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Influence of dislocation strain fields on the diffusion of interstitial iron impurities in silicon
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The efficiency of silicon (Si)-based solar cells is strongly affected by crystal defects and impurities. Metallic
impurities, in particular interstitial iron (Fe) atoms, cause large electric losses because they act as recombination
centers for photogenerated charge carriers. Here, we present a systematic first-principles density functional
theory (DFT) study focusing on the influence of hydrostatic, uniaxial, and shear strains on the thermodynamic
stability and the diffusivity of Fe impurities in crystalline Si. Our calculations show that the formation energy
of neutral Fe interstitials in tetrahedral interstitial sites is almost unaffected by uniform deformations of the
Si crystal up to strains of 5%. In contrast, the migration barrier varies significantly with strain, especially for
hydrostatic deformation. In order to determine effective diffusion coefficients for different strain states, a kinetic
Monte Carlo (kMC) model was set up based on the activation energy barriers and frequency factors obtained
from the DFT simulations. By using the strain dependence of the migration barrier, we examined the migration
of Fe interstitials in the vicinity of perfect 1/2〈110〉 screw and 60◦ mixed dislocations, and 1/6〈112〉90◦ and
30◦ partial dislocations. While the strain field of the perfect screw dislocation always enhances the local Fe
diffusion, the existence of tensile and compressive regions around the 60◦ mixed dislocation results in a strong
anisotropic diffusion profile with significantly faster and slower diffusivities on its tensile and compressive sides.
The influences of the partial dislocations are qualitatively similar to that of the 60◦ mixed dislocation.

DOI: 10.1103/PhysRevB.92.115309 PACS number(s): 88.40.jj, 62.20.−x, 71.55.Ak, 71.15.Mb

I. INTRODUCTION

The economically most important feed-stock material for
silicon-based solar cells is metallurgical multicrystalline sili-
con (mc-Si). Unfortunately, this relatively cheap material con-
tains large concentrations of metallic impurities, which cause
electrical efficiency losses either by acting as recombination
centers [1–5] or by forming second-phase precipitates [6,7].

One of the most detrimental impurities is interstitial Fe.
Even though many of its negative influences are well under-
stood [1,2], some fundamental mechanisms associated with
thermodynamic and kinetic aspects of the Fe-Si interaction
are still a matter of debate [8–10]. For instance, little effort
has been made to study the effect of mechanical stress
on the segregation and diffusion of Fe in Si even though
experiments show a preferential agglomeration of metallic
impurities in regions of high local strains [11] associated with
dislocations [12], grain boundaries [13,14], and other extended
defects such as precipitates [15].

In particular the interactions between metallic impurities
and dislocations, which are characterized by narrow cores as
well as long-range elastic strain fields, present a challenging
problem. Metallic impurities tend to preferentially segregate at
dislocation cores but are also attracted by strain fields around
dislocations [9,16–18]. The segregated impurity atoms may
either enhance or inhibit elementary dislocation processes such
as glide, climb, or cross slip, and hence affect the dislocation
density during processing of mc-Si [19,20]. In addition, the
lattice distortions around dislocations are suspected to influ-
ence the migration barriers for diffusing interstitial impuri-
ties [9,16]. The presence of dislocations can therefore strongly
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affect the thermodynamic and kinetic aspects of the impurity
distribution in the material. For instance, dislocation clusters
are known to act as favorable seeds for precipitation of iron
silicide particles in mc-Si [18,21]. However, the understanding
of the underlying atomic-scale mechanisms associated with the
dislocation-impurity interactions is still incomplete.

In this work, we investigate the effect of mechanical
strain on the behavior of interstitial Fe impurities in bulk
Si by means of first-principles calculations based on density
functional theory (DFT). Two main aspects are considered:
(i) the thermodynamic stability of Fe impurities at finite
temperatures and various strain states, and (ii) the effect of
strain on Fe diffusion. In order to determine effective diffusion
coefficients for different strain states, a kinetic Monte Carlo
(kMC) model was set up based on the activation energy barriers
and frequency factors obtained from the DFT simulations.
By using the strain dependence of the migration barriers, we
examine Fe migration in the long-range strain fields of perfect
as well as dissociated 1

2 〈110〉 screw and 60◦ mixed dislocations
outside of their core regions.

The paper is organized as follows: in Sec. II, the com-
putational methods and the structural model are described.
Thermodynamic properties of Fe impurities at finite tempera-
tures and various strain states are reported in Sec. III. Results
for the diffusion of interstitial Fe in a strained perfect crystal
are presented in Sec. IV. Section V addresses the diffusion of
Fe atoms in strain fields of dislocations in Si. The results are
discussed in Sec. VI, and the work is summarized in Sec. VII.

II. COMPUTATIONAL METHODS
AND STRUCTURAL MODEL

A. Computational methodology

All DFT calculations were carried out using the Quantum
Espresso PWscf code [22], which uses a plane-wave basis to
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TABLE I. Cubic elastic constants and bulk modulus of bulk Si
(in GPa).

