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Quantized topological Hall effect in skyrmion crystal
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We theoretically study the quantized topological Hall effect (QTHE) in skyrmion crystal (SkX) without external
magnetic field. The emergent magnetic field in SkX could be gigantic, as much as 4000 T, when its lattice constant
is 1 nm. The band structure is not flat but has a finite gap in the low electron-density regime. We also study
the conditions to realize the QTHE for the skyrmion size, carrier density, disorder strength, and temperature.
Comparing the SkX and the system under the corresponding uniform magnetic field, the former is more fragile
against the temperature compared with the latter since the gap is reduced by a factor of 1/5, while they are almost
equally robust against the disorder. Therefore, it is expected that the QTHE of the SkX system is realized even
with strong disorder at room temperature when the electron density is of the order of 1 per skyrmion.
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I. INTRODUCTION

Magnetic skyrmion is a topological spin texture in fer-
romagnets [1]. After the early theoretical proposals in mag-
nets [2–4], the study of magnetic skyrmion has grown rapidly
since it was discovered experimentally [5–7]. The periodic
array of skyrmions, i.e., a skyrmion crystal (SkX), is realized
at interfaces [7] or in bulk chiral magnets such as B20
compounds [5,6]. An emergent magnetic field is generated
in the background skyrmion spin texture. Namely, a skyrmion
has one magnetic flux �0 = h/e acting on the conduction
electrons coupled to it. When the skyrmions form a periodic
lattice, i.e., a SkX, the emergent magnetic field reaches
∼4000 T assuming the uniform averaged flux for the skyrmion
size and the lattice constant of SkX of the order of ∼1 nm.
The effective magnetic field is proportional to λ−2, where λ is
the skyrmion radius. Since the size of the skyrmion is 1 nm
for an atomic Fe layer on the Ir(111) surface [7], 3 nm for
MnGe [8], 18 nm for MnSi [9], and 70 nm for FeGe [10], the
corresponding emergent magnetic fields are ∼4000, 1100, 28,
and 1 T, respectively.

This emergent magnetic field leads to the Hall effect [11].
Most of the studies focus on the Hall effect in metallic
systems with large electron density [8,9,12,13]. This so-called
topological Hall conductivity σxy is usually small compared
with the longitudinal conductivity σxx , i.e., the Hall angle
σxy/σxx is typically of the order of 10−2 at most [8].

Up to now, we regard skyrmions as the source of the
real-space emergent magnetic field. When the size of the
skyrmion becomes comparable to the mean free path, it
is expected that the crossover from the real to momentum
space Berry curvature occurs. In the latter case, there is no
Landau-level (LL) formation, but the band structure is formed
by taking into account the solid angle of the spin, and the
intrinsic anomalous Hall effect appears whose conductance
is given by the integral of the Berry curvature in momentum
space [14,15]. A more drastic example is the quantized anoma-
lous Hall effect (QAHE) in the magnetic topological insulator
(TI), where the surface state with gap opening due to the
exchange coupling to the magnetic ions produces the quantized
Hall conductance of e2/h without the external magnetic
field [16].

It is expected that the SkX offers an ideal laboratory to
study AHE from a unified viewpoint since one can change
the size of the skyrmion, the mean free path, and even the
carrier concentration by gating at the interface, to reveal the
crossover between real and momentum Berry curvature and
stability of the quantized Hall conductance as these conditions
are changed.

In this paper we theoretically explore the emergence
of the QAHE in the SkX without external magnetic field,
which we call quantized topological Hall effect (QTHE). The
band structure contains several well separated bands in the
low electron-density regime, where each band has a Chern
number C = −1. Consequently the emergence of the QTHE
is predicted. We point out that the lowest and next-lowest
bands are well described by the Dirac theory. On the other
hand, Hall plateaux disappear in the large electron-density
regime because of the overlap of bands. We also clarify the
conditions of QTHE for the skyrmion size, carrier density,
disorder strength, and temperature.

