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Coulomb-exchange effects in nanowires with spin splitting due to a radial electric field
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We present a theoretical study of Coulomb-exchange interaction for electrons confined in a cylindrical quantum
wire and subject to a Rashba-type spin-orbit coupling with radial electric field. The effect of spin splitting on
the single-particle band dispersions, the quasiparticle effective mass, and the system’s total exchange energy
per particle are discussed. Exchange interaction generally suppresses the quasiparticle effective mass in the
lowest nanowire sub-band, and a finite spin splitting is found to significantly increase the magnitude of the
quasiparticle-mass suppression (by up to 15% in the experimentally relevant parameter regime). In contrast,
spin-orbit coupling causes a modest (1%-level) reduction of the magnitude of the exchange energy per particle.
Our results shed light on the interplay of spin-orbit coupling and Coulomb interaction in quantum-confined
systems, including those that are expected to host exotic quasiparticle excitations.
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I. INTRODUCTION

The dimensionality of a many-particle system is a crucial
determinator for how importantly interaction effects can shape
its physical properties. Generally, three-dimensional (3D)
bulk conductors are less drastically affected by the Coulomb
interaction between charge carriers than lower-dimensional,
quantum-confined structures such as quasi-two-dimensional
(quasi-2D) quantum wells and quasi-one-dimensional (quasi-
1D) quantum (nano)wires [1]. This is essentially due to
phase-space restrictions arising from free motion being only
possible in fewer than three spatial directions. Furthermore,
the exact structure of transverse bound-state wave functions
shapes the density distribution of the confined charge carriers
and, thus, turns out to critically influence Coulombic effects in
quantum wells [2] and wires [3]. Here we explore how another
aspect of quantum-confined states, namely their intrinsic
spinor structure, modifies the effect of the Coulomb interaction
in nanostructured systems.

Most low-dimensional conductors are fabricated from
semiconductor materials where the coupling between the
spin degree of charge carriers and their orbital motion is
often quite strong [4]. As a result, quantum confinement can
significantly affect spin-related properties [5]. Such effects
are particularly pronounced for valence-band states (i.e.,
holes) because of their peculiar spin-3/2 character [5,6].
In contrast, conduction-band electrons are spin-1/2 particles
and generally subject to weaker spin-orbit couplings that
are due to the bulk inversion asymmetry in the material’s
crystallographic unit cell (Dresselhaus [7] spin splitting) or
the structural inversion asymmetry present in a nanostruc-
tured systems (Rashba [8,9] spin splitting). The multitude,
and often counterintuitive nature, of spin-orbit effects in
nanostructures has become the focus of recent study, with
developing an understanding of the interplay with Coulomb
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interactions being a key question to be addressed. Bulk-
hole systems [10–13], quantum-well-confined holes [14–18],
and 2D electron systems subject to Rashba spin splitting
[16,19–22] have been considered. The comparatively few
studies of Coulomb-interaction effects in spin-orbit-coupled
quasi-1D systems [23–26] have almost exclusively focused on
effective Luttinger-liquid descriptions [27] and, in particular,
did not investigate the effect of Rashba spin splitting on the
total exchange energy and exchange-induced quasiparticle-
effective-mass renormalization in quantum wires.

In this article, we fill precisely this gap and investigate
both the exchange energy and effective-mass renormalization
in quantum wires with a Rashba-type spin-orbit coupling.
Previous work on the exchange energy of quantum wells
revealed that spin-orbit coupling has the opposite effect on
interactions in n-type and p-type systems: The exchange
energy of a quasi-2D conduction-band electron system is
slightly enhanced [16,21] due to spin-orbit coupling, whereas
the exchange energy for quasi-2D holes is suppressed due
to confinement-induced valence-band mixing [18] and the
heavy-hole-type Rashba spin splitting [16]. The different
behavior of confined band electrons and holes warrants more
systematic investigation and, as we will see below, considering
the quasi-1D case sheds new light on the different ramifications
of spin-orbit coupling in interacting systems. Our investigation
also reveals that the quasiparticle effective mass is more
strongly suppressed by the exchange interaction in nanowires
with spin splitting.

In addition, quantum wires with strong spin-orbit coupling
are currently attracting great interest as possible hosts of
exotic quasiparticle excitations such as Majorana [28] and
fractional [29] fermions. Clarifying the effect of interactions
in such systems is necessary for a complete understanding of
experiments aimed at verifying the existence of the unusual
quasiparticle excitations.

The remainder of this article is organized as follows.
We introduce our theoretical model of a Rashba-spin-split
quantum wire in Sec. II and discuss pertinent properties of
the single-particle eigenstates. The formalism for calculating
the exchange energy for this system is presented in Sec. III,
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together with the results. Among these is the ability to
express functional dependencies of the exchange energy per
particle in terms of a universal scaling function, and the
enhanced suppression of the density-of-states effective mass.
Our findings are summarized, and related to the existing body
of knowledge, in Sec. IV. Certain formal details are given in
appendices.