[GPa] Calc. Exp. [29]

C11 149 165.6
C12 59 63.9
C44 99 79.5
B 89 97.8

represent the wave functions of the valence electrons. Inter-
actions of ionic cores and valence electrons were described
by ultrasoft pseudopotentials. The PBE generalized gradient
approximation was used for exchange-correlation [23,24]. All
calculations for supercell models containing Fe atoms were
carried out as spin-polarized. Energy cutoffs of 35 Ry and
350 Ry for the plane-wave basis and electron-density Fourier
expansion, respectively, were found to yield converged total
energies within an accuracy of 0.005 eV. The Brillouin-
zone integrals were calculated on a 4×4×4 Monkhorst-Pack
grid [25] with a Gaussian broadening of 0.25 eV. Atom
positions were relaxed until the residual forces acting on the
atoms were less than 10−3 eV/Å and the total energy was
converged to 10−5 eV. The minimum energy paths (MEPs) for
jumps of Fe atoms between neighboring sites were calculated
using the nudged elastic band (NEB) method [26]. In addition,
the climbing image NEB (CI-NEB) method was applied to
ensure an accurate determination of the migration barriers [26].
The threshold for the total forces, which are acting on the NEB
images of an interpolated reaction path, was set to 0.05 eV/Å.

B. Structural models

In all DFT calculations, a cubic diamond supercell with
64 Si atoms was used. Validation calculations for several
structures with a larger supercell containing 96 Si atoms
yielded identical results. The calculated equilibrium value of
the cubic lattice constant is 5.467 Å, which is in agreement
with experimental (5.431 Å [27]) and other calculated data
(5.469 Å [28]). Calculated values of the cubic elastic con-
stants also agree reasonably well with experimental data (cf.
Table I; the deviations are typical for DFT results within the
generalized gradient approximation).

C. Diffusion at the atomic scale

Diffusion at the atomic scale happens by thermally activated
jumps of atoms. The rate � of such an atomic jump can be
described by the transition state theory (TST) [30] as

� = νe−�E/kBT , (1)

in which ν is the frequency factor, �E is the migration energy
barrier along the path, kB is the Boltzmann constant, and T is
the absolute temperature.

In this work, the energy barriers for atomic jumps between
interstitial sites were obtained from minimum-energy-path
calculations using the CI-NEB method [26]. The frequency
factors were obtained for given q points in the phonon
Brillouin zone (BZ) from products of phonon frequencies at the
stable initial-state configuration ν0 and at the transition-state

configuration ν† as [30]

νq =
∏3Natoms

i=0 ν0
i (q)∏3Natoms−1

j=0 ν
†
j (q)

. (2)

In a system of Natoms atoms, there are 3Natoms vibration
frequencies for each q point in the BZ. In the transition
configuration, the imaginary frequency associated with the
unstable mode is excluded from the product in Eq. (2). The
frequency factor ν in Eq. (1) is obtained by averaging a sample
set of νq’s evaluated on a Monkhorst-Pack mesh of Nqq points
in the BZ [25]:

ν = 1

Nq

Nq∑
i=0

νq. (3)

D. Kinetic Monte Carlo

Diffusion coefficients can be calculated analytically for
perfect crystals with only one relevant migration process
for the diffusing species. However, alloying elements, the
presence of structural defects, and the application of external
stresses give rise to nonuniform deformations that make
the migration pathways in a crystal nonequivalent. In these
cases, more sophisticated approaches, such as kinetic Monte
Carlo simulations [31–35], are needed to extract the diffusion
behavior.

Within the kMC approach, the actual crystal system is
mapped on a lattice and the trajectory of the diffusing particle
is evolved by stochastic events with known jump rates. For the
case of interstitial diffusion, the interstitial sites form the kMC
lattice on which the migrating atoms can jump according to
the TST. To evolve such a system for a given configuration,
the sum of the rates of all accessible jump events, �total,
is calculated. Subsequently, a uniformly distributed random
number r between 0 and 1 is generated and the pth jump event
is chosen according to

p−1∑
i=0

�i < r�total �
p∑

i=0

�i. (4)

Since the reaction rates are constant and independent of the
system’s history, the process is a Poisson process [36] and,
hence, the evolution for the nth kMC step in real time is given
by

tn = tn−1 − �total ln r ′, (5)

where r ′ is another uniformly distributed random number
between 0 and 1. From the final trajectory, one can obtain
observables such as the diffusivity or the probability to
find a particle at a given site. The observables are acquired
from averages of an ensemble of trajectories to ensure their
convergence.

Diffusion constants are obtained from mean-square dis-
placements, �r2

i , of all the diffusing particles by

D =
Nparticles∑

i=0

�r2
i

2Nttotal
, (6)

where Nparticles is the number of diffusing particles in the
system and ttotal is the total time of the trajectory.
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FIG. 1. (Color online) Four different configurations of Fe impurities (red spheres) in the diamond structure of Si (blue spheres) are shown.
The local coordination shell is depicted as a red polyhedron. The pictures show a projection along the [110] direction.