II. MODEL

We start with a free-electron system coupled with the
background spin texture ni by Hund’s coupling [15,17,18].
The Hamiltonian is given by the double-exchange model,

H =
∑
ij

t ij c
†
i cj − J

∑
nic

†
i σci, (1)

where c
†
i (ci) is the two-component (spin up and spin down)

creation (annihilation) operator at the i site, t ij is the transfer
integral between nearest-neighbor sites, J is the Hund’s
coupling strength between the electron spin and background
spin texture, and σ denotes the Pauli matrix. When Hund’s
coupling is strong enough J � t ij , the spin of the hopping
electron is forced to align parallel to the spin texture [15,18].
The wave function |χ (r)〉 of the conduction electron at r
corresponding to the localized spin n(r) is given by

|χ (r)〉 =
(

cos
θ (r)

2
,eiφ(r) sin

θ (r)

2

)t

, (2)
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where we have introduced the polar coordinate of the spin
configuration n = (cos φ sin θ, sin φ sin θ, cos θ ). Then the ef-
fective transfer integral is obtained:

t
ij

eff = cos
θi

2
cos

θj

2
+ sin

θi

2
sin

θj

2
e−i(φi−φj ) (3)

= t〈χi |χj 〉 = teiaij cos
θij

2
, (4)

where

aij = arctan
− sin(φi − φj )

cos(φi − φj ) + cot θi

2 cot θj

2

(5)

is the vector potential generated by the spin between the i and
j sites, and θij is the angle between the two spins. The effective
tight-binding Hamiltonian is obtained as

H =
∑
ij

t
ij

effd
†
i dj , (6)

where d
†
i (di) is the spinless creation (annihilation) operator at

the i site. The detailed derivation is shown in the Appendix.

Skyrmion crystal

We consider a background spin texture n(r) made of
a square SkX. Each skyrmion has a nontrivial topological
number [19]. The skyrmion profile is well assumed as θ (r) =
π (1 − r/λ) for r < λ and θ (r) = 0 for r > λ. The emergent
magnetic field is produced by the spin texture since it has a
finite solid angle [1,20–22],

bz(r) = �

2e
n · (∂xn × ∂yn) = �

2e

π

rλ
sin π (1 − r/λ) (7)

for r < λ and bz = 0 for r > λ. It does not depend on the
azimuthal angle φ. The total magnetic flux is∫ λ

0
d2rbz(r) = �0, (8)

with �0 = h/e, and is independent of the skyrmion radius λ.

III. ELECTRONIC PROPERTIES

A. Band structure

The band structure can be obtained by numerically diag-
onalizing the effective Hamiltonian in the unit cell with the
size 2λ × 2λ in the presence of the SkX. The Brillouin zone is
given by −π/2λ < kx,ky < π/2λ. Here we take the unit with
the lattice constant a = 1. Then the unit cell has dimensionless
area (2λ)2. We show the band structure in the presence of SkX
in Figs. 1(a) and 1(b), which are warped and the number of
bands is 4λ2. There are finite gaps between two successive
bands for lower bands. However, the band overlap starts at
a higher band. In Fig. 1(c) shown the band structure of the
corresponding uniform mean magnetic field. Here, since one
skyrmion exists per area 4λ2, the mean magnetic field b̄ is
given by �0/4λ2. It is seen that there is almost no energy
dispersion, i.e., the Landau-level formation, with the energy
separation 
0.

We show the gaps and overlaps of bands in Fig. 2(a) for
various skyrmion radius λ, where the bands are marked in
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FIG. 1. (Color online) The band structure in the presence of SkX.
We have set λ = 2. The horizontal axes are momentum kx and ky ,
while the vertical axis is the energy. There are 4λ2 = 16 bands. We
show (a) a bird’s eye view and (b) a cross section of the lowest
eight bands. (c) The band structure of a tight-binding model with the
uniform magnetic flux, which forms the almost flat Landau levels
except near the center of the energy 0.

the color bar and the band gaps are denoted by the white
blanks. We find that the band gap shows a scaling behavior
for the skyrmion radius. The band gap between the lowest and
second-lowest bands always opens.