II. THEORETICAL DESCRIPTION OF RASHBA-SPLIT
NANOWIRE STATES

In our study, we aim to develop a general understanding of
the effect of spin-orbit coupling on exchange-related many-
particle corrections in quasi-1D nanowires. Hence, rather than
attempting to describe the detailed electron density profile
for a specific sample based on a self-consistent Poisson-
Schrödinger calculation, we consider a model cylindrical
quantum wire with radius R that is defined by a hard-wall
potential where a constant radial electric field E = E r̂ gives
rise to a spin-orbit coupling of the Rashba type. In a real
sample, such a radially symmetric field configuration could be
generated, e.g., via biasing of an external gate that is wrapped
around the wire surface [30]. The pragmatic assumption of a
constant electric-field magnitude is justified in Appendix A;
see especially Fig. 6. For our situation of interest, the
noninteracting-electron dynamics in the wire is described by
the Hamiltonian H = H (0) + U (r), where

U (r) =
{

0 r < R

∞ r � R
, (1)

and H (0) is a Rashba-type [8,9] single-electron Hamiltonian

H (0) = p2

2m∗ + α E
�

r̂ · (σ × p). (2)

Here m∗ is the band mass of electrons in the semiconductor
material making up the nanowire, α is the material-dependent
Rashba spin-orbit-coupling constant, and σ = (σx,σy,σz)T

denotes the vector of Pauli matrices. We find the confined-
electron states in the nanowire by superimposing solutions
of the single-particle Schrödinger equation H (0) ψ = E ψ to
satisfy the cylindrical hard-wall boundary condition.

The Hamiltonian (2) can be conveniently expressed in
cylindrical coordinates (r,ϕ,z) as

H (0) = − �
2

2m∗

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϕ2
+ ∂2

∂z2

)
1

+ i α E
[
σz

1

r

∂

∂ϕ
+ i(e−iϕ σ+ − eiϕ σ−)

∂

∂z

]
, (3)

where σ± = (σx ± i σy)/2 are the spin-1/2 ladder operators.
The explicit form of Eq. (3) motivates a separation ansatz for
the eigenstates of H (0):

ψ(r,ϕ,z) = eikz

√
L

eiνϕ e−i
σz
2 ϕ φν,k(r), (4)

where φν,k(r) is the radial spinor wave function, ν = ±1/2, ±
3/2, . . . is an odd half-integer number, k denotes the wave

number associated with the free electron motion in the
quantum wire, and L is the wire length. The resulting radial
Schrödinger equation that determines φν,k(r) can be written in
dimensionless form as Hν,κ χν,κ (�) = ε χν,κ (�), with

Hν,κ =−
(

∂2

∂�2
+ 1

�

∂

∂�

)
1 + m̂2

�2
− α̃ σz

m̂

�
+ α̃ κ σy + κ2 1 ,

(5)

and the definitions m̂ = ν 1 − 1
2 σz, � = r/R, κ = kR, ε =

E/E0, where E0 = �
2/(2m∗R2), α̃ = 2Rm∗αE/�

2, and
φν,k(r) ≡ χν,κ (r/R)/R.

We employ the sub-band k · p method [31,32] to find
the cylindrical-nanowire eigenstates and single-particle sub-
band-energy dispersions E

(0)
nk . Simultaneous invariance under

time reversal (σy H∗
−ν,−κ σy = Hν,κ ) and spatial inversion

(e−i π
2 σz Hν,−κ ei π

2 σz = Hν,κ ) imply that each sub-band is (at
least) doubly degenerate [33]. The first step is to find the
eigenstates that are associated with the sub-band-edge energies
E

(0)
n0 . These states are then used as a basis set for expressing

the eigenstates at general k �= 0, with expansion coefficients
determined from solving a matrix equation that is equivalent
to the Schrödinger equation.

The Hamiltonian of Eq. (5) is diagonal when κ = 0,

Hν,0 =
(

Hν 0
0 H−ν

)
, (6a)

Hν = −
(

∂2

∂�2
+ 1

�

∂

∂�

)
+

(
ν − 1

2

)2

�2
− α̃

ν − 1
2

�
, (6b)

and hence the sub-band-edge states are also spin-projection
eigenstates of σz with eigenvalue σ = ±1. We can therefore
write

χν,κ (�) =
∞∑

n′=1

(
c(n′↑)
ν,κ | ν, ↑ ,n′〉 + c(n′↓)

ν,κ | ν, ↓ ,n′〉), (7a)

with the sub-band-edge basis-state definitions

| ν, ↑ ,n′〉 = F (ε(n′ )
ν,+)

ν− 1
2

(�)

