AND DISCUSSION

Here we describe our results for the conductance (6)
obtained by numerically evaluating the matrix elements (10).
To simplify the analysis, we assume identical 2DEGs in
the left and right planes with Zeeman energy ωz and with
Rashba SO coupling described by characteristic momentum
kR . In the symmetric configuration, two QDs separated by a
distance a are located in the middle between 2DEG planes
(see Fig. 1). The resonant levels in QDs have energies

/π

φ

ω

ω

ω

ω

ω

Γ

FIG. 2. (Color online) Conductance through identical QDs
(�E0 = 0) is shown for (a) several QD separations a and (b) several
values of 2DEG Zeeman energy ωz in the absence of 2DEG SO
coupling and QD Zeeman splitting. The inset shows spin-split 2DEG
Fermi surfaces in the k plane for ωz/EF = 1.9.

E0 ± �E0 ± �Ez
0, where �E0 is a shift from medium level

energy E0 due to variations in QD size and �Ez
0 is QD Zeeman

splitting. Here we disregard SO splitting of QD levels [37] and
instead focus on the role of 2DEG SO coupling. Rather than
restricting ourselves to a specific material, we presents our
numerical results for a wide range of parameters to describe
comprehensively the role of magnetic field and SO coupling
in coherent transport in a double QD system.

We start with the case of zero SO coupling (kR = 0). In
Fig. 2(a) we show zero-field conductance vs Fermi energy for
several values of electron concentration (or QD separation)
as the parameter akF traverses the region akF � 1 (since
�/EF � 1, the parameter akF is nearly constant in the
resonance region). While for akF > 1 the conductance shows a
single peak of amplitude ∼4 (in units of e2/π�) corresponding
to two orbital and two spin channels, with decreasing akF it
develops a double-peak structure with a narrow peak on top of
a wider peak. This is a characteristic signature of coherent
Dicke tunneling [4] due to electron transmission through
symmetric and antisymmetric superpositions of QD states,
rather than through individual QDs, with the respective rates
�± = �[1 ± J0(akF )]. The resonance shift that takes place
with decreasing akF is caused by QD level repulsion [�± =
±�Y0(kF a)] due to QD coupling through the 2DEG, while the
peak narrowing is due to weaker coupling of the antisymmetric
state to 2DEGs as the electron Fermi wavelength λF = 2π/kF

exceeds QD separation a.
In Fig. 2(b) we show the conductance evolution in the Dicke

regime (i.e., for akF < 1) with changing in-plane magnetic
field. To distinguish between various effects of magnetic field,
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FIG. 3. (Color online) Conductance peak evolution in the ab-
sence of 2DEG SO coupling is shown with increasing QD Zeeman
splitting �Ez

0 for QD level detuning values (a) �E0 = 0 and (b)
�E0 = 0.5� at the near-critical value of in-plane field ωz = 1.9EF .

here we chose B ‖ x̂ (i.e., φ = 0 and hence no Aharonov-Bohm
flux) and, for a moment, disregard QD Zeeman splitting
(�Ez

0 = 0). With increasing 2DEG Zeeman energy ωz, the
narrow conductance peak develops a shoulder and then splits
into two peaks of the width �±

− = �[1 − J0(ak±
F )] correspond-

ing to two spin-polarized antisymmetric states with energies
shifted by �±

− = −�Y0(ak±
F ). This splitting is caused by

tunnel coupling of QD levels to spin-polarized electrons in the
2DEG with different Fermi momenta [see inset in Fig. 2(b)].
With increasing field, as ωz/2 approaches EF , the upper
spin subband becomes nearly empty, while the lower spin
subband population nearly doubles; the emergence of smaller
and larger Fermi momenta, k+

F and k−
F , leads to a significant

difference in the new peaks’ width. A similar effect takes
place for tunneling through the symmetric state; however, the
spin-polarized states with wide widths �±

+ = �[1 + J0(ak±
F )]

and energy shifts �±
+ = �Y0(ak±

F ) are not well resolved and
manifest themselves as extended plateaus on the low-energy
side. With further field increase, as the upper spin subband is
completely depopulated (ωz > 2EF ), the tunneling current is
fully spin polarized, and the conductance shows only a single
peak.

In Fig. 3, we show the effect of QD Zeeman splitting �Ez
0

on the conductance line shape. Here we focus on QD level spin
splitting per se and therefore only change the QD g factor while
keeping the magnetic field constant. To highlight coherent
effects in spin-resolved tunneling, we chose very small values
of QD Zeeman splitting (�Ez

0/� � 1) that normally would
not be resolved in single QD tunneling, and we plot the narrow
conductance peak lineshape for nearly critical field (ωz/EF =
1.9); the effect of small �Ez

0 on the wide conductance peak is

FIG. 4. (Color online) Conductance peak evolution in the ab-
sence of 2DEG SO coupling is shown with increasing QD level
detuning �E0 for QD Zeeman splitting values (a) �Ez

0 = 0 and (b)
�Ez

0 = 0.1� at the near-critical value of in-plane field ωz = 1.9EF .

negligible. Remarkably, the narrow peak exhibits a pronounced
spin splitting for �Ez

0 as small as 0.1�. With increasing �Ez
0,

this splitting steadily increases, with peak-to-peak separation
being ∼2�Ez

0. At the same time, the overall lineshape becomes
more symmetrical as the QD upper spin levels now couple to
higher k−

F 2DEG states [see Fig. 3(a)]. Figure 3(b) shows the
conductance peak evolution with changing �Ez

0 when the QD
level energies are slightly different, E1,2 = E0 ± �E0, e.g.,
due to QD size variation. For �E0 = 0.5�, an overall drop
in peak amplitude is observed, and with increasing �Ez

0, the
conductance exhibits no sharp features.