We show the λ dependence of the lowest band gap 
 in
Fig. 2(b). It is proportional to 1/λ2. There is some deviation
from the linear fit in small λ, which is probably due to the finite-
size effect. We can compare this band gap with the Landau level
separation 
0 shown in Fig. 1(c). The lowest Landau-level
gap 
0 is given by 0.71t for λ = 2, while the lowest gap of
the QTHE in SkX is given by 
 = 0.11t. The linear relation
in the small 1/4λ2 region of Fig. 2(b) indicates the relation

 ∼= 
0/5.

B. Berry curvature

We focus on the lowest and second-lowest bands [Fig. 3(a)].
We show the spin direction determined by 〈ψ(k)|σ |ψ(k)〉
for conduction and valence bands in Figs. 3(c) and 3(d),
respectively, where the antivortex structure is evident at the
M point. It implies that the spin texture has a nontrivial Berry
curvature.

1 / 4 λ 2

(b) Lowest band gap
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(a) Band gaps and overlaps

FIG. 2. (Color online) (a) Band gaps and overlaps for various
sizes λ of the skyrmions. (b) The (2λ)−2 dependence of the lowest
band gap 
. The gap is proportional to (2λ)−2. The band gap of the
system with the corresponding uniform mean magnetic flux is shown
in the blue line.

115417-2



QUANTIZED TOPOLOGICAL HALL EFFECT IN SKYRMION . . . PHYSICAL REVIEW B 92, 115417 (2015)

-3.5

-3

-2.5

-2

(a) band structure (b) Berry curvature (c) spin direction

E(k)/t

Γ
Γ

Γ

Γ
MM

Γ

Γ
Γ

Γ

ky

kx

 π

 π 2π/λ0
0

ky

b z
 (k

)
b z

 (k
)

-8

-6
-4
-2
 0

 0
 2
 4
 6

2π/λ

 π

0

2π/λ

(d)

FIG. 3. (Color online) (a) Band structure of the lowest and
second-lowest bands in the vicinity of the M point. It has the
Dirac-cone shape. (b) The momentum distribution of the Berry
curvature in the lowest and second-lowest bands. The Chern number
consists of two parts: First, the Berry curvature takes the largest value
at the M point, where the Chern numbers C = −1/2 and +1/2 are
generated for these bands, respectively. Second, there are residual
contributions to Chern numbers C = −1/2 and −3/2 away from the
M point, and the total Chern number is an integer. Shown are the
spin directions of the band structure of (c) the conduction and (d)
valence bands. They clearly exhibit the antivortex structure at the M

point.

We may define a “gauge potential” in the momentum space,
ak(k) = −i〈ψ(k)|∂k|ψ(k)〉, for Bloch state |ψ(k)〉, which is
properly called the Berry connection. Then we may define the
“magnetic field” or the Berry curvature by bz(k) = ∂kx

ay(k) −
∂ky

ax(k). The Chern number is the integral of the Berry
curvature over the first Brillouin zone, C = 1

2π

∫
d2kbz(k).

We show the momentum dependence of the Berry curvature
in Fig. 3. It takes a large value in the vicinity of the M

point, which is (kx,ky) = (π/2λ,π/2λ). The sign of the Berry
curvatures are opposite between the lowest and second-lowest
bands.

Each band has one unit Chern number C = −1, which
is the same as that of Landau levels. One can consider an
adiabatic pass from the uniform magnetic field to the space-
dependent magnetic field induced by SkX. This deformation
has no singularity.

The structure of the lowest and second-lowest bands has
precisely the shape of the Dirac cone in the vicinity of the M

point (kx,ky) = (π/2λ,π/2λ) as in Fig. 3(a). This suggests that
electrons are described by the Dirac theory H = �v(−kxσx +
kyσy) + mσz, where the mass m is related to the gap 
 between
the lowest and second-lowest bands by 
 = 2|m|.