(
1
0

)
, (7b)

| ν, ↓ ,n′〉 = F (ε(n′ )
ν,−)

−ν− 1
2
(�)

(
0
1

)
, (7c)

and the functions F (ε(n′ )
ν,σ )

σν− 1
2
(�) being solutions of the radial-

confinement problem defined by the Hamiltonian Hσν +
U (�R)/E0 with corresponding dimensionless eigenenergies
ε(n′)
ν,σ . We number the sub-band-edge states for fixed ν and σ

in ascending order of energy, that is, ε(n′)
ν,σ > ε(n′′)

ν,σ when n′ >

n′′. Time-reversal symmetry mandates the Kramers degener-
acy ε(n′)

ν,σ = ε
(n′)
−ν,−σ . See Appendix B for more mathematical

details.
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FIG. 1. (Color online) Electronic structure of noninteracting electrons in nanowires with spin splitting induced by a radial electric field. The
solid curves in panel (a) [(b)] show the single-particle energy dispersions of the lowest two sub-bands obtained for a value of α̃ corresponding to
a recent experimental realization using InGaAs [InSb] as the wire material. To illustrate the effect of spin splitting, the corresponding dispersions
for α̃ = 0 are also plotted as dashed curves. Vertical lines are used to indicate the range of wave numbers for which only the lowest sub-band is
occupied. Panel (c) illustrates more quantitatively the effect of spin-orbit coupling on the lowest nanowire-sub-band dispersions. In the upper
(lower) panel, the ratios of the density-of-states effective masses (sub-band energies where δE ≡ [E(0)

k (α) − E
(0)
0 (α)]/[E(0)

k (0) − E
(0)
0 (0)]) for

finite and for zero α̃ are plotted as functions of wave number.

The full single-electron sub-band dispersions can be found from solving the eigenvalue problem⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε
(1)
ν,+ + κ2 −iα̃κ I (11)

ν . . . 0 −iα̃κ I (1n′)
ν . . .

iα̃κ
[
I (11)
ν

]∗
ε

(1)
ν,− + κ2 . . . iα̃κ

[
I (1n′)
ν

]∗
0 . . .

...
...

. . .
...

...
. . .

0 −iα̃κ I (1n′)
ν . . . ε

(n′)
ν,+ + κ2 −iα̃κ I (n′n′)

ν . . .

iα̃κ
[
I (1n′)
ν

]∗
0 . . . iα̃κ

[
I (n′n′)
ν

]∗
ε

(n′)
ν,− + κ2 . . .

...
...

. . .
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(1↑)
ν,κ

c(1↓)
ν,κ

...

c(n′↑)
ν,κ

c(n′↓)
ν,κ

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= εν(κ)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(1↑)
ν,κ

c(1↓)
ν,κ

...

c(n′↑)
ν,κ

c(n′↓)
ν,κ

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8a)

with matrix elements

I (nn′)
ν = 2π

∫ 1

0
d� �

[
F (ε(n)

ν,+)

ν− 1
2

(�)
]∗ F (ε(n′ )

ν,−)

−ν− 1
2
(�). (8b)

For the purpose of this study, we only need to obtain the
dispersion of the lowest nanowire sub-band. We find that,
for realistic values of α̃ (see, for instance, the examples
below), truncation of the eigenvalue problem (8a) to the
subspace spanned by the states {| 1/2, ↑ ,1〉,| 1/2, ↓ ,1〉}
and its time-reversed counterpart yields sufficiently accurate
results. Hence, in the following, we use the wave functions

ψ1(r,ϕ,z) = eikz

√
LR

(−i sin ηkR| 1/2,↑,1〉

+ eiϕ cos ηkR| 1/2,↓,1〉), (9a)

ψ2(r,ϕ,z) = eikz

√
LR

(−i sin ηkR| − 1/2,↓,1〉

+ e−iϕ cos ηkR| − 1/2,↑,1〉) (9b)

to describe lowest-sub-band states with the dispersion

E
(0)
1k ≡ E

(0)
2k = E0

[
(kR)2 + 1

2

(
ε

(1)
1/2,+ + ε

(1)
1/2,−

)
− 1

2

√(
ε

(1)
1/2,+ − ε

(1)
1/2,−

)2 + (
2α̃kR I

(11)
1/2

)2]
. (10)

The coefficients entering Eqs. (9) are

sin ηκ = 1√
2

⎛
⎝1 +

∣∣ε(1)
1/2,+ − ε

(1)
1/2,−

∣∣√(
ε

(1)
1/2,+ − ε

(1)
1/2,−

)2 + (
2α̃κI

(11)
1/2

)2

⎞
⎠

1
2

,

(11a)

cos ηκ = 1√
2

⎛
⎝1 −

∣∣ε(1)
1/2,+ − ε

(1)
1/2,−

∣∣√(
ε

(1)
1/2,+ − ε

(1)
1/2,−

)2 + (
2α̃κI

(11)
1/2

)2

⎞
⎠

1
2

.

