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We analyze in detail the energy transport of surface phonon polaritons propagating in a chain of spheroidal polar
nanoparticles with both longitudinal and transversal polarizations. Explicit and closed-form expressions for the
dispersion relation and propagation length are derived and used to determine the values of the nanoparticle
polarizability and the interparticle distance that maximize the polariton propagation length. The thermal
conductance in the ballistic regime and the thermal conductivity in the diffusive one are also determined and
examined as a function of the geometry of the nanoparticles and their temperature. For a chain of cigar-shaped
SiC nanoparticles in contact, an aspect ratio of 5, and surrounded by air; it is shown that: (i) The surface phonon
polaritons propagate a distance of 10 μm along a chain of 100 nanoparticles. This propagation length is one order
of magnitude longer than that for spherical nanoparticles. (ii) The polariton thermal conductivity is comparable
with the one of air in a wide range of temperatures and is 41 mW m−1 K−1 at 500 K. (iii) The polariton thermal
conductance increases with the temperature and at 500 K is 44 pW K−1, which represents 9% of the quantum
of thermal conductance. In view of the ultralow phonon thermal conductivity of a chain of polar nanoparticles
in contact and their high surface area-to-volume ratios, the proposed theoretical model and obtained results are
expected to be useful to experimentally quantify the energy transport of surface phonon polaritons propagating
along these nanostructures.
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I. INTRODUCTION

Since the initial development of the electromagnetic theory,
it is known that when a small metallic particle is illuminated
with light at a frequency tuned according to the resonant
frequency of the negative real part of its permittivity, the
electrons inside the particle oscillate cooperatively, generating
a strong electrical field close to the particle surface [1]. At this
resonant frequency, the particle behaves as a resonant cavity
with strong absorption and scattering [2,3]. These electron
resonances occur at visible and near-infrared frequencies, and
they are nowadays called surface plasmon polaritons (SPPs).
Surface phonon polaritons (SPhPs), on the other hand, stand
for the phonon resonances in polar materials, and they are
activated at midinfrared frequencies, mainly. Considering that
the coupling among individual resonances of each nanoparticle
may guide surface electromagnetic fields along a chain of
nanoparticles, these structures have been proposed as potential
waveguides of both SPPs and SPhPs. The propagation [4–18]
and energy transport [10,19] by SPPs propagating along chains
of metallic nanoparticles have been widely investigated by
many research groups, while analogous works dealing with
SPhPs are scarce [20].

Based on the generalized Mie theory, Quinten et al. [4]
found a propagation length of 909 nm for SPPs propagating
along a chain of Ag spheres of 50 nm diameter separated by
75 nm. This result was obtained for a chain with longitudinal
polarization, which is expected to yield longer propagation
lengths than the transversal one [5]. Taking into account the
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high-order multipole fields, Park and Stroud [7] calculated the
SPP dispersion relation for a periodic chain of spherical metal-
lic nanoparticles embedded in an isotropic host medium, and
showed that the point-dipole approximation yields accurate
results when the interparticle distance d is equal to or greater
than three times the particle radius a (d � 3a), provided that
d � λ, where λ is the light wavelength. This result was
confirmed by Maier et al. [6], who used finite-difference
time-domain simulations to analyze the SPP propagation along
Au spherical nanoparticles with a radius of 25 nm. The results
of these two latter works were derived by using the Drule model
to determine the permittivity of the metallic nanoparticles, and
therefore they are not necessarily valid for polar or dielectric
ones. More recently and under the point-dipole approxima-
tion, Alu and Engheta [9] developed closed-form analytical
expressions for the dispersion relation of linear arrays of
metamaterial/plasmonic nanoparticles, including the effect of
material loss. Based on this dispersion relation, the conditions
for minimal absorption and maximum bandwidth were also
derived. Ben-Abdallah et al. [10] used the Landauer-Buttiker
formalism and the kinetic theory to determine the plasmonic
thermal conductance and the plasmonic thermal conductivity
of a chain of copper nanoparticles, respectively. They found
that the multipolar interactions among these nanoparticles
increase significantly the ballistic thermal conductance, only
when the permittivity of the host material is positive. In
the diffusive regime, these latter authors showed that the
plasmonic thermal conductivity of nanoparticle chains can
reach 1% of the bulk Au thermal conductivity at 900 K.

Surface phonon polaritons have been recently proposed
as potential energy carriers to enhance significantly the
phonon heat transport in polar nanofilms [21–28], nanowires
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[29], nanotubes [30], and gratings [31–33]. Various research
groups have shown that these energy carriers have promising
applications on the radiative heat transfer [34–37], high-
density infrared data storage [38], surface infrared absorption
[39], coherent thermal emission [32], and photonics [40,41].
Despite these potential applications, the propagation and
energy transport of SPhPs, analogous to those of SPPs, along
chains of polar nanoparticles have not been explored to date.
Taking into account the ultralow phonon thermal conductivity
of a chain of polar nanoparticles, which exhibit high surface
area-to-volume ratios, and the predominance of the surface
effects at nanoscales, the SPhP energy transport along this
structure is expected to dominate that of phonons, and to
depend strongly on the size, shape, and separation of the
nanoparticles.

In this paper, the transport properties and energy of SPhPs
propagating along chains of spheroidal polar nanoparticles
are analyzed in detail. This is done by including the material
losses and by deriving closed-form analytical expressions for
the dispersion relation and propagation length of SPhPs. The
nanoparticle geometry and temperature dependences of the
SPhP thermal conductance, in the ballistic regime, and of
the SPhP thermal conductivity, in the diffusive regime, are
determined for nanoparticles of SiC. It is shown that both
of these thermal properties increase with temperature and
they can overcome their phonon counterparts. The proposed
theoretical and practical framework provides a pathway to
engineer thermally conductive polar materials for thermal
management.