In Fig. 4, we show a complementary case of conductance
peak evolution with changing �E0 at a constant �Ez

0 for nearly
critical magnetic field strength (ωz/EF = 1.9). For finite �E0,
the narrow peak of the upper spin subband gets wider as the
upper QD level E1 now couples to 2DEG states with a higher
Fermi momentum k−

F [see Fig. 4(a)]. With increasing �E0, the
low-energy resonance disappears and turns into antiresonance;
this effect is similar to the zero-field case [4]. A similar
evolution of narrow peak lineshape is observed for a finite
QD Zeeman splitting [see Fig. 3(b)].

We now turn to the combined effect on Dicke tunneling
of 2DEG SO coupling and in-plane magnetic field. At zero
field, the tunneling matrix elements can be explicitly calculated
(Sec. III B); however, for a realistic range of parameters, the
2DEG SO coupling is relatively weak, kR = βm < kF , and has
no significant effect on conductance lineshape. The situation
changes in the presence of nearly critical in-plane magnetic
field, i.e., when the 2DEG is nearly spin polarized. In Fig. 5,
we show the evolution of the conductance lineshape with
increasing 2DEG SO coupling at ωz/EF = 1.9 and φ = 0.
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FIG. 5. (Color online) Conductance evolution with increasing
2DEG SO coupling is shown for QD Zeeman splitting values (a)
�Ez

0 = 0 and (b) �Ez
0 = 0.1� at the near-critical in-plane magnetic

field, ωz = 1.9EF , and �E0 = 0. The inset shows spin-split 2DEG
Fermi surfaces in the k plane for ωz/EF = 1.9.

For �Ez
0 = 0, the spin splitting of the narrow peak disappears

with increasing kR , and for kR/kF > 0.5 the two peaks merge
[see Fig. 5(a)]. A similar evolution takes place in the presence
QD Zeeman splitting [see Fig. 5(b)]; the pronounced dip due
to combined 2DEG and QD Zeeman effects evolves into a
small dent. Such a behavior can be traced to the change
in Fermi-surface shape in the presence of both 2DEG SO
coupling and in-plane magnetic field. Indeed, at kR = 0, the
two Fermi surfaces corresponding to spin-polarized electrons
are characterized by distinct Fermi momenta k±

F [see the inset
in Fig. 2(b)], which give rise to two spin-dependent slow escape
rates �±

− = �[1 − J0(ak±
F )] ≈ �(ak±

F )
2
/4 � �, resulting in

spin splitting of the narrow conduction peak [see Fig. 2(b)].
With SO coupling turned on, the Fermi surfaces are no longer
circles with constant radii k±

F but instead represent closed
curves in the k plane, with k±

F (ϕ) varying strongly along a
Fermi surface [see the inset in Fig. 5(b)]. Since all electrons at
the Fermi level participate in tunneling, this leads to washing
out of spin-resolved features in the conductance lineshape.

Finally, consider now the role of Aharonov-Bohm flux
through the area enclosed by electron tunneling pathways
between left and right 2DEGs at finite angle φ (see Fig. 1).
In Fig. 6 we show the conductance evolution as φ changes
between φ = 0 (no flux) to φ = π/2 (maximal flux) in both

FIG. 6. (Color online) Conductance evolution with increasing
Aharonov-Bohm flux is shown with changing magnetic field tilt angle
φ (a) in the absence and (b) in the presence of 2DEG SO coupling at
�Ez

0 = 0.1�, ωz = 1.9EF , and �E0 = 0.

the absence and presence of SO coupling. In either case,
the Aharonov-Bohm phase suppresses the interference that
causes the narrow peak of the conductance and hence destroys
its spin structure. The adverse effect of the Aharonov-Bohm
phase on spin-resolved Dicke tunneling is consistent with the
spin-independent case [4].

V. CONCLUSIONS

In summary, we have considered spin-dependent coherent
transport in a double quantum dot system sandwiched between
two-dimensional electron gases in doped quantum wells. We
have found that for relatively small interdot separation the
narrow Dicke conductance peak develops a well-resolved spin
structure even for very small Zeeman splitting of quantum dot
energy levels. We also show that this spin structure is inhibited
by SO coupling in a two-dimensional electron gas as well as
by Aharonov-Bohm flux through the area enclosed by electron
tunneling pathways.
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