III. THERMODYNAMICS OF IRON
IMPURITIES IN SILICON

A. Temperature dependence of defect formation
energies for iron impurities

Previous studies [1,37,38] have shown that Fe impurities in
bulk Si can be located in three different configurations. The
Fe atom can occupy either interstitial sites with tetrahedral
Td or trigonal D3d symmetries [39] (the trigonal site is
commonly called “hexagonal” due to its six Si neighbors) or Fe
can substitute Si on regular sites. These three configurations
are displayed in Fig. 1 together with a configuration of the
transition state (marked as TRA in the following) between the
tetrahedral and hexagonal sites (see discussion bellow).

In a perfect Si single crystal, the tetrahedral (TET) site is
known to be energetically more favorable for the interstitial Fe
than the hexagonal (HEX) site [37]. Our calculated energy
difference between the TET and HEX configurations of
0.60 eV agrees well with the value of 0.57 eV obtained in
previous DFT calculations [37]. It has also been reported that
interstitial Fe atoms will preferentially occupy Si vacancies
[forming substitutional (SUB) Fe defects] rather than forming
a defect complex with the Si vacancy [38].

The formation energy Ef of a defect configuration can be
calculated as

Ef = Etotal − NSiμSi − NFeμFe, (7)

where Etotal is the total (internal) energy of the supercell with
the Fe impurity, NSi and NFe are the numbers of Si and Fe atoms
in the supercell, respectively, and μSi and μFe are the chemical
potentials for Si and Fe, respectively. In our calculations, μSi

has been chosen to be equal to the chemical potential of
Si in the crystalline equilibrium diamond structure, and μFe

such that the formation energy of an interstitial Fe atom at a
tetrahedral site in a Si single crystal is zero. This corresponds
to the Si-rich limit of the binary Si-Fe system. In unstrained Si,
we obtained formation energies of 0.0, 0.70, 0.56, and 0.76 eV
for all the TET, TRA, HEX, and SUB defects, respectively.
The calculated values for excess volumes for these defects
turned out to be negligibly small. The formation energy of a
SUB defect includes the formation energy of the Si vacancy.

In order to take into account finite-temperature effects,
we also investigated the phonon contributions to the defect
formation energies [40]. The phonon densities of states for the
different defect configurations and for the perfect Si crystal
were calculated, using the Phonopy software package [41],

from the dynamical matrix obtained from finite atomic
displacements in the harmonic approximation [40,42]. Atomic
displacements from equilibrium positions were set to 0.05 Å.
From the phonon density of states, it is straightforward to
calculate the free energy of defect formation for a given
temperature [43]. The calculated temperature dependencies
of the free energies for the four defect configurations are
shown in Fig. 2. Since all four curves look very similar, the
relative energy differences between the defect configurations
are almost independent of temperature. Hence, it is reasonable
to assume that temperature does not affect significantly the
hierarchy of defect formation energies for Fe impurities in bulk
Si, and therefore the temperature dependence is not further
taken into account.

B. The effect of strain on the defect-formation
energy of Fe impurities

In order to investigate the effect of elastic strain ε on
the defect formation energies, different uniform strain states
with strain magnitudes ranging between −5% and +5% were
applied. The considered strain modes were: hydrostatic strain
εHyd, uniaxial strains ε[100], ε[110], ε[111], ε[112], and shear strains
τ[010],[001], τ[112̄],[111], τ[1̄10],[112̄], τ[111],[1̄10]. Strain is applied by

FIG. 2. (Color online) Temperature dependencies of the free
energies of defect formation for the four different Fe defect
configurations.
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the deformation of the conventional cubic fcc unit cell with a
lattice constant of a0 and cell vectors [44],

a =
⎛
⎝a1

a2
a3

⎞
⎠ =

⎛
⎜⎝

a0 0 0

0 a0 0

0 0 a0

⎞
⎟⎠, (8)

by applying a deformation matrix D such that new cell vectors
a′ are

a′ = (I + D) · a, (9)

where I is the identity matrix. The deformation matrices are
given in the Appendix. In addition to the formation energies of
interstitial Fe defects, the formation energies of substitutional
Fe defects and Si vacancies were also calculated. As mentioned
above, the Si-vacancy + Fe-interstitial complex is not as stable
as a Fe-substitutional unstrained Si, but this relative stability
may be altered by applied strains. For the calculations of the
formation energies under external strain, we always set the
chemical potential of Si [μSi in Eq. (7)] at the same strain
state as for the perfect Si crystal containing the Fe impurity.
The defect formation energies for all applied strain modes are
displayed in Fig. 3. Note that the energy scales for the Fe
impurities are different from that for the Si vacancy.

Due to the lattice symmetry, the tetrahedral interstitial
sites in bulk Si remain equivalent for arbitrary homogeneous
strain. In contrast, the hexagonal interstitial sites become
nonequivalent depending on the strain state of the system.