II. SPhP DISPERSION RELATIONS

Let us consider a linear chain of N identical polar nanopar-
ticles with relative permittivity ε1, embedded in a dielectric
medium of relative permittivity ε2, as shown in Figs. 1(a) and
1(b). The radii of the spheroidal nanoparticles along the z

and x axes are a and b, respectively; and they are separated
by a center-to-center distance d. When an external electrical
field �Eext is applied parallel to the direction of the chain,
the electrical dipoles of the polar molecules inside the polar
nanoparticles align with �Eext and redistribute spatially around
the nanoparticle surface mainly, as shown in Fig. 1(c). This
surface polarization shows up parallel to the nanoparticle chain
(longitudinal polarization) and induces a local electrical field
�E around each nanoparticle. On the other hand, when �Eext is

perpendicular to the chain, the resulting surface polarization is
also parallel to �Eext and induces the field �E shown in Fig. 1(d).
For both the longitudinal and transversal polarizations, the
interactions among the electrical dipoles on the surface
of the polar nanoparticles keep the propagation of SPhPs
along the chain. These interactions strengthen as the distance
between neighboring nanoparticles reduces, and therefore the
highest SPhP energy transfer along the chain is expected
to occur when the particles are in contact with each other
(d = 2a). The two polarization modes could also be activated
by self-thermal emission [32,42] or by the illuminated tip
of an atomic force microscope [43]. Given that an arbitrary
polarization can be expressed as a linear combination of the
longitudinal and transversal ones [9,44], the general problem

of the SPhP propagation along nanoparticle chains can be split
in these two orthogonal modes.

In general, the polarizable molecules of polar nanoparti-
cles undergo multipole (dipole, quadrupole, octupole, etc.)
interactions, which strengthen when the distance d between
nanoparticles of diameter 2a reduces. This also applies for
metallic nanoparticles supporting the propagation of plasmons
[10], for which the energy contribution of these multipoles is
proportional to (d/2a)−(2l+1). This indicates that for d > 3a,
the energy of the dipole interactions (l = 1) is much higher
than those of all other higher-order interactions (l = 2,3, . . .),
and therefore, this condition (d > 3a) on the interparticle
distance represents a practical limit of application of the
dipole approximation for plasmons. This was explicitly shown
by Weber and Ford [8], and Ben-Adballah et al. [10] for
chains of silver and copper nanoparticles, respectively. On the
other hand, for metallic nanoparticles in touch (d = 2a), the
contribution to the energy transport of the higher-order multi-
poles can be higher than that of the dipole interactions. This
result does not necessarily hold for polar nanoparticles, given
that plasmons in metals show up at visible and near-infrared
frequencies [8,10], while SPhPs in polar materials appear at
(lower) midinfrared ones [23]. The energy contribution of
the dipole interactions in polar media at a given temperature
could be higher than the corresponding one in metals, due to
the frequency dependence of the Bose-Einstein distribution
function involved in the quantification of the energy transport
of both plasmons [10] and SPhPs [Eq. (24), below]. Thus,
the dipole approximation is expected to yield more accurate
results for polar nanoparticles than for metallic ones. This is the
reason why, for the sake of simplicity and keeping analytical
our approach, we are going to only consider the dipole
interactions in this work. Taking into account that the multipole
interactions in a chain with closely spaced nanoparticles can
enhance the polariton thermal conductance rendered by the
dipole interactions [10], our results for nanoparticles in contact
represent the minimum (lower bound) for the energy transport
of SPhPs.

To determine the dispersion relation of the SPhPs propa-
gating along the nanoparticle chains shown in Figs. 1(a) and
1(b), we start calculating the electrical field �E around a single
polar nanoparticle and induced by its surface polarization. For
a general polarization, this field is characterized by the dipole
moment �p of the nanoparticle and is given by [2]

�E(�r,t) = 1

4πε2

( �A
r3

− ik2 �A
r2

+
�B
r

)
eik2r , (1)

where �r is the position vector pointing from the dipole to the
field point, the wave vector k2 = √

ε2ω/c, ω is the excitation
frequency, c is the speed of light in vacuum, and

�A = 3r̂(r̂ · �p) − �p, (2a)

�B = k2
2[ �p − r̂(r̂ · �p)]. (2b)

Note that in the quasistatic limit (k2r � 1), the dominant
term of the electrical field �E goes as r−3, while the radiation
component (r−1) dominates for k2r � 1. For the longitudinal
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FIG. 1. (Color online) Chain of spheroidal polar nanoparticles with (a) longitudinal and (b) transversal polarizations, which can be activated
by an external electrical field Eext, as shown in (c) and (d), respectively. The purple glow around the nanoparticles represents the coupled
electromagnetic field induced by their surface polarization. The center-to-center distance between two neighboring spheroidal nanoparticles
(ellipsoids with an axis of symmetry) is d and their semiaxis lengths along the x, y, and z axes are b, a, and a, respectively. Note that for
both polarizations, the applied external field is parallel (antiparallel) to the dipole moment (one) induced by the polarization charge, inside the
dielectric polar nanoparticle [2].

polarization shown in Fig. 1(c) ( �p ‖ r̂), Eqs. (2a) and (2b)
reduce to ( �A, �B) = (2 �p,0), while for the transversal one shown
in Fig. 1(d) ( �p ⊥ r̂), the vectors �A and �B take the form
( �A, �B) = (−1,k2

2) �p. In these two polarizations, Eq. (1) yields
the following dipole electrical field �E

�E(�r,t) = �p
4πε2

(
γ

r3
− ik2γ

r2
+ δk2

2

r

)
eik2r , (3)

where γ = 2 (γ = −1) and δ = 0 (δ = 1) for the longitudinal
(transversal) polarization. For the linear chains of nanoparti-
cles shown in Figs. 1(a) and 1(b), the field �En at the nth dipole
�pn is the sum of the fields due to all the other dipoles, and it is
therefore given by

�En = 1

4πε2

∑
m�=n

�pm

(
γ

|m − n|3d3
− ik2γ

|m − n|2d2

+ δk2
2

|m − n|d
)

eik2|m−n|d . (4)

Taking into account that the SPhPs are propagating along
the nanoparticle chain, the dipole moments can be considered
as traveling waves �pm = �p0e

iβmd , with amplitude �p0 and wave
vector β. By inserting this relation into Eq. (4) and using the
constitutive relation �pn = α �En, the following SPhP dispersion
relation is obtained