(11b)

Figure 1 illustrates the noninteracting-electron band struc-
ture of nanowires using parameters relevant to recent ex-
perimental realizations [34] in Ref. [35] (InGaAs material
with conduction-band effective mass m∗ = 0.037 m0, where
m0 is the electron mass in vacuum, R = 300 nm, and α E =
10−11 eV m), and Ref. [36] (InSb, m∗ = 0.013 m0, R = 50 nm,
α E = 10−10 eV m). Within our model, the relevant quantity
determining the effect of spin-orbit coupling is α̃, which is
equal to 1.82 and 1.06 for the InGaAs and InSb nanowires,
respectively. For comparison, we show also the result for
α̃ = 0. As the lowest sub-band-edge states have quantum
numbers {ν = 1/2, ↑} and {ν = −1/2, ↓}, respectively, their
energy is independent of α̃, and the spin-orbit coupling only
affects the dispersion at finite k. In Fig. 1(c), the upper plot
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FIG. 2. The magnitude of the expectation value for spin projec-
tion parallel to the wire axis, |〈σz〉| = 〈σz〉1 = −〈σz〉2 ≡ 2 sin2 ηkR −
1, for states from the lowest doubly degenerate (n = 1 and 2)
sub-band.

shows the ratio of the single-particle density-of-states effective
mass,

m0(α,k) = �
2k

∂E
(0)
1k /∂k

, (12)

of the lowest sub-band with and without spin-orbit coupling
for the two values of α̃. The lower panel in Fig. 1(c) illustrates
the relative change in energy for the lowest-sub-band states
due to the spin-orbit coupling. As can be seen from the plot,
the renormalization of the single-particle effective mass due to
spin-orbit coupling can amount to up to 30% (for α̃ = 1.82)
and also depends appreciably on the value of the wave vector.
In Fig. 2, we show the magnitude of the expectation value
of the spin projection along the wire axis for the lowest sub-
band as a function of the wave number k. It decreases with
increasing k, as the states given in Eqs. (9) together with (11)
become superpositions of ↑ and ↓ states for finite k. Table I
summarizes properties of the three lowest doubly degenerate
sub-band edges in the two material systems. Note the rather
large energy splitting of the (doubly degenerate) next-to-lowest
subbbands due to the spin-orbit coupling. Without spin-orbit
coupling (α̃ = 0) the band edge energy of the sub-bands n =
3, . . . ,6 is E

(0)
n0 /E0 ≈ 14.68.

III. EFFECT OF SPIN-ORBIT COUPLING ON THE
COULOMB-EXCHANGE ENERGY

The Coulomb exchange interaction between electrons
renormalizes the quasiparticle dispersion of nanowire sub-
bands, which is then given by [1]

E
(int)
nk = E

(0)
nk + �

(X)
nk (13)

TABLE I. Properties of the three lowest doubly degenerate
nanowire sub-band edges obtained for parameters applicable to recent
experimental realizations.

Sub-band E
(0)
n0 /E0 for E

(0)
n0 /E0 for Sub-band-edge

index n α̃ = 1.82 α̃ = 1.06 (basis) state

1 5.783 5.783 | + 1
2 , ↑ ,1〉

2 5.783 5.783 | − 1
2 , ↓ ,1〉

3 10.87 12.47 | + 3
2 , ↑ ,1〉

4 10.87 12.47 | − 3
2 , ↓ ,1〉

5 18.35 16.85 | − 1
2 , ↑ ,1〉

6 18.35 16.85 | + 1
2 , ↓ ,1〉

in terms of the noninteracting sub-band energy dispersion E
(0)
nk

obtained in the previous section and the exchange (Fock) self-
energy

�
(X)
nk = −

∑
n′

∫
dk′

2π
V

(nn′)
kk′ nF(En′k′). (14)

Here nF(E) denotes the Fermi-Dirac distribution function, and
V

(nn′)
kk′ is the matrix element of Coulomb interaction between

nanowire-electron states given by

V
(nn′)
kk′ = C

∫
d2r⊥

∫
d2r ′

⊥

∫ L/2

−L/2
dz

ei(k′−k)z√
z2 + |r⊥ − r′

⊥|2

× ξ
†
n′k′(r⊥) ξnk(r⊥) ξ

†
nk(r′

⊥) ξn′k′(r′
⊥), (15)

where C ≡ e2/(4πε0εr) is the Coulomb-interaction strength,
r⊥ ≡ (r,ϕ) denotes the position vector in the coordinates per-
pendicular to the wire axis, and ξnk(r⊥) ≡ eiνϕ e−i