FIG. 3. (Color online) Formation energies of the different Fe
defects and the Si vacancy in Si for different strain states. The energy
scale for the Fe impurities is on the left side and the energy scale
for the Si vacancy is on the right side. Negative strain corresponds to
compression and positive strain corresponds to expansion.

FIG. 4. (Color online) The interstitial tetrahedral site (red sphere)
in Si is connected via hexagonal sites (small black spheres) in 〈111〉
directions with four neighboring tetrahedral sites.

The four differently oriented hexagonal sites in the rectangular
supercell system differ by the orientation of their large facet,
which is orthogonal to one of the following four directions:
[111], [1̄11], [11̄1], and [111̄] (see Fig. 4). These four
hexagonal sites are therefore labeled in the following by their
directions from the tetrahedral site.

As displayed in Fig. 3, the formation energy for the TET
configurations remains almost constant for all investigated
strain states. The strain dependencies for the HEX config-
urations follow linear relations in the cases of hydrostatic
and uniaxial strains. The largest change in the interstitial
formation energies is for the hydrostatic strain, for Fe at the
HEX site it changes by almost 1.2 eV over the range of ±5%
strain. In the case of uniaxial strains, the changes are only by
about 0.5 eV for the same strain range. For shear strains, the
HEX formation energies depend nonlinearly on the strain with
maximum variations reaching also about 0.5 eV (e.g., for the
τ[010],[001]). In all cases, there is at least one hexagonal site that
shows a reduction in the formation energy during shear.

The formation energies for the Fe substitutional and the Si
vacancy follow similar parabolic trends, but the variations are
more pronounced for the latter. In all investigated cases, the
transformation of a Fe-substitutional into an Si-vacancy + Fe-
interstitial defect complex is unlikely because the formation
energy for substitutional (SUB) Fe remains smaller than the
sum of the formation energies of the interstitial TET Fe and
the Si vacancy.

The formation energies for charged Fe+ defects in Si have
not been calculated because Fe+ is mainly present in p-doped
Si and forms defect clusters with shallow acceptors such as
boron [1,37]. In order to accurately describe the energetics
and kinetics of charged Fe+, it would therefore be necessary
to consider such defect clusters of Fe with B. This is not in the
scope of the present work.

IV. DIFFUSION OF IRON IN STRAINED SILICON

To analyze the migration of Fe impurities in Si, we first
determined the frequency factors for the TET → HEX and
HEX → TET jumps from phonons according to Eqs. (2)
and (3). For the unstrained Si crystal, we obtained frequency
factors of νTET→HEX = 30 THz and νHEX→TET = 18 THz. For
simplicity, the frequency factors for Fe are taken to be the same
as well for the strained cases in the following.

The MEPs and associated migration barriers for Fe jumps
between the interstitial TET and HEX sites were calculated
using the CI-NEB method for all investigated strain states but
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FIG. 5. (Color online) Minimum energy paths for interstitial Fe
migration between two tetrahedral sites for different uniaxial [100]
strains.

only for the three strain magnitudes of −5%, 0, and +5%. For
illustration, the MEPs for different uniaxial [100] strains are
shown in Fig. 5. The migration barrier decreases for tension
and increases for compression. The HEX site corresponds to
a local energy minimum and its relative stability with respect
to the TET site depends strongly on the applied strain.

All computed energy barriers are compiled in Fig. 6. The
reference energy barrier for Fe diffusion from a TET to a HEX
site in unstrained bulk Si amounts to 0.74 eV while the barrier
height for the reverse jump (HEX to TET) is only 0.19 eV. The
largest changes in the energy barriers are observed for the hy-
drostatic strain. The energy barrier between the TET and HEX
sites decreases to about 0.3 eV for +5% strain while the energy
barrier for the reverse direction increases to about 0.25 eV. For
negative strain of −5%, the energy barrier between the TET
and HEX sites increases to about 1.20 eV, for the reverse
direction the energy barrier almost vanishes. A similar but less
pronounced change is found for uniaxial strain. Some of the
deformations, e.g., uniaxial strain along the [111] direction, do
not conserve the equivalence of the hexagonal sites, and thus
different energy barriers for different directions are obtained.
For all shear strains, the migration barriers are reduced
for both directions. Again, the magnitude of the reduction
depends specifically on both the elastic shear direction and the
geometric jump direction. This is of particular interest because
it is not reflected in the formation energies shown in Fig. 3,
i.e., the formation energy for the HEX site increases with strain
whereas the energy barrier decreases for both jump directions.

To investigate the influence of the migration barrier changes
on the diffusion of Fe, lattice-based numerical kMC simula-
tions were employed. A rate table for the different migration
directions was set up using Eq. (1) with the calculated energy
barriers from Fig. 6 and the frequency factors given above
for the unstrained supercell. The diffusion constants (with a
standard deviation lower than 1%) for different strain states
were obtained by averaging one hundred kMC runs (each
having one million kMC steps) according to Eqs. (4)–(6).