2πε2

α
=

N∑
n=1

1

(nd)3
[γ (1 − ik2nd) + δ(k2nd)2]

× eik2nd cos(βnd), (5)

where α is the nanoparticle electrical polarizability parallel to
the corresponding dipole moment. According to Mie’s theory
[3,45], the polarizability α of a small enough nanoparticle,
such that ka,kb � 1, is given by

α−1 = α−1
s − ik3

2

6πε2
, (6)

where the second term is independent of the nanoparticle
geometry and arises due to the radiation damping. On the
other hand, the electrostatic component αs depends on the
nanoparticle size and shape, as follows [3]:

αs = 4πa2b

3
ε2

ε1 − ε2

ε2 + L(ε1 − ε2)
, (7)

L being the geometrical factor parallel to the dipole moment
of the spheroidal nanoparticles [3,46]. This factor L depends
only on and increases with the aspect ratio b/a, such that
it reduces to L = 1/3 (L = 1/2) for spherical (cylindrical)
nanoparticles. According to Eqs. (6) and (7), the SPhP
dispersion relation in Eq. (5) represents a relation between
the nanoparticle geometry, in the left-hand side, and the
propagation properties involved in the right-hand side, which
rapidly decreases as the interparticle distance d increases.
The solution of Eq. (5) for the SPhP wave vector β can be
found by following a similar procedure than that developed
for plasmonic spherical particles [9], and introducing the
following three dimensionless parameters: X = k2d, αe =
αsk

3
2/(6πε2), and K = β/k2. In this way, the dispersion
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relation in Eq. (5) can be written as

− i + α−1
e = 3

2X3
{γ [f3(K,X) − ixf2(K,X)]

+ δX2f1(K,X)}, (8)

where fj (K,X) = Lij (eiX(1+K)) + Lij (eiX(1−K)), Lij (z) =∑∞
n=1 zn/nj is the polylogarithm function of order j ,

which satisfies the following recurrence formula Lij (z) =∫ z

0 Lij−1(z′)dz′/z′, with Li1(z) = − ln(1 − z) [47]. In deriving
Eq. (8), we have assumed that the number of nanoparticles N

is large enough (NX � 1) to replace the upper limit of the
summation by infinite (N → ∞). Note that Eq. (8) allows us
performing the analysis of the dispersion relation in terms of
three dimensionless quantities: the normalized wave vector K ,
which is the unknown of the problem, the normalized inter-
particle distance X, and the normalized inverse polarizability
α−1

e , related to the nanoparticle permittivity and geometry.
We use this normalization to analytically determine some
fundamental properties of the dispersion relation, without
using its frequency dependence and therefore independently of
the nanoparticle properties (contained in α−1

e ) for a particular
material.

The absorption of energy by real polar materials is taken
into account by their complex permittivity ε1, which turns
the normalized polarizability αe to a complex parameter. In
the presence of this absorption, the surface electromagnetic
waves under consideration are usually called Zenneck SPhPs
[29], to distinguish them from those propagating along ideal
materials without energy dissipation and in narrow intervals
of frequency. For the Zenneck SPhPs considered in this work,
Eq. (8) establishes that the SPhP wave vector can be written
as K = KR + iKI , where its real (KR > 0) and imaginary
(KI > 0) parts are associated with the propagation (along
the +z direction) and attenuation factor, respectively. For the
practical cases of interest involving weak absorption and/or
a small interparticle distance d, such that KIX � 1, the
exponentials involved in Eq. (8) can be well approximated by
eiX(1±K) � (1 ∓ KIX)eiX(1±KR ), which along with the Taylor
series expansion of the functions fl , yields

fj (K,X) = fj (KR,X) + iKI

∂fj (KR,X)

∂KR

. (9)

Equation (9) allows us to factor KI out of fj (K,X) and
therefore of the SPhP dispersion relation in Eq. (8). This result
is valid as long as KIX � 1, which, in terms of the SPhP
propagation length � = (2βI )−1 [23], implies that � � d/2.
This latter condition guarantees the SPhP propagation along
many nanoparticles of the chain, as required. Given that the
exponential factors X(1 ± KR) are real numbers, the real and
imaginary parts of the polylogarithm functions Lij (eiX(1±KR ))
involved in the definition of fj (KR,X), can be separated and
expressed in terms of the Clausens functions Clj (θ ) [9,47]

Li1(eiθ ) = Cl1(θ ) + i

2
(π − θ ), (10a)

Li2(eiθ ) = π2

6
− θ

4
(2π − θ ) + iCl2(θ ), (10b)

Li3(eiθ ) = Cl3(θ ) + i

12
θ (π − θ )(2π − θ ), (10c)

which hold for any 0 � θ � 2π . The evaluation of the real
functions Clj (θ ) in terms of summations or integrals is built
in at well-known computing software as Mathematica and
MATLAB, and they satisfy the recursive formula ∂Clj (θ )/∂θ =
(−1)jClj−1(θ ), with Cl1(θ ) = − ln [2 sin(θ/2)]. The period-
icity of the cosine term in Eq. (5) or of the complex
exponentials eiX(1±KR ) in fj (KR,X) establishes that the first
(principal) period is given by 0 < KR < π/X. Given that
the existence and confinement of SPhPs to the surface of
the nanoparticle chain is characterized by the difference
|βR − k2| (KR = βR/k2 �= 1) of their wave vector (βR) with
respect to that (k2) of light in the host medium, the condition
X = k2d < π ensures that KR < 1 and KR > 1, and hence it
guarantees the SPhP existence with long propagation lengths,
due to the relatively small interparticle distances d required
to fulfill it. Taking into account that the dipole interactions
keeping the SPhP propagation along the chain of nanoparticles
are stronger for smaller interparticle distances, this period
is the physically relevant one, for the wave vector KR (all
higher-order periods reduce to this principal one, due to
the periodicity). The condition X < π (d < λ2/2 = π/k2)
on the interparticle spacing and therefore on the particle
size (2a � d < λ2/2) represents a fundamental condition
for the existence of SPhPs propagating along the chain of
nanoparticles. Equations (9) and (10) can now be used to
extract the real and imaginary parts of the dispersion relation
in Eq. (8).