σz
2 ϕ φν,k(r)

is the transverse spinor part of the wave function in Eq. (4).
In the following, we consider the zero-temperature limit and
thus replace the Fermi-Dirac distribution function by nF(E) ≡
�(EF − E), with �(E) being the Heaviside step function and
EF denoting the Fermi energy. The condition Enk ≡ EF defines
the Fermi wave vectors kFn for occupied nanowire sub-bands.
We now focus on the low-density situation where only states
in the lowest doubly degenerate sub-band are occupied up to
the Fermi wave vector kF = kF1 ≡ kF2. For this situation, we
can write

�
(X)
nk = −2C

R
[�̃intra(α̃,κF,κ) + �̃inter(α̃,κF,κ)], (16a)

where �̃intra (�̃inter) includes contributions arising from the
exchange interaction between particles from the same band
(from different bands). In the limit L → ∞, we obtain the
explicit expressions

�̃intra(α̃,κF,κ) =
∫ κF

−κF

dκ ′
∫ 1

0
d� �

∫ 1

0
d�′ �′

∫ 2π

0
dϕ̃ K0(|κ − κ ′|

√
�2 + �′2 − 2��′ cos ϕ̃)

× [
sin2 ηκ sin2 ηκ ′

∣∣F (ε(1)
1/2,+)

0 (�)
∣∣2 ∣∣F (ε(1)

1/2,+)
0 (�′)

∣∣2 + cos2 ηκ cos2 ηκ ′
∣∣F (ε(1)

1/2,−)
−1 (�)

∣∣2∣∣F (ε(1)
1/2,−)

−1 (�′)
∣∣2

+ sin ακ cos ακ sin ακ ′ cos ακ ′
(∣∣F (ε(1)

1/2,+)
0 (�)

∣∣2 ∣∣F (ε(1)
1/2,−)

−1 (�′)
∣∣2 + ∣∣F (ε(1)

1/2,+)
0 (�′)

∣∣2 ∣∣F (ε(1)
1/2,−)

−1 (�)
∣∣2)]

, (16b)
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�̃inter(α̃,κF,κ) =
∫ κF

−κF

dκ ′ sin2(ηκ − ηκ ′)
∫ 1

0
d� �

∫ 1

0
d�′ �′

∫ 2π

0
dϕ̃ cos ϕ̃

× K0(|κ − κ ′|
√

�2 + �′2 − 2��′ cos ϕ̃)F (ε(1)
1/2,+)

0 (�) F (ε(1)
1/2,−)

−1 (�) F (ε(1)
1/2,+)

0 (�′) F (ε(1)
1/2,−)

−1 (�′), (16c)

where K0 is the modified Bessel function of the second
kind [37]. For the numerical evaluation of the intraband contri-
bution (16b), we employ a modified quadrature method [38],
described in greater detail in Appendix C, to deal with the
logarithmic singularity encountered when the argument of
K0(·) approaches zero.

The exchange-renormalized density-of-states (quasiparti-
cle) effective mass for the lowest sub-band can be calculated
from

mint(α,k) = �
2k

∂E
(0)
1k

∂k
+ ∂�

(0)
1k

∂k

. (17)

In Fig. 3, we compare the suppression of the quasiparticle ef-
fective mass due to the exchange interaction in a nanowire with
finite spin-orbit coupling with that of an identical nanowire
having zero spin-orbit coupling. As can be seen, the presence
of spin-orbit coupling further suppresses the exchange-related
quasiparticle mass by 10–15% for the parameters used in our
calculation. Note also the strong wave-vector dependence of
the exchange-renormalized quasiparticle effective mass.

The total exchange energy per particle for the nanowire-
electron system is given by [1]

EX

N
= 1

2ρ

∑
n

∫
dk

2π
�

(X)
nk nF(Enk), (18)

where ρ = N/L is the quasi-1D electron density. Again we
focus on the low-density situation where only states in the
lowest doubly degenerate sub-band are occupied up to the
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FIG. 3. The ratio of the exchange-renormalized effective quasi-
particle mass mint(α,k) to the bare single-particle effective mass
m0(α,k) is plotted as a function of wave vector k for states from
the lowest nanowire sub-band assuming a material with dielectric
constant εr = 12.9, kFR = 2.5, and spin-orbit-coupling strength α̃ =
1.82 (α̃ = 0) as the solid (dashed) curve. For comparison, the dotted
curve shows the result obtained under the assumption that the electric
field strength varies linearly with the radial coordinate near the wire’s
center, as described in Appendix A.

Fermi wave vector. For this situation, we can write

EX

N
= − C

2R
[�intra(α̃,κF) + �inter(α̃,κF)], (19)

where �intra(α̃,κF) = κ−1
F

∫ κF

−κF
dκ�̃intra(α̃,κF,κ), and the anal-

ogous expression applies for �inter. Figure 4 illustrates the
functional dependences and relative magnitudes of �intra and
�inter. As can be seen, the intraband contribution is generally
dominant and weakly dependent on α̃ values considered here.
In contrast, the interband contribution changes significantly as
a function of α̃.