Figure 7 displays the temperature dependencies of the
diffusion coefficient (with respect to the diffusion coefficients

FIG. 6. (Color online) Energy barriers for forward and backward
jumps between the TET and HEX sites obtained using CI-NEB
calculations. The dashed line corresponds to the energy barrier for
migration of Fe interstitials in unstrained bulk Si. The solid blue and
green lines indicate to the effective energy barriers obtained from the
kMC simulations.

of interstitial Fe in unstrained bulk Si) for all investigated
strain types. Despite the consideration of different migration
directions and the strain-induced change of the crystal structure
(symmetry), the Fe diffusion always follows an Arrhenius

FIG. 7. (Color online) Temperature dependencies of relative dif-
fusion coefficients (with respect to Fe diffusion in unstrained bulk Si)
for all investigated strain states obtained from kMC simulations. The
shaded areas emphasize data with quantitatively similar behaviors.
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behavior. The effective energy barriers are included in Fig. 6 as
green and blue solid lines. They only deviate slightly from the
lowest energy barriers found for the TET → HEX migration.
The reverse migration direction has no significant influence
on the effective energy barriers. Beware that due to our
simplification of setting the frequency factors to those of the
unstrained crystal, the intercepts may be inaccurate and, hence,
they are not considered here. The results for D/Dbulk can be
sorted into four quantitatively similar groups. The two extreme
cases, i.e., strongly reduced and strongly enhanced diffusion,
occur for +5% and −5% hydrostatic strain, respectively. The
third group, consisting of compressive uniaxial strains, leads
to a slightly lower diffusivity. The majority of the strain states,
including all types of shear strain, form a fourth group that
causes a moderately higher diffusivity.

V. FE IN THE STRAIN FIELD OF PERFECT
AND PARTIAL DISLOCATIONS

Dislocations are line defects accompanied by long-ranged
stress and strain fields that, according to the linear elasticity
theory, diverge at the dislocation centers [45]. In the region
around the dislocation center, usually referred to as the
dislocation core, linear elasticity ceases to be valid and
nonlinear elasticity [46] or the discrete atomic structure need to
be taken into account. In this work, we focus on the interactions
between the interstitial Fe impurities and the long-ranged strain
fields of dislocations in Si.

The most frequent types of dislocations in Si are the 1
2 〈110〉

screw and 60◦ mixed dislocations [47]. The cores of both
dislocations are known to be dissociated into two Shockley
partial dislocations with Burgers vectors a/6〈211〉, according
to Refs. [45,47]:

a

2
[11̄0] → a

6
[21̄1̄] + a

6
[12̄1]. (10)

These partials are connected by a stacking fault. The perfect
screw dislocation dissociates into two 30◦ partial dislocations
while the 60◦ mixed dislocation dissociates into one 30◦
and one 90◦ partial dislocation [47]. The dissociation of the
dislocation core is of particular interest in Si because the
dissociation length can reach up to 5 nm due to the very
low stacking fault energy of about 0.05 J/m2 [48–51]. For
simplicity, we treat in the following the partial dislocations as
individual objects since the strain field of the stacking fault is
negligibly small relative to the strain fields of the cores. The
crystallographic orientations for the dislocations are sketched
in Fig. 8. The strain field of the screw dislocation has an axial
symmetry and can be decomposed into shear strains τxzτyz

along the dislocation line only [45]. The strain fields of the

FIG. 8. (Color online) Orientation for the screw and 60◦ mixed
dislocations and the 90◦ and 30◦ partial dislocations. The stacking
fault associated with the partial dislocation is not shown here.

FIG. 9. (Color online) Parameterizations of the change of the
migration barrier es(ε) for strain component s and strain value ε

by a polynomial function. Only strain components necessary for the
dislocation strain fields are shown. The different colors represent the
different 〈111〉 migration directions (of Fig. 8).

60◦ mixed and the 30◦ partial dislocations have more complex
symmetries as they consist of strain components with both
screw and edge characters. The latter includes dilatational
strains εx and εy and shear strain τxy perpendicular to the
dislocation line [45]. The 90◦ partial dislocation is a pure
edge dislocation with a corresponding strain field. Note that
decompositions of dislocation strain fields into individual
strain components are not unique but depend on the choice
of the geometrical reference frame (for the orientations used
here see Fig. 8).

In order to analyze the diffusion of Fe in the strain fields
of the four dislocations, we first parametrized the changes
of the migration barriers as functions of the relevant strain
components. This was done by interpolating the barrier
changes calculated for strains ranging between −5% and +5%
(cf. Fig. 6) with a polynomial function. Results of these inter-
polations, showing the barrier change es(ε) = �E(ε)/�Ebulk

for the two dilatational and four shear strains needed for the
dislocation strain fields, are presented in Fig. 9. The different
colors in each graph correspond to migration pathways in the
different 〈111〉 directions.