A. Short wave vector: 0 < KR < 1

In this case, the SPhP wave vector is smaller than that of
the light line (βR < k2) and Eqs. (8) and (10) yield

Re
(
α−1

e

) = 3

2X3
G(KR,X) + 3πγ

2X
KRKI , (11a)

Im
(
α−1

e

) = 3π

4X

[
2δ + γ

(
1 − K2

R

)] + 3KI

2X3

∂G(KR,X)

∂KR

,

(11b)

where the function G is independent of KI and is given by

G(KR,X) = γ [g3(KR,X) + Xg2(KR,X)] + δX2g1(KR,X),

(12a)

gj (KR,X) = Clj [X(1 + KR)] + Clj [X(1 − KR)]. (12b)

The SPhP propagation is therefore driven by the Clausens
functions Clj (θ ) of order j = 1,2,3. For low frequencies
and/or small interparticle distances, such that X � 1, the
contributions of g1 and g2 disappear and G(KR,X) →
γg3(KR,X), for both polarizations. In absence of energy
absorption (KI = 0), Eqs. (11a) and (11b) reduce to the
previous ones derived for ideal lossless materials [9], as
expected. For real lossy materials (KI > 0), on the other hand,
Eqs. (11a) and (11b) are linear on KI and yield the following
expressions for KR and KI

Im
(
α−1

e

) = 3π

4X

[
2δ + γ

(
1 − K2

R

)]
+ 1

πγKRX2

(
Re

(
α−1

e

) − 3G

2X3

)
∂G

∂KR

, (13a)
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KI =
{

Im
(
α−1

e

) − 3π

4X

[
2δ + γ

(
1 − K2

R

)]} ∂KR

∂Re
(
α−1

e

) .

(13b)

For nanoparticles with a given polarizability αe, Eq. (13b)
allows us to determine analytically KI after solving numeri-
cally Eq. (13a) for KR . The propagation length � = (2βI )−1 =
(2k2KI )−1 can then be determined by means of

� = 1

2

∂Re
(
α−1

e

)
∂ω

Vg

Im
(
α−1

e

) − 3π
4X

[
2δ + γ

(
1 − K2

R

)] , (14)

where Vg = ∂ω/∂βR is the group velocity of the SPhPs
propagating along the chain of nanoparticles. The direct
proportionality of Vg and � indicates that faster SPhPs
propagate larger distances.

B. Long wave vector: 1 < KR < π/X

This is the case of SPhPs propagating with a wave vector
greater than that of the light in the surrounding medium (βR >

k2). under this condition, the dispersion relation in Eq. (8)
splits into the following two equations

Re
(
α−1

e

) = 3G

2X3
, (15a)

KI = Im
(
α−1

e

) ∂KR

∂Re
(
α−1

e

) , (15b)

which are simpler than Eqs. (13a) and (13b) derived for short
wave vectors. Equation (12a) shows that the real part of the
SPhP wave vector K (dispersion relation) is given by Eq. (15a),
while its imaginary part in Eq. (15b) yields the following SPhP
propagation length

� = 1

2

∂Re
(
α−1

e

)
∂ω

Vg

Im
(
α−1

e

) . (16)

As in the previous case of short wave vectors, the proportional-
ity between � and Vg still holds, which opens the possibility of
transmitting SPhP energy at higher speeds for longer distances
along the nanoparticle chain. In general, SPhPs can propagate

with short (0 < KR < 1) and long (1 < KR < π/X) wave
vectors, but their guidance is stronger within this latter regime
[9], which is going to be analyzed in further detail below.

C. Longitudinal polarization (LP)

In this section, we present the graphical analysis of
Eqs. (15a) and (15b) for the LP [(γ,δ) = (2,0)] and in terms
of the dimensionless parameters X, Re(α−1

e ), Im(α−1
e ), and

KR . These normalized quantities depend on the frequency,
but allow us to determine some general properties of the
SPhP dispersion relation and propagation length, without
involving their frequency dependence and independently of
the nanoparticle properties for a particular material, as shown
below.

The SPhP dispersion relation Re(α−1
e ) vs KR and guidance

region Re(α−1
e ) vs X are shown in Figs. 2(a) and 2(b),

respectively. The monotonous decrease of Re(α−1
e ) when KR

increases implies that ∂Re(α−1
e )/∂KR < 0, which is valid for

any distance X, as can be proved by taking the derivative
of Eq. (15a) and using the properties of Clausen’s functions.
This fact along with the wave vector interval 1 < KR < π/X

establish that the nanoparticle chain is able to support the
propagation of SPhPs as long as the nanoparticle polarizability
αe satisfies the condition 3G(π/X,X)/2 < X3Re(α−1

e ) <

3G(1,X)/2, which in terms of Clausen’s functions reads

6[Cl3(X + π ) + XCl2(X + π )] < X3Re
(
α−1

e

)
< 3[Cl3(2X) + XCl2(2X) + ξ (3)], (17)

where ξ (3) = Cl3(2π ) is the Riemann ζ function. Note that
when X → π (d = λ2/2), the interval of SPhP wave vectors
and this region of guidance reduce to the single values KR = 1
(βR = k2) and Re(α−1

e ) = 6π−3ξ (3), respectively. This indi-
cates that at large interparticle distances (d = λ2/2), the wave
vector KR of the electromagnetic field propagating along the
chain of nanoparticles is the same in presence and absence of
the nanoparticles, which implies the disappearance of SPhPs.
The presence and good guidance of SPhPs therefore require
an interparticle spacing d < λ2/2, as was aforementioned. On
the other hand, as X → 0 (d � λ2/2π ) the guidance region