For quantum wires without spin splitting, i.e., in the case
α̃ = 0, the exchange energy per particle was found to obey
a universal scaling form [3,39,40]. Our expression for EX/N

given in Eq. (19) generalizes these previous results to the case
where spin-orbit coupling is finite. The change in magnitude
of the exchange energy arising from finite α̃ can be quantified
through the relative difference

�X = EX(α̃ �= 0)

EX(α̃ = 0)
− 1, (20)

which is visualized in Fig. 5. For the values of α̃ that correspond
to recent experimental realizations using InGaAs [35] and
InSb [36], the associated change amounts to a suppression of
the exchange-energy magnitude, which can be up to 1.6%. This
behavior is markedly different from the case of a 2D electron
system where Rashba spin splitting has been shown [20] to
result in an increase of the exchange energy that is roughly one
order of magnitude smaller. Thus the Rashba-type spin-orbit
coupling due to a radial electric field in a cylindrical nanowire
system is more similar to a 2D hole system where the interplay
between quantum confinement and spin-orbit effects also
results in a suppression of the exchange energy [18].
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FIG. 4. (Color online) Scaling functions �intra and �inter associ-
ated with the intraband and interband contributions to the exchange
energy per particle in cylindrical nanowires with spin-orbit coupling
(note the scale of 10−2 for the interband contribution). Dashed (solid)
curves corresponds to α̃ = 1.06 (1.82).

115414-5
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FIG. 5. Relative change �X in the magnitude of the exchange
energy resulting from a finite Rashba-type spin-orbit coupling
quantified by parameter α̃, as defined in Eq. (20). Note the scale
factor of 10−2 for the abscissa. The dashed (solid) curve shows the
result obtained for α̃ = 1.06 (1.82), which corresponds to a recent
experimental realization using InSb (InGaAs) as the wire material.

IV. CONCLUSIONS

We have studied theoretically the electronic properties of
the quasi-1D electron system realized in a cylindrical quantum
wire subject to a radially symmetric Rashba-type spin-orbit
coupling. We determined the single-particle states for a hard-
wall confinement using sub-band k · p theory. Focusing on the
situation where only the lowest quasi-1D sub-band is occupied,
we observed that the corresponding energy dispersion can
be very accurately (to within 0.5% error) calculated from an
effective 2 × 2 Hamiltonian. Taking the material parameters
of two experimentally studied nanowire systems (one based on
InGaAs and the other on InSb) as input, we have determined
the influence of the spin-orbit strength on the lowest quasi-1D
sub-band’s energy dispersion and on the spin projection of its
corresponding eigenstates parallel to the wire axis, finding both
quantities to be affected by tens of percent due to the presence
of spin-orbit coupling. In particular, the density-of-states effec-
tive mass of the noninteracting system turns out to be increased
by 20–25% for parameters applicable to the InSb nanowires.

With single-particle states in hand, we calculated the
quasiparticle effective mass for the lowest sub-band and
found its exchange-related suppression to be significantly
larger in magnitude (by 10–15% for parameters used in our
calculations) when spin-orbit coupling is finite. In contrast, the
magnitude of the exchange energy per particle is marginally
reduced (by up to 1.6%) by spin-orbit coupling effects. Thus
we find that any meaningful discussion of the interplay
between spin-orbit coupling and exchange interactions in
quantum wires needs to be carefully focused on specific
physical quantities, as their relevant parametric dependences
can be quite different, both qualitatively and quantitatively.
Furthermore, often the relevance of interaction effects in an
electron system is quantified in relative terms by a parameter
rs that is related to the ratio of contributions to the total energy
arising from interactions and the single-electron dispersion,
respectively [1]. In the present context, spin splitting causes
an increase in the single-particle effective mass of quasi-1D
electrons simultaneously with the suppression of the exchange
energy. As the relative change in the increase in noninteracting

system’s effective mass is an order of magnitude larger than
the relative decrease of the exchange energy, the relative
importance of interactions as measured by rs turns out to be
enhanced by spin-orbit coupling [41].

While we have focused on a specific configuration of
confinement and spin-orbit coupling, our general results and
overall conclusions can be expected to apply also to other
spin-orbit-coupled nanowire systems, e.g., the one considered
in Ref. [42].
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APPENDIX A: RADIAL ELECTRIC-FIELD PROFILE

A proper self-consistent treatment of electrostatic effects
generally requires the application of an iterative Schrödinger-
Poisson solver method that is specifically adapted to the sample
layout. An added complication arises from the intricate way
how the Rashba spin-orbit coupling strength needs to be
determined from expectation values of the electric field taken
in a multiband bound state [5]. As we intend to focus on the
broad implications of spin-orbit coupling in confined systems,
we decided to make an assumption about the radial profile of
the electric field entering in the spin-orbit term that enables us
to obtain rather general physical insights. Here we show the
basic consistency of this assumption with the electrostatics of
the bound-state configuration for our system.