In linear elasticity, the total strain field at an arbitrary loca-
tion in the field of the dislocation (outside of the dislocation
core) is given by superposition of all strain components. The
corresponding migration barrier at this location can be then
written as

�E(ε) = �Ebulk ·
Nstrain∏
i=1

e(εi), (11)

where Nstrain is the number of strain components.
Figure 10 shows the variations of migration barriers for

Fe jumps along different 〈111〉 directions in the strain fields
of all four considered dislocations. As expected, the most
pronounced barrier changes are close to the dislocation cores,
where the amplitude of the strain field is largest. In case
of the screw dislocation, the influence of the elastic field
is rather short-ranged and the migration barrier differs less
than 0.01 eV from the bulk value at a distance of 40 Å away
from the dislocation core. For the 60◦ mixed dislocation, the

115309-6



INFLUENCE OF DISLOCATION STRAIN FIELDS ON THE . . . PHYSICAL REVIEW B 92, 115309 (2015)

FIG. 10. (Color online) Migration barrier for interstitial Fe impurities in the strain field of a 60◦ mixed dislocation, screw dislocation, 90◦

partial dislocation, and 30◦ partial dislocation for different migration directions. The yellow circles indicate the core region of the dislocation
(radius chosen to be 5 Å) where our model is not applicable due to core effects. The panels on the right show cross sections along the dashed
green lines marked in the contour plots. The dotted horizontal black line indicate the migration barrier for Fe in bulk Si.

influence of the strain field on the migration barrier is much
more pronounced and its difference from the bulk value falls
below 0.01 eV at a distance of about 150 Å away from the
dislocation core (not shown here). The shear strain field of the
screw dislocation leads only to a decrease of the migration
barrier, whereas for the 60◦ mixed dislocation the migration
barrier is increased in the compressive region (positive y

values) and decreased in the tensile region (negative y values).
The strain fields of both partial dislocations influence the
migration barrier similarly as that of the 60◦ mixed dislocation,
predominantly due to the edge components of their strain
fields. The influence is more pronounced for the 90◦ partial
dislocation than for the 30◦ partial dislocation due to the larger
edge character.

For all dislocations, the migration barrier depends also on
the migration direction, which leads to direction-dependent
shapes of the contour plots. Cross sections along the green
dashed lines are shown in the right-most panels. For the 60◦
mixed dislocation and the two partial dislocations, different
〈111〉 migration directions have almost the same migration
barriers in the tensile region, while in the compressive region
the [111] migration direction has a slightly larger migration
barrier then the other three directions. However, in both cases
the deviations between the different directions are hardly
significant.

In order to estimate the influence of the strain field on the
diffusion of interstitial Fe, we compare the ratio λ between the
migration rate �local,direction(r), in different migration directions
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FIG. 11. (Color online) Angle-averaged distance-dependent ratios between migration rates of interstitial Fe around dislocations and in the
perfect crystal of Si in the two halfspace above (a) and below (b) the glide plane of the dislocation for the two temperatures T = 100 K and
T = 300 K.

at a position r and the migration rate in bulk �bulk. This ratio
is given by

λ(r) = 1

4

∑
direction

�local,direction(r)

�bulk

= 1

4

∑
direction

e−�Elocal,direction(r)/kBT

e−�Ebulk/kBT
, (12)

where λ = 1 corresponds to a bulk-like migration while Fe
migration is enhanced or decreased for λ > 1 or λ < 1,
respectively. From λ angle-averaged rates are calculated. Since
for all cases but the screw dislocation the migration behaviors
are different in the two halfspaces above (a) and below (b) the
glide plane of the dislocation [i.e., (a) y > 0 and (b) y < 0
in Fig. 10], separate λa(r) and λb(r) are calculated for these
two regions. The angle-averaged λa(r) and λb(r) around the
dislocation center are calculated from the ratio λ(r) in Eq. (12)
according to

λa(r) =
∫ π

0
λ(r,θ )dθ (13)

and

λb(r) =
∫ 0

−π

λ(r,θ )dθ, (14)

where r and θ are the polar coordinates of r in a plane
perpendicular to the dislocation line, and the half spaces
above and below the glide plane are denoted by the subscripts
a and b.

In Fig. 11, we show the results of λ̄a(r) and λ̄b(r) for the
different dislocations at T = 100 and 300 K. In the lower half
space (left panels) the migration of Fe is enhanced in all cases.
The 60◦ dislocation has the largest influence on the migration.
In the upper half space (right panels) only the screw dislocation
leads to an increase of the diffusion, which is the same for the
upper halfspace. The compressive strain fields of the other tree
dislocations lead to a decrease of the diffusion.

The influence of the screw dislocation has the shortest
range. This is reflected in the decay of λa(r) and λb(r) as a
function of r . For the screw dislocation it approaches the bulk
value faster than for the 90◦ and 30◦ dislocation. The influence
of the 60◦ dislocation has the longest range.

With increasing temperature, the influence of the strain field
on the diffusion is less pronounced. While λa is about 2.5 at
a radius r = 15 Å for the 60◦ dislocation at T = 100 K, it is
only 1.35 for T = 300 K.