C. Edge states

The emergence of edge states is a strong signal indicating
that the system is topological. It is called the bulk-edge
correspondence. We have numerically diagonalized the Hamil-
tonian (6) in a nanoribbon geometry. The resultant band
structure is shown in Fig. 4(a). The chiral edges are clearly
observed between the two adjacent bands, which demonstrates
a nonzero Chern number. More specifically, there are n chiral
edge modes between the nth lowest and the (n + 1)th lowest
bands because the sum of the Chern numbers for the lowest
n bands is n. In Fig. 4(b), we show the local density of
states (DOS) of the edge state of the lowest band along
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FIG. 4. (Color online) (a) The edge states of quantum topological
Hall effects in a nanoribbon geometry. The chiral edges are clearly
observed between the two adjacent bands, which demonstrates a
nonzero Chern number. (b) The local DOS along the direction
perpendicular to the nanoribbon direction. It is strictly localized at
the outermost edge site, which is a strong signal of the topological
edge state.

the direction perpendicular to the nanoribbon direction. It is
strictly localized at the outermost edge site, which is a strong
signal of the topological edge states.

IV. HALL CONDUCTANCE

The conductance is calculated by the Kubo formula [23,24],

σxy =− ie2

h

2π

L2

∑
n,k

f (Enk)

×
∑

m(�=n)

〈nk| ∂H
∂kx

|mk〉〈mk| ∂H
∂ky

|nk〉 − (n ↔ m)

(Enk − Emk)2
, (9)

where n and m are the band indices and f (x) is the Fermi
distribution function. We show the Hall conductance in Fig. 5
calculated using the Kubo formula (9). At zero temperature,
it is quantized to be the Chern number when the Fermi
energy is inside the gap, σxy = e2

h

∑
n:filled Cn, where Cn is

the Chern number of the nth band. Below the band gap, the
Hall conductance decreases, while it increases above the band
gap. This is due to the fact that the sign of the Berry curvature
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FIG. 5. (Color online) (a) The Hall conductance as a function
of the chemical potential. The horizontal axis is the chemical
potential, while the vertical axis is the Hall conductance σxy . The Hall
conductance is quantized as marked by arrows. There is a peculiar
structure of dips in the conductance at the values where it is quantized.
(b) Zoom up of (a) near the band edge. It is well fitted by the dotted
curve obtained in the Dirac theory.
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FIG. 6. (Color online) (a) The Hall conductance at finite tem-
perature. Though it is not quantized, the peculiar dip structure is
observable even at room temperature. (b) Zoom up of (a) near the
band edge.

is opposite between the two adjacent bands. The total Chern
number can be very large for large λ, which is distinct from
the QAHE in magnetic topological insulators [16].

This behavior of the Hall conductance across the gap can
be interpreted by the Dirac theory, which gives

σxy =
{ −1/2 for |μ| < |m|
−m/(2|μ|) for |μ| > |m|. (10)

It describes the peculiar behavior of the Hall conductance quite
well as in Fig. 5(b), where the conductance is quantized inside
the gap and continuously changes outside the gap showing a
dip structure.

A. Finite temperature

We show the Hall conductance at finite temperature in
Fig. 6. It is evident that the temperature scale is given
by the gap 
 in Fig. 1(b), which is around 0.1t for λ =
2. Although the quantization of the plateau is broken at
kBT = 0.01t � 0.01 eV � 100 K, the peculiar dip structure
toward the formation of the plateau is clearly visible even at
kBT � 400 K. Consequently, our prediction of QTHE can be
experimentally observable at room temperature.