FIG. 2. (Color online) (a) Dispersion relation and (b) guidance region of SPhPs propagating along a chain of nanoparticles with longitudinal
polarization.
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in Eq. (17) widens up and reaches its maximum amplitude
in the interval −5.41 = −9ξ (3)/2 � X3Re(α−1

e ) � 6ξ (3) =
7.21. Therefore, in the long wavelength regime, the polariz-
ability Re(α−1

e ) ∝ X−3 [Re(α−1
s ) ∝ d−3], which indicates that

the SPhP propagation is driven by the relative volume (size)
of the nanoparticles through the ratio a2b/d3 [see Eq. (7)].
These features of the SPhP guidance region are summarized
in Fig. 2(b), and they also hold for a chain of lossless spherical
nanoparticles, as shown by Alu and Engheta [9]. Furthermore,
both Figs. 2(a) and 2(b) show that the reduction of X and
Re(α−1

e ) increases the SPhP wave vector KR = βR/k2 through
values larger than that of the light in the host medium
(βR > k2). This increase is due to the permittivity mismatch
between the nanoparticles and the host material, represents the
strong presence of SPhPs, and establishes that their surface
confinement and guidance along the chain of nanoparticles
can be enhanced by tuning the interparticle distance and the
real part of the inverse of the nanoparticle polarizability to low
values.

Figure 3(a) shows the normalized propagation length
−Im(α−1

e )k2� as a function of the SPhP wave vector KR

for different interparticle distances X. We have conveniently
plotted the negative of Im(α−1

e )k2� because of the negative
values of Im(α−1

e ), which is related to the negative wave
vector derivative of Re(α−1

e ) [Fig. 2(a)]. Note that for a given
KR , the propagation length increases as X is scaled down,
as expected. For X < 0.436, the propagation length exhibits
maximum and minimum values determined by ∂�/∂KR = 0,
which, according to Eqs. (15) and (16), reads

ln {2[cos(X) − cos(XKR)]} + X sin(X)

cos(X) − cos(XKR)
= 0.

(18)

The solution of Eq. (18) yields the wave vector KR = KR,opt

determining the upper and lower bounds of the propagation
length for the interparticle distances (X < 0.436) of interest.
As displayed in Figs. 3(b) and 3(c), this optimum wave vector
renders the longest (shortest) � for KR,opt = KR,maxPL >

1.752 (1 < KR,opt = KR,minPL < 1.752), which is the interval
of strong (weak) SPhP guiding. Note that the longest and
shortest propagation lengths, as well as their difference, take
longer values for shorter interparticle distances. According
to Figs. 2(a), 2(b), and 3(c); the longest propagation length
corresponds to a Re(α−1

e ) smaller than the corresponding
one to the shortest propagation length, which indicates
that the SPhPs travel longer distances when they are more
confined, as expected. It is therefore clear that in the LP,
both the lateral confinement and the propagation length can
be maximized by designing the chain of nanoparticles, such
that 2.4 < X3Re(α−1

e ) < 4.3, with X < 0.436 [Figs. 2(b)
and 3(b)].

D. Transversal polarization (TP)

The analyses of the dispersion relation and propagation
length in terms of the normalized parameters involved in
Eqs. (15a) and (15b) for the TP [(γ,δ) = (−1,1)] are graph-
ically performed in this subsection. Given that α−1

e depends
on the frequency, its real part Re(α−1

e ) is used to describe the
dispersion relation.

FIG. 3. (Color online) (a) Normalized propagation length as a
function of the wave vector KR , for different interparticle distances
X. (b) Optimum wave vector to obtain the longest and shortest
propagation lengths shown in (c), as a function of X. Calculations
were done for the longitudinal polarization.

Figures 4(a) and 4(b) show the SPhP dispersion relation
Re(α−1

e ) vs KR and guidance region Re(α−1
e ) vs X of SPhPs

propagating along a chain of particles with TP, respectively.
Note that for 0 < X < 1.517, contrary to the case of LP shown
in Fig. 2(a), Re(α−1

e ) exhibits a minimum at the wave vector
KR, min, which is given by ∂Re(α−1

e )/∂KR = 0. According
to Eq. (15a) and the properties of Clausen’s functions, this
condition yields

Cl2(θ+) + Cl2(θ−) + X ln

(
sin(θ+/2)

sin(θ−/2)

)

= X2 sin(XKR, min)

cos(X) − cos(XKR, min)
, (19)
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FIG. 4. (Color online) (a) Dispersion relation and (b) guidance
region of SPhPs propagating along a chain of nanoparticles with
transversal polarization. Re(α−1

e ) reaches its minimum at the wave
vector KR, min shown in (c).

where θ± = X(KR, min ± 1). The solution of Eq. (19) is
plotted in Fig. 4(c), which shows that KR, min reaches its
maximum at the critical thickness Xc = 1.517. The values
of KR, min for X > Xc correspond to the lowest values of
Re(α−1

e ), as shown in Fig. 4(a). The mode with KR >

KR, min > 1 and hence with relatively strong SPhP confinement
around the chain (KR, min < KR < π/X) is characterized by
∂Re(α−1

e )/∂KR > 0 and is defined within the bounded in-
terval 3G(KR, min,X)/2 < X3Re(α−1

e ) < 3G(π/X,X)/2. By
contrast, for 1 < KR < KR, min, ∂Re(α−1

e )/∂KR < 0 and
X3Re(α−1

e ) > 3G(KR, min,X)/2. This latter condition on the
nanoparticle polarizability αe provides an infinitely wide
spectrum of values for Re(α−1

e ), but with SPhP wave vectors
(1 < KR � kR, min � 2.071) close to that of light inside the
host medium (weak confinement). This is consistent with
Eq. (7), which establishes that Re(α−1

e ) takes higher values for
smaller particles and/or particle materials similar to that of the
host medium. The optimum design (strong SPhP confinement)

FIG. 5. (Color online) Normalized propagation length as a func-
tion of the wave vector KR , for the transversal polarization and
different interparticle distances X.

of the nanoparticle chain with TP should therefore involve
a strong material (permittivity) mismatch between the host
medium and the not-so-small nanoparticles. Furthermore, for
interparticle distances X < Xc and wave vectors KR, min <

KR < π/X of major interest, the range of polarizabilities
to support confined SPhP modes remains finite, as shown in
Fig. 4(b).