VI. DISCUSSION

The results of our DFT calculations show that the behavior
of Fe atoms in a bulk Si crystal is not significantly affected
by temperature. The temperature neither changes the stability
hierarchy of the Fe defect configurations nor does it influence
the predominant migration mechanism, i.e., the MEP and its
energy barrier for migration of a Fe interstitial between the
neighboring tetrahedral sites. This finding is consistent with
experimental observations of only one operating mechanism
for diffusion of Fe in Si over a wide range of temperatures [52].
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It is still a matter of debate why Fe impurities are attracted
by regions of large elastic strains [8,11,12,15]. The stability
of the most favorable configuration for Fe atoms occupying
the interstitial tetrahedral sites in Si remains almost unaltered
in the presence of realistic strain fields ranging within ±5%
(cf. Fig. 3). Therefore, there is no thermodynamic driving
force for the accumulation of Fe impurities in regions of large
strain associated with high concentrations of dislocations or
other extended crystal defects. This result is consistent with
the experimental observation of Lu et al. that the gettering
of interstitial Fe by the strain field of dislocations is very
inefficient [53].

Nonetheless, the formation energies of other interstitial and
substitutional Fe defects are affected by strain. Even though
these configurations are not thermodynamically stable, they
play a role in the diffusion of Fe impurities. We carried out
extensive MEP calculations to study the effect of various
homogeneous strains on the migration of Fe atoms in Si.
The results for the energy barriers were then used for the
parametrization of a mesoscopic kMC simulation model to ob-
tain effective diffusion coefficients under various strain states
and temperatures. The effects of different strain states could be
classified into four groups (cf. Fig. 7). For all considered cases,
the diffusion of Fe follows an Arrhenius behavior with effective
energy barriers close to that of the lowest energy barrier for
the TET → HEX migration direction. Hydrostatic strains lead
to the largest changes of Fe diffusion. For 5% hydrostatic
expansion of the lattice the diffusion at room temperature
becomes seven orders of magnitude faster than the diffusion in
unstrained Si. An analogous reduction of the Fe diffusivity by
eight orders of magnitude occurs for hydrostatic compression
of the same magnitude (cf. Fig. 7). Similarly, all the uniaxial
compressive and tensile strains also lead to a decrease and an
increase of the Fe diffusion, respectively, albeit not to such
dramatic ones. Rather surprising is our finding that a shearing
of the crystal structure results always in an enhancement of
the Fe diffusion, which is similar to that found for uniaxial
tension. In summary, we observe an increase of Fe diffusion
for all types of strain except for compressive strain.

The obtained dependencies for the migration barriers on
the applied strain were utilized to analyze the diffusional
behavior of Fe interstitial in the strain fields of the perfect
screw and 60◦ mixed dislocations as well as of the partial
90◦ and 30◦ dislocations in Si. Due to the shear character of
its strain field, the perfect screw dislocation always enhances
the Fe diffusion in its vicinity. However, the effect is rather
short-ranged, within a radius of less than 4 nm. In contrast,
the perfect 60◦ mixed dislocation enhances Fe diffusion on
one side and impedes it on the other side, since the migration
barriers are increased in the compressive and reduced in the
tensile regions of the dislocation (cf. Fig. 10). The barriers are
systematically influenced by strain even beyond 15 nm from
the dislocation center, i.e., within a significantly larger region
than around the screw dislocation.

Both partial dislocations behave qualitatively similarly as
the 60◦ mixed dislocation although the barriers are affected
within a smaller range (smaller for the 30◦ than for the 90◦
partial dislocation). A superposition of the effects of the
two partials can be used to determine whether dissociated
dislocations alter the migration barrier differently than the

perfect dislocations. Since the dissociated 60◦ mixed dislo-
cation is composed of the 30◦ and the 90◦ partials separated
by less than 5 nm, its overall effect on the migration barrier is
qualitatively same as that of the perfect dislocation. In contrast,
the dissociated screw dislocation will influence the migration
barrier of Fe markedly differently than the perfect dislocation,
since two 30◦ partials have both screw and edge characters.
The dissociation in this case therefore gives rise to regions
of inhibited and enhanced Fe diffusivity around the screw
dislocation.

For all dislocations the most pronounced changes of the
migration barriers occur close to the dislocation cores where
the stresses and strains are largest. As mentioned above, we
did not consider the core effects in this study, since the atomic
structure of the core is very different from that of perfect Si
crystal and linear elasticity does not apply there [46].

Without taking the core effects into account, the understand-
ing of the role of dislocations on the distribution and diffusion
of Fe in Si remains incomplete. Nevertheless, we attempt to
relate our current findings to some experimental observations.
There exists experimental evidence [9,54,55] that dislocations
cause a strong recombination activity after metallic impurities
have been incorporated into the Si material. Moreover, a
direct correlation between the interstitial Fe concentration
and the dislocation density was reported by Lauer et al. [17].
This is further supported by transmission electron microscopy
of a Fe-decorated interfacial screw dislocation in a SiGe/Si
heterostructure by Lu et al. [53]. These observations are
consistent with our findings as enhanced diffusion around
dislocations is observed by which Fe atoms can be transported
easily to regions of higher dislocation densities. However, the
preferential segregation of Fe has to occur within the core
region. In addition, the dislocation core may also act as a
strong diffusion channel along the dislocation line for Fe in Si
(pipe diffusion), as observed for instance for Si in Al [56].