B. Disorder effect

Up to now, we have focused on the pure system, and the
Berry curvature in momentum space. Now we introduce the
disorder potential as given by

Himp =
∑

i

Uid
†
i di, (11)

where Ui takes a uniform random distribution for −V <

Ui < V . We have calculated the Hall conductivity σxy for
the system of size 8 × 8, including four unit cells. Figure 7
shows the numerical results, which clearly shows that the
plateau transition occurs at V ∼= t for the lowest band, i.e.,
σxy = − e2

h
. Note that when |σ | > 1

2
e2

h
, the two-parameter

scaling trajectory converges to the quantized Hall state. Taking
this criterion, the lowest occupied band, which is the most
promising candidate to observe the QTHE in SkX, can support
the plateau up to V ∼= t. This magnitude of the random
potential is similar to the separation between LLs in Fig. 1(c)
and is much larger than the gap 
 in Fig. 1(b) which is ∼=0.1t

in the present case. This is because the dispersion gives the
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FIG. 7. (Color online) (a) The Hall conductance for various
disorder strength. Disorder strength is indicated by the color. Hall
plateaux disappear as disorder increases. However, the Hall plateau
at σxy = −e2/h is reduced to be 0. (b) The Hall conductance in the
vicinity of the band edge.

stability or robustness of the extended state. For higher energy
bands, the Hall conductivity is reduced more slowly as V

increases, and the criterion |σ | > 1
2

e2

h
is satisfied up to V ∼= 3t

as shown in Fig. 7(a). We also calculated the quantity Pn for
the eigenfunction 〈i|ψn〉 defined by

Pn =
∑

i

|〈i|ψn〉|4, (12)

which measures the extent of the wave function. Namely, when
〈i|ψn〉 extends over the M sites, Pn ∼ M−1. Therefore, the
localization length is estimated by P

−1/2
n in two dimensions.

We show in the inset of Fig. 7 the averaged P
−1/2
n for the

lowest band (purple curve) and all the bands (black curve) as
a function of V . It seen that the disappearance of the QTHE
roughly corresponds to the localization of the wave functions
less than 4, where 4 is the size of the unit cell (skyrmion).
Therefore, since the mean free path � is always longer than
the localization length, the QTHE is observed only in the case
where � > 2λ, i.e., the Berry curvature in momentum space is
a more appropriate picture rather than that in the real space.
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FIG. 8. (Color online) (a) The Hall conductance for various
exchange coupling strength without assuming the strong exchange
coupling limit. The Hall conductance is almost the same as that in the
strong-coupling limit for J > 3t .
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C. Finite exchange coupling

We have so far assumed the strong-coupling limit.
However, this is not necessary for the quantization of the
Hall conductance. In order to show this, we have explicitly
diagonalized the Hamiltonian (1) with various values of
exchange coupling J . The Hall conductance is displayed in
Fig. 8, where the Hall plateaux are observed for J > t . For
J > 3t , the Hall conductance is almost the same as that in
the strong-coupling limit in Fig. 5. This result shows that the
results obtained in the strong-coupling limit are actually valid
for a wide range of parameters.

V. DISCUSSION

The electron density should be of the order of one electron
per skyrmion, whose electron density is given by 1/4λ2. In
order to realize experimental situations, it is necessary to
reduce the number of electrons. For the skyrmion size λ

ranging from λ ∼ 1 nm to λ ∼ 100 nm, the corresponding
electron density n is from n ∼ 1014 cm−2 to n ∼ 1010 cm−2.
In this sense, an interface of dilute magnetic semiconductors
MnGaAs/AlGaAs will be promising [25]. The sheet carrier
density of Mn doped GaAs is about 1012 cm−2. The interface
of LaAlO3/SrTiO3 (LAO/STO) is another candidate where a
ferromagnetic metal is realized [26,27]. The carrier density
of an interface of LAO/STO is about 1013 cm−2. The broken
inversion symmetry at these interfaces induces the Rashba
interaction and stabilizes the skyrmion crystal. Furthermore,
by applying gate voltage with the use of the electric-double-
layer-transistor (EDLT) technique, it is possible to modulate
the chemical potential to the order of some eV, which enables
us to control the carrier density widely. At the same time, in the
Rashba system such as interfaces, the amplitude of the Rashba
coupling can be enhanced, which implies that one can reduce
the size of skyrmion and furthermore enlarge the gap size,
which is proportional to 1/λ2. These two kinds of modulation,
i.e., the chemical potential and the skyrmion size, allow us to
tune the chemical potential to be inside the gap.