The normalized propagation length −Im(α−1
e )k2� as a

function of the SPhP wave vector KR is shown in Fig. 5,
for different interparticle distances X. Note that irrespective
of X, the propagation length increases without limit as
KR tends to the wave vector of light propagating in the
host (nonabsorbing) medium, as expected. When the SPhP
wave vector increases, the confinement strengthens but the
propagation length remains small. A tradeoff between KR and
� is therefore required to obtain an optimum design of the
chain of nanoparticles with TP.

III. SPhP ENERGY TRANSPORT

A. Diffusive regime

Assuming that the length of the nanoparticle chain is
much longer than the SPhP propagation length, the SPhPs
are expected to undergo many interactions with each other and
therefore their heat transport can be described in the diffusive
regime. This description is analogous to that of the Rosseland
diffusion approximation [48] applied in radiative heat transfer
and allows us to characterize the SPhP energy flux through a
thermal conductivity. In this case, the heat flux dqz of SPhPs
traveling at the position interval dz during the time interval dt ,
along the nanoparticle chain of transversal section S = πab is
given by

dqz = �ωf

S

dzdp

hdt
, (20)

where h = 2π� is the Planck constant and p = �βR is the
momentum of SPhPs with a distribution function f defined by
the Boltzmann transport equation. Under the relaxation time
approximation and steady-state heat transport along the chain,

115409-7



ORDONEZ-MIRANDA, TRANCHANT, GLUCHKO, AND VOLZ PHYSICAL REVIEW B 92, 115409 (2015)

this equation yields

f = f0 − �
∂f

∂z
, (21)

where f0 is the Bose-Einstein distribution function and � is
the SPhP propagation length (mean free path). Taking into
account that the chain length is much longer than �, SPhPs
are in quasiequilibrium along the chain direction (z axis) and
therefore we can use the diffusive approximation ∂f/∂z ≈
∂f0/∂z [49]. Furthermore, by using the SPhP group velocity
Vg = dz/dt = ∂ω/∂βR , Eq. (21) takes the form

dqz = �ω

2πS

(
f0 − �

∂f0

∂z

)
dω. (22)

Equation (22) yields the SPhP heat flux along the +z direction
and indicates that the one along the −z direction can be
determined by replacing z by −z in the spatial derivative of
f0. The net heat flux Qz along the +z direction is then given
by the integration over the frequency, as follows:

Qz = − 1

πS

∫
�ω�

∂f0

∂z
dω. (23)

Given that f0 depends on the position z through the tempera-
ture T only, Eq. (23) establishes that in the diffusive regime,
the SPhP heat transport is described by the Fourier’s law with
the following thermal conductivity

κ = 1

πS

∫
�ω�

∂f0

∂T
dω. (24)

The lower and upper limits of integration in Eqs. (23) and (24)
are defined by the frequency range of the dispersion relation
that bounds the propagation of SPhPs with a propagation
length �. The SPhP thermal conductivity κ in Eq. (24) is
half the value derived by Ben-Abdallah et al. [10] for metallic
nanoparticle chains, by means of the kinetic theory. This
discrepance could be due to a possible miscalculation of the
density of states used in this theory.

B. Ballistic regime

In this regime, we assume that the SPhP propagation length
is longer than the length of the nanoparticle chain, such that
the SPhPs propagate along this chain without interacting each
other. The SPhP energy transport can then be characterized
by its thermal conductance, which is given by the Landauer
formalism. Considering that the two extreme sides of the chain
are perfectly connected to thermal baths, whose difference of
temperature is much smaller than their average one T , the
SPhP thermal conductance G of the chain is given by [10,29]

G = k2
BT

h
[J (A/T ) − J (B/T )], (25)

where kB and h = 2π� are the Boltzmann and Planck
constants, respectively; A = �ωmin/kB and B = �ωmax/kB

are the respective minimum and maximum frequencies (in
units of temperature) of the dispersion relation supporting the
propagation of SPhPs; and

J (x) = x2

ex − 1
− 2x ln(1 − e−x) + 2

∞∑
n=1

e−nx

n2
. (26)

FIG. 6. (Color online) SPhP thermal conductance of a nanopar-
ticle chain as a function of the normalized temperature T/A. The
straight line stands for the SPhP quantum of thermal conductance G0

of a polar nanowire.

Equations (25) and (26) were derived through the analytical
integration of the integral involved in the Laundauer formula
for the heat flux and assuming that the SPhPs are thermally
generated by the hotter thermal bath, which excites and triggers
the oscillations of the electrical dipoles of the polar nanopar-
ticles. As a result of these oscillations, the nanoparticles emit
an electrical field, which induces the excitation of neighboring
electrical dipoles that keep the propagation of the field (SPhP)
along the nanoparticle chain. Equation (25) establishes that in
the ballistic regime, contrary to the diffusive one, the SPhP
energy transport is independent of the propagation length and
the particular characteristics of the dispersion relation, and is
only determined by the relative values of the highest and lowest
propagation frequencies with respect to the temperature. For
midinfrared frequencies (ωmin,ωmax ∼ 1014 rad/s), where the
SPhP resonances occur, the parameters A,B ∼ 764 K, which
indicates that G depends strongly on the temperature, for
temperatures comparable to room temperature (T = 300 K).
According to Fig. 6, the SPhP thermal conductance of the
chain of nanoparticles increases with the temperature and the
ratio B/A, but its values are smaller than the corresponding
ones to the quantum of thermal conductance G0, which holds
for polar nanowires [29].

IV. RESULTS AND DISCUSSIONS

The dispersion relation, propagation length, group velocity,
thermal conductivity, and thermal conductance of SPhPs
propagating along the nanoparticle chain shown in Fig. 1 are
quantified in this section. This is done by means of the results
derived in the previous Secs. II and III, and putting special
emphasis on the effects of the nanoparticle geometry and
temperature. Calculations are performed for nanoparticles of
SiC, which is an abundant crystalline polar material in nature,
widely used in electronics [27,31,33], and whose complex
permittivity ε1 = εR + iεI is reported in the literature [29,50]
and shown in Fig. 7. The resonance peak of εI occurs at 149
Trad/s, which indicates that the SiC absorbs more energy from
the SPhPs at this frequency [2]. Furthermore, the real part
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FIG. 7. (Color online) Real and imaginary parts of the relative
permittivity ε1 = εR + iεI of SiC, as a function of frequency.

takes negative values (εR < 0) within the frequency interval
149 Trad/s < ω < 182 Trad/s that is expected to render the
main contribution to the propagation and energy transport
of SPhPs, as shown below. The values of the permittivity
shown in Fig. 7 are valid for nanoparticle sizes larger than
5 nm [51]. Air is taken as a natural surrounded medium
that is transparent (ε2 = 1) within the range of frequencies
where the SiC supports the SPhP propagation. To determine
the maximum possible energy that the SPhPs can transport
along the chain, we have considered the minimum interparticle
distance d = 2a, such that the spheroidal nanoparticles touch
each other.

Figures 8(a), 8(b), and 8(c) show, respectively, the fre-
quency dependence of the dispersion relation, propagation
length, and group velocity of SPhPs propagating along a chain
of SiC spheroidal nanoparticles with longitudinal polarization
and five aspect ratios. For each nanoparticle geometry, the
range of frequencies is determined by the real and positive
solutions of Eqs. (8) and (16) for the propagation length. It
is interesting to note that these frequencies are within the
frequency interval 149 Trad/s � ω � 182 Trad/s, in which
the real part of the permittivity of SiC is negative [Re(ε1) < 0]
and therefore the excitation and propagation of SPhPs are
expected to be strong [23,28]. As the frequency increases,
the SPhP wave vector βR gets remarkably apart from the
light line (βR = k2), which enhances the confinement of the
SPhPs to the nanoparticle surface, irrespective of their aspect
ratio b/a. Note also that the amplitude of the frequency
range supporting the SPhP propagation increases with b/a,
such that for b/a = 5, it nearly coincides with that in which
Re(ε1) < 0. The interception points of the curves indicates
that there are certain frequencies at which the spherical
(b = a) or pancake-shaped (b = a/5) nanoparticles are able
to support the same SPhP propagation than cigar-shaped ones
(b = 5a), but with comparatively smaller propagation lengths,
as shown in Fig. 7(b). The fact that � increases with b/a in
the LP [Fig. 1(c)] is reasonable due to the reduction of the
surface-to-surface distance among the nanoparticles, which
strengthens the interactions among their surface dielectrical
dipoles, when b/a takes higher values. Spherical nanoparticles
are therefore better than pancake-shaped ones, but less efficient
than cigar-shaped ones for enhancing the SPhP propagation

FIG. 8. (Color online) (a) Dispersion relation, (b) propagation
length, and (c) group velocity of SPhPs propagating along a chain
of SiC spheroidal nanoparticles with longitudinal polarization and
five aspect ratios. Calculation were done for nanoparticles in contact
(d = 2a).

length. For b = 5a = 250 nm and � = 104 nm, the SPhPs are
able to propagate along a chain of 100 nanoparticles, which
is ten times the maximum number of spherical nanoparticles
(b = a = 50 nm) that the SPhPs can travel along. According to
Figs. 8(b) and 8(c), the SPhPs propagating along cigar-shaped
nanoparticles travel longer distances at higher speeds, which
occurs as the frequency reduces. By contrast, for spherical
or pancake-shaped nanoparticles, the SPhP group velocity
is comparatively small for most frequencies and increases
sharply only at frequencies where the SPhP propagation length
is negligible. This is why these latter frequencies are not of
practical interest.
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FIG. 9. (Color online) (a) Dispersion relation, (b) propagation
length, and (c) group velocity of SPhPs propagating along a chain of
SiC spheroidal nanoparticles with transversal polarization and five
aspect ratios. Calculation were done for nanoparticles in contact
(d = 2a).

The dispersion relation, propagation length, and group
velocity of SPhPs propagating along a chain of SiC spheroidal
nanoparticles with transversal polarization are shown in
Figs. 9(a), 9(b), and 9(c); as a function of the frequency,
respectively. As in the case of LP, the amplitude of the
frequency interval for which the SPhPs propagate, increases
with the aspect ratio b/a of the nanoparticles. Note that
for low frequencies ω < 165 Trad/s, the SPhP wave vector
βR is practically parallel to the light line and independent
of the nanoparticle aspect ratio b/a. βR and hence the

SPhP confinement increases for higher frequencies, which
coincides with the behavior of the dispersion relation shown
in Fig. 8(a), for the LP. On the other hand, the maximum
values of the propagation length increases with b/a, which
also determines the frequencies at which they occur. For
cigar-shaped nanoparticles (b = 5a), the peak of � ≈ 103 nm
is comparatively much higher than those for spherical and
pancake-shaped ones, and it supports the propagation of SPhPs
along 10 nanoparticles. This is one order of magnitude smaller
than the number of nanoparticles that the SPhPs can propagate
along a chain with nanoparticles of the same size and shape,
but with LP. This is expected, given that the major density
of the nanoparticle electrical dipoles in the TP is located
in the poles of each nanoparticle, which does not favor the
interactions among them, as it occurs in the LP. Given that
the maximum propagation lengths for b = a and b = a/5 are
only of the order of the diameter 2a of the nanoparticles, the
propagation of the SPhPs along a chain of these nanoparticles
is not possible in the TP. Furthermore, the enhancement of
the propagation length and the amplitude of the frequency
range with the ratio b/a, indicates that for both the LP and TP,
cigar-shaped nanoparticles render SPhPs for longer distances
and wider ranges of frequency than the usual spherical ones.
For b = 5a and within the frequency interval of major interest,
in which the confinement and propagation length are relatively
high, the SPhPs propagate with a speed of about 1 μm/ps, as
shown in Fig. 9(c). These SPhPs can therefore travel along a
chain of 100 nanoparticles in about 10 ps.