The diffusion of Fe in n-doped Si under external uniaxial
stress along [110] has been studied by Suzuki et al. [8,57]
using Mössbauer spectroscopy. The activation energy barrier
for interstitial Fe diffusion was found to decrease from 0.68
to 0.33 eV for a stress of about 19 MPa at room temperature.
Since the lattice strain corresponding to this stress is much
lower than 1%, the expected change for the migration barrier is
very small. According to our calculations, the reduction of the
migration barrier to 0.35 eV requires an application of external
hydrostatic stress of about 4.4 GPa (cf. Table I), which is much
higher that the reported stress value. A possible explanation of
the experimental observations of Suzuki et al. may be related
to large local stress associated with dislocation entanglements
and their changes under external loading; unfortunately, no
information about the dislocation distribution and arrangement
was given.

VII. SUMMARY

Defect formation energies (including the vibrational en-
tropy contribution) for different interstitial and substitutional
defect configurations of atomic Fe impurities in crystalline Si
were computed using DFT-based first-principles calculations.
The relative energies of the investigated defect configurations
are almost independent of temperature in a range between 0
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and 600 K. Therefore, temperature is not expected to affect
significantly the behavior of Fe impurities in Si.

The effects of various elastic strain modes, namely hydro-
static, uniaxial, and shear strains, on the formation energies
of Fe impurities were investigated in detail. Surprisingly, the
stability of the most favorable configuration, an interstitial Fe
atom at a tetrahedral site, is not significantly affected by any
of the strain modes. However, the strain affects the formation
energies of other defect configurations as well as the diffusion
behavior of Fe in Si.

Combined DFT calculations of minimum energy paths
combined with kMC simulations were used to obtain the
effective diffusion coefficients as function of strain and
temperature. It was found that tensile and shear strains can
significantly enhance the Fe diffusion at room temperature,
whereas compressive strains result in diffusion impediment.
These results were used to analyze the influences of the strain
fields of perfect screw and 60◦ mixed dislocations on the
migration of the Fe interstitial. For both dislocations the most
pronounced changes of the migration barriers occur close to
the dislocation cores where the stresses and strains are largest.
The strain field of the perfect screw dislocation enhances
the Fe diffusion within 4 nm from the geometric center of
the dislocation. The perfect 60◦ mixed dislocation can both
enhance and impede the Fe diffusion since the migration
barriers are increased in the compressive and reduced in the
tensile regions of the dislocation. When the dislocations are
split into partial 90◦ and 30◦ dislocations, qualitatively similar
behavior to the 60◦ mixed dislocation is found. Consequently,
the edge character of the two 30◦ partial dislocations changes
the qualitative behavior of the screw dislocation to be longer
ranged and more efficient.
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APPENDIX

In the following, we list the transformation matrices D,
which are used to introduce an elastic strain to the cubic 64-
atom supercell of the diamond structure of Si. For hydrostatic
strain εHyd (ε), the deformation matrix is⎛

⎝ε 0 0
0 ε 0
0 0 ε

⎞
⎠. (A1)

For uniaxial strains ε[100], ε[110], ε[111], ε[112], the deforma-
tion matrices are⎛

⎝ε 0 0
0 0 0
0 0 0

⎞
⎠,

⎛
⎜⎝

ε
2 − ε

2 0

− ε
2

ε
2 0

0 0 0

⎞
⎟⎠,

⎛
⎜⎝

ε
3

ε
3

ε
3

ε
3

ε
3

ε
3

ε
3

ε
3

ε
3

⎞
⎟⎠,

⎛
⎜⎝

ε
6

ε
6 − ε

3
ε
6

ε
6 − ε

3

− ε
3 − ε

3
ε
6

⎞
⎟⎠,

respectively. For the shear strains, τ[010],[001], τ[112̄],[111],
τ[1̄10],[112̄], τ[111],[1̄10], the deformation matrices are

⎛
⎝0 ε 0

ε 0 0
0 0 0

⎞
⎠,

⎛
⎜⎝

√
2 ε

3

√
2 ε

3 −√
2 ε

6√
2 ε

3

√
2 ε

3 −√
2 ε

6

−√
2 ε

6 −√
2 ε

6 −2
√

2 ε
3

⎞
⎟⎠,

⎛
⎜⎝

−√
3 ε

3 0
√

3 ε
3

0
√

3 ε
3 −√

3 ε
3√

3 ε
3 −√

3 ε
3 0

⎞
⎟⎠,

⎛
⎜⎝

−√
6 ε

3 0 −√
6 ε

6

0
√

6 ε
3

√
6 ε

6

−√
6 ε

6

√
6 ε

6 0

⎞
⎟⎠,

respectively.
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