The QTHE is robust against disorder as in the case of system
with corresponding uniform magnetic field with Landau levels.
Considering the very large mean magnetic field of ∼4000 T
for the skrmion size λ ∼ 1 nm, the disorder does not destroy
the QTHE so seriously. This is because the change in the
Chern numbers occurs only via the pair annihilation, and
the appreciable energy dispersion of the band in SkX protects
the Chern number. On the other hand, the band gap 
 of
SkX is smaller than 
0, i.e., that of the corresponding system
with uniform magnetic field, and hence the stability against
the thermal excitation is reduced. 
 is estimated as 
0/5 but,
as mentioned above, the emergent magnetic flux induced by
SkX is gigantic and the QTHE even at room temperature is
expected.

Note added. There are some proposals on QAHE
with magnetic texture. Graphene proximity coupled to an

antiferromagnet insulator is an example [28], where the gap is
given by 7 meV. Another example, which appeared after the
submission of present work, is graphene proximity coupled
to skymions [29], where the gap is of the order of 30 meV.
The advantage of our model is that the gap is of the order of
100 meV, which is higher than those presented in these works.
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APPENDIX: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

The Hamiltonian is given by the double-exchange model,

H =
∑
ij

t ij c
†
i cj − J

∑
nic

†
i σci, (A1)

where c
†
i (ci) is the two-component (spin up and spin

down) creation (annihilation) operator at the i site, t ij is
the transfer integral between nearest-neighbor sites, J is the
Hund’s coupling strength between the electron spin and the
background spin texture, and σ denotes the Pauli matrix.
When Hund’s coupling is strong enough, J � t ij , the spin
of the hopping electron is forced to align parallel to the spin
texture [18].

We diagonalize the Hund’s coupling term so that the spin
direction is always up,

U
†
i (n · σ )Ui = σz. (A2)

It can be diagonalized by setting

U
†
i = mi · σ (A3)

with

m =
(

sin
θ

2
cos φ, sin

θ

2
sin φ, cos

θ

2

)
. (A4)

The electron operator is transformed by this gauge transfor-
mation as

ci = Uidi. (A5)

In the new electron operator di , the Hamiltonian reads

H =
∑
ij

t ij d
†
i U

†
i Ujdj − J

∑
d
†
i σzdi . (A6)

Then the effective hopping is given by

t
ij

eff = t ijU
†
i Uj , (A7)

which is calculated as

U
†
i Uj =

(
cos θi

2 cos θj

2 + sin θi

2 sin θj

2 e−i(φi−φj ) −eiφi sin θ1
2 cos θj

2 + e−iφj cos θi

2 sin θj

2

e−iφi sin θi

2 cos θj

2 eiφj cos θi

2 sin θj

2 cos θi

2 cos θj

2 + sin θi

2 sin θj

2 ei(φi−φj )

)
. (A8)
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For the strong-coupling limit only the component that is
parallel to the spin direction is active,

t
ij

eff = cos
θi

2
cos

θj

2
+ sin

θi

2
sin

θj

2
e−i(φi−φj ). (A9)

The absolute value of the effective transfer integral is given by∣∣t ijeff

∣∣2 = 1 + cos θi cos θj + cos(φi − φj ) sin θi sin θj

2
(A10)

= 1 + cos θij

2
= cos2 θij

2
, (A11)

where θij is the angle between the two spins,

cos θij = mi · mj = cos θi cos θj + cos(φi − φj ) sin θi sin θj .

(A12)
The effective transfer integral is written as

t
ij

eff = eiaij cos
θij

2
(A13)

with the vector potential

aij = arctan
− sin(φi − φj )

cos(φi − φj ) + cot θi

2 cot θj

2

. (A14)
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