Figures 10(a) and 10(b) show respectively the frequency
spectrum and the temperature dependence of the SPhP thermal
conductivity κ of a chain of nanoparticles with LP. Note that
for each aspect ratio b/a, the spectrum of κ follows a similar
frequency behavior than the propagation length � shown in
Fig. 8(b). This is consistent with Eq. (24) and confirms the
ability of cigar-shaped nanoparticles for enhancing the energy
transport of SPhPs. Even though the spectra for spherical
and pancake-shaped nanoparticles are associate with relatively
small propagation lengths [Fig. 8(b)], at certain frequencies
they overlap with the spectrum for cigar-shaped ones due
to its inverse dependence on the nanoparticle cross section
area S = πab. Based on Figs. 8(b) and 10(a), the SPhP
propagation along pancake-shaped nanoparticles appears in
a narrower frequency interval and lower propagation lengths
than those for spherical ones, but its spectrum of thermal
conductivity is comparatively higher, due to the fact that it
occurs at relatively lower frequencies, as established by the
Bose-Einstein distribution function involved in Eq. (24). As
a result of this behavior, the SPhP thermal conductivity (area
under the spectrum curves) of the chain with pancake-shaped
nanoparticles (b = a/5) is a little higher than the one with
spherical nanoparticles (b = a), as shown in Fig. 10(b).
The SPhP thermal conductivity for b = 5a increases with
temperature and is one order of magnitude higher than that for
the other two geometries and comparable to the one of air. This
relatively sizable increase of κ for b = 5a is generated by the
strengthening of the surface dipole interactions as the aspect
ratio b/a of the nanoparticles increases. This indicates that
cigar-shaped nanoparticles with LP and aspect ratios b/a � 5
are the suitable candidates to observe a sizable energy transport
by SPhPs.
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FIG. 10. (Color online) (a) Frequency spectrum and (b) temperature dependence of the SPhP thermal conductivity of a chain of SiC
nanoparticles with longitudinal polarization and three aspect ratios. Calculation were done for nanoparticles in contact (d = 2a), and in (a) we
used T = 500 K.

The frequency spectrum and temperature dependence of
the SPhP thermal conductivity κ of a chain of nanoparticles
with TP are shown in Figs. 11(a) and 11(b), respectively. As
in the case of LP, the behavior of the κ spectra is dictated
by the propagation length shown in Fig. 9(b), but their
magnitudes are determined by the frequency at which they
occur. The peak of the κ spectrum for b = a/5 is higher than
the ones for the other two nanoparticle geometries because
of its presence at a comparatively lower frequency. This is
why the SPhP thermal conductivity of a chain with these
pancake-shaped nanoparticles is much higher than those for
spherical and cigar-shaped ones. This is opposite to the result
for LP but reasonable given that in the TP, the reduction of
b keeping constant a, enhances the interaction between the
electrical dipoles placed at the north and south poles of the
nanoparticles, which results in a major energy transport by
SPhPs. However, the SPhP thermal conductivity in the TP is
comparatively much smaller than that for the LP shown in
Fig. 10(b), which ratifies that the SPhP energy transport along

the chain of polar nanoparticles is dominated by this latter
polarization.

Figure 12 shows the SPhP thermal conductance G of a
nanoparticle chain with LP, as a function of the temperature.
Given that the amplitude of the frequency interval supporting
the propagation of SPhPs increases with b/a, and G depends
only on the minimum and maximum frequencies of this
range [Eq. (25)], the thermal conductance is higher for
chains with cigar-shaped nanoparticles, as is the case of the
corresponding thermal conductivity in the diffusive regime.
The thermal conductance increases with the temperature,
such that when the chain temperature rises from 300 K to
700 K, G increases by 175%, for b/a = 5. This enhancement
is higher for spherical (200%) and pancake-shaped (187%)
nanoparticles, but through smaller thermal conductances. The
energy transport by SPhPs in the ballistic regime can therefore
be enhanced by means of lengthened nanoparticles (b > a) in
the direction perpendicular to the chain one. This trend holds
for both the LP and TP, given that the corresponding ranges of

FIG. 11. (Color online) (a) Frequency spectrum and (b) temperature dependence of the SPhP thermal conductivity of a chain of SiC
nanoparticles with transversal polarization and three aspect ratios. Calculation were done for nanoparticles in contact (d = 2a), and in (a) we
used T = 500 K.
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FIG. 12. (Color online) Temperature dependence of the SPhP
thermal conductance of a nanoparticle chain with longitudinal
polarization. The black line corresponds to the quantum of thermal
conductance G0 = π 2k2

BT /3h and the calculation were done for
nanoparticles in contact (d = 2a).

frequency supporting the SPhP propagation are practically the
same, as shown in Figs. 8 and 9.

V. CONCLUSIONS

The energy transport of surface phonon polaritons prop-
agating along a chain of spheroidal polar nanoparticles

has been analyzed in detail, for both the longitudinal and
transversal polarizations. Under the dipolar approximation for
each nanoparticle, explicit and closed-form expressions for the
dispersion relation and propagation length have been derived
and used to determine the values of the nanoparticle polariz-
ability and the interparticle distance that optimize the polariton
propagation length. The thermal conductance and thermal
conductivity of polaritons have been also determined and
examined as a function of the geometry of the nanoparticles
and their temperature. For a chain of SiC nanoparticles with
an aspect ratio of 5, longitudinal polarization, and surrounded
by air; it has been shown that cigar-shaped nanoparticles
support the propagation of surface phonon polaritons in
wider ranges of frequency, with longer propagation lengths,
and higher thermal conductivities than spherical ones. The
polariton thermal conductivity of this chain at 500 K, is
41 mW m−1 K−1, which is comparable to that of air and ten
times higher than the corresponding one in the transversal
configuration. Furthermore, the polariton thermal conductance
is not so sensitive to the chain polarization, increases with the
temperature, and at 500 K is 44 pW K−1, which represents
9% of the quantum of thermal conductance. The proposed
theoretical formalism and obtained results are expected to
be useful for guiding the design and fabrication of chains
of nanoparticles with optimized energy transport by surface
phonon polaritons.
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