Application of Gauss’s law using the cylindrical symmetry
of the nanowire geometry yields the relation

2πr L E(r) = −e

ε0εr

∑
j

∑
|k|�kF

∫ L

0
dz

∫ 2π

0
dϕ

∫ r

0
dr ′ r ′

×[ψj (r ′,ϕ,z)]†ψj (r ′,ϕ,z), (A1)

with the single-particle wave functions ψ1,2(r,ϕ,z) given
in Eq. (9). Straightforward calculation yields E(r) =
E0[SkFRP0(r/R)+CkFRP1(r/R)], where E0 = −Ne/(2πRL

ε0εr) is an overall scale containing the number of particles
N , Sκ = 1

κ

∫ κ

0 dκ ′ sin2 ηκ ′ , and Cκ = 1
κ

∫ κ

0 dκ ′ cos2 ηκ ′ are
weightings of the mixed bound-state contributions for the
lowest nanowire sub-band, and

P0(1)(�) = 2π

�

∫ �

0
d�′ �′ [

F (ε(1)
1/2,+(−))

0(1) (�′)
]2

(A2)

are the radial density profiles associated with the relevant
bound states.

The calculated full electric-field profile is shown in Fig. 6.
Our results from the main paper suggest that generally SkFR ≈
1, CkFR ≈ 0; hence E(r) should be essentially determined
by the P0(r/R) contribution. This is indeed observed in the
numerical evaluation. Also, as expected from the shape of the
density profile associated with the m = 0 bound-state wave
function (cf. Appendix B), the leading behavior at r/R � 1
is linear. However, over most of the wire’s cross section, the
field profile is quite well approximated by a constant, which
supports our pragmatic assumption. It is also observed from
direct calculation that SkFR and CkFR are almost constant in
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FIG. 6. (Color online) The radial profile of the electric-field
magnitude E(r) associated with our calculated nanowire states is
plotted as the solid red (gray) curve. The asymptotically linear
behavior for small r/R is captured by the blue (gray) dashed line.
The horizontal (cyan [light gray]) band indicates the range of field
values that lie within 10% of the mean value. The weak variation
of E(r) for r � 0.3 R motivates our assumption of a constant field
magnitude for the radially symmetric Rashba term in Eq. (2). The
scale of the electric field is eE0 = 1.6κFμeVnm−1 for the scenario
based on InGaAs while it is eE0 = 41κF μeV nm−1 for InSb.

the relevant range kFR < 2.5 where only the lowest nanowire
sub-band is occupied.

In order to confirm that the omission of the linear electric
field dependence for r/R <∼ 0.3 will not alter our conclusions,
we consider an electric field which is modelled by a linear
dependence on the radial coordinate up to � < �0 and a
constant for � > �0. In terms of the dimensionless Hamiltonian
description in Eq. (5), this implies the replacement α̃ →
α̃[ �

�0
�(�0 − �) + �(� − �0)]. Proceeding as in the case of

a constant electric field, we find for the wave functions
in the region with � < �0 the Bessel-function solutions
Jm(�

√
ε + mα̃/�0). For the region � > �0, we obtain wave

functions which are a superposition of modified Laguerre
functions (see Appendix B) and confluent hypergeometric
functions of the second kind. Applying the standard matching
conditions at � = �0 to ensure continuity of the wave functions
and their products with the velocity operator in the transverse
direction determines the unknown coefficients. In this context,
it should be noted that the lowest state is independent of
the electric field. Considering the scenario with α̃ = 1.82 as
an example and taking into account the hard-wall boundary
condition, we find only small changes for the band-edge
energies E

(0)
(3,4)0/E0 = 11.07 and E

(0)
(5,6)0/E0 = 18.22 when

�0 = 0.3 (cf. Table I). In Fig. 7 we show the real part (dashed
curve) and imaginary part (dotted curve) of the sub-band
edge wave function for spin up of the second-excited state
| − 1/2, ↑ ,1〉 and compare this with the corresponding wave
function obtained under the assumption of a constant radial
electric-field strength. We can therefore conclude that the
linear electric field dependence for � < �0 changes the relevant
wave functions used in our calculations only slightly. For
κ �= 0, we find that the matrix element I

(11)
1/2 ≈ −0.884, while

it is I
(11)
1/2 ≈ −0.916 with the assumption of a constant electric

field, yielding only subpercent changes for the dispersions and
exchange-related quantities (see, for instance, Fig. 3).

0.0 0.2 0.4 0.6 0.8 1.0

r/R

−2.0

−1.5

−1.0

−0.5

0.0

|−
1 2,
↑,

1

FIG. 7. Real part (dashed curve) and imaginary part (dotted
curve) of the sub-band edge wave function for spin up of the
second-excited state obtained for an electric field that depends linearly
on the wire’s radius up to � = 0.3 and is constant for � > 0.3. For
comparison we show the real wave function of the corresponding state
(solid curve) obtained under the assumption of a constant electric field
throughout.

APPENDIX B: SOLUTION OF THE
RADIAL-CONFINEMENT PROBLEM

The general solution of the differential equations present in
the diagonal entries of Eq. (5) are power series, given by

F (ε(n′ )
ν,±)

m (�) = �m

(
a0 + a1� +

∞∑
n=2

an�
n

)
, (B1)

which fulfill the relation F (ε(n′ )
ν,±)

−m (�) = F (ε(n′ )
ν,∓)

+m (�) yielding the
eigenstates. Disregarding the ill-behaved and unphysical part
in the expansion at the origin, the coefficients of the polyno-
mials are determined by the recursion relation

n(n ± 2m)an + mα̃an−1 + ε
(n′)
ν,±an−2 = 0, (B2)

with a1 = −α̃m/(1 ± 2m)a0, where the upper (lower) sign
applies to m > 0 (m < 0). The coefficient a0 is determined by

the normalization condition 2π
∫ 1

0 d��|F (ε(n′ )
ν,±)

m (�)|2 = 1. We
note that the polynomial with coefficients given by Eq. (B2)
represents a modified Laguerre function that becomes the
standard Bessel function J0(

√
ε

(n′)
ν,±�) for α̃ = 0 and/or m = 0.

The band-edge energies, ε(n′)
ν,± are found by imposing hard-wall

boundary conditions on the radial wave function; i.e., for
r = R, we require

F (ε(n′ )
ν,±)

m (� = 1) = 0. (B3)

For not too large values of α̃, the lowest spin-↑ (↓) sub-
band-edge state has ν = 1/2 (−1/2) total angular momentum.
However, as seen from Fig. 8, a level crossing occurs for
α̃ ≈ 4.2, beyond which the new lowest spin-↑ (↓) sub-band
edge is a state with ν = ±3/2 (−3/2). The variation of the
band-edge energy ε

(1)
± 3

2 ,± as a function of α̃ can be approximated

using standard perturbation theory, yielding

ε
(1)
± 3

2 ,± = ε0 − α̃

∫ 1
0 d�J 2

1 (�
√

ε0)∫ 1
0 d��J 2

1 (�
√

ε0)
, (B4)
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FIG. 8. (Color online) Energy eigenvalues of the lowest two
doubly degenerate quasi-1D sub-band edges, plotted as a function
of the effective Rashba spin-orbit-coupling parameter α̃. The blue
(gray) dashed curve is an approximation based on Eq. (B4).

where ε0 ≈ 14.68 is the band-edge energy of the correspond-
ing band for α̃ = 0.

APPENDIX C: REGULARIZATION OF THE INTEGRAND
FOR CALCULATING THE EXCHANGE ENERGY

In the calculation of the exchange energy we have to deal
with integrals of the form

I =
∫∫

dkdk′G(k,k′)K0(|k − k′|
√

r2 + r ′2 − 2rr ′ cos ϕ),

(C1)

with G(k,k′) being a smooth function of k and k′. A logarithmic
singularity occurs when the argument of K0(·) vanishes. This
happens when either the square root is zero, at �r⊥ = �r ′

⊥, or
when k = k′. To regularize the integral for the case where
�r⊥ = �r ′

⊥, we add a small amount 0+ to the term under the
square root. Then by decreasing the value of 0+, we perform a
series of calculations until the result for the exchange energy
does not change within a certain tolerance.

The situation for k = k′ can be regularized analytically. To
this end, we add to and subtract from Eq. (C1) the term∫∫

dkdk′G(k,k) ln(|k − k′|
√

r2 + r ′2 − 2rr ′ cos ϕ + 0+).

(C2)
Adding this term to Eq. (C1) cancels the logarithmic singular-
ity. The k′ integration of the subtracted term can be performed
analytically and Eq. (C1) becomes

I=
∫

dk

{[ ∫
dk′G(k,k′)K0(|k − k′|

√
r2 + r ′2 − 2rr ′ cos ϕ)

+G(k,k) ln(|k − k′|
√

r2 + r ′2 − 2rr ′ cos ϕ)

]

−G(k,k)

[
k ln

(
kF + k

kF − k

)
− 2kF + 2kF ln

(√
k2

F − k2

×
√

r2 + r ′2 − 2rr ′ cos ϕ + 0+)]}
. (C3)

The expression Eq. (C3) is manifestly finite for k = k